
Decision Procedures for Loop Detection?

René Thiemann1, Jürgen Giesl2, Peter Schneider-Kamp2

1 Institute of Computer Science, University of Innsbruck
Techniker Str. 21a, A-6020 Innsbruck, Austria

rene.thiemann@uibk.ac.at
2 LuFG Informatik 2, RWTH Aachen
Ahornstr. 55, 52074 Aachen, Germany

{giesl,psk}@informatik.rwth-aachen.de

Abstract. The dependency pair technique is a powerful modular meth-
od for automated termination proofs of term rewrite systems. We first
show that dependency pairs are also suitable for disproving termination:
loops can be detected more easily.
In a second step we analyze how to disprove innermost termination.
Here, we present a novel procedure to decide whether a given loop is an
innermost loop.
All results have been implemented in the termination prover AProVE.

Keywords. Non-Termination, Decision Procedures, Term Rewriting,
Dependency Pairs

1 Introduction

One of the most powerful techniques to prove termination or innermost termi-
nation of TRSs automatically is the dependency pair approach [1,3]. In [4,7],
we showed that dependency pairs can be used as a general framework to com-
bine arbitrary techniques for termination analysis in a modular way. The general
idea of this framework is to solve termination problems by repeatedly decom-
posing them into sub-problems. We call this new concept the “dependency pair
framework” (“DP framework”) to distinguish it from the old “dependency pair
approach”. In particular, this framework also facilitates the development of new
methods for termination and non-termination analysis.

Example 1 (Factorial function). The following ACL2 program computes the fac-
torial function.

(defun factorial (x) (fact 0 x))
(defun fact (x y) (if (== x y)

1
(× (fact (+ 1 x) y) (+ 1 x))))

Using the translation of [15] we obtain the following TRS R where the rules
(5)− (12) are needed to handle the built-in functions of ACL2.
? Supported by the DFG grant GI 274/5-1.

Dagstuhl Seminar Proceedings 07401
Deduction and Decision Procedures
http://drops.dagstuhl.de/opus/volltexte/2007/1246

2 R. Thiemann, J. Giesl, P. Schneider-Kamp

factorial(x) → fact(0, x) (1)
fact(x, y) → if(x == y, x, y) (2)

if(true, x, y) → s(0) (3)
if(false, x, y) → fact(s(x), y) × s(x) (4)

0 + y → y (5)
s(x) + y → s(x + y) (6)

0 × y → 0 (7)
s(x) × y → y + (x × y) (8)
x == y → chk(eq(x, y)) (9)
eq(x, x) → true (10)

chk(true) → true (11)
chk(eq(x, y)) → false (12)

Note that the rules for equality can compare terms of arbitrary “type”, e.g.,
it will be detected that false is not equal to 0. This is essential to model the
semantics of ACL2, since here there are – like in term rewriting – no types. At
the same time, all functions in ACL2 must be “completely defined”.

Since in ACL2 every function must be terminating to guarantee consistency,
it is essential to know whether a termination proof cannot be obtained due to
non-termination. The goal is then to identify and present the infinite sequence
to the user such that the bug can be fixed. Here, we will investigate a specific
kind of infinite reductions which can be represented in a finite way: a looping
reduction proves non-termination.

It is not only a hard problem to find a loop due to the huge associated search
space, but with the translated ACL2-programs we encounter a second problem.
The rules of equality of R do not work correctly for standard rewriting since it
is always possible to rewrite s == t →R chk(eq(s, t)) →R false, i.e., all terms
are not equal, and some terms are equal and not equal at the same time. As
this obviously does not correspond to the ACL2 semantics, one cannot conclude
non-termination of the ACL2-program from non-termination of R.

This is not the case for innermost rewriting since there the equality rules
work correctly. One has to first apply rule (10) if s and t are equal. And indeed,
R is an innermost confluent TRS which models the semantics of equality in
a correct way. But then we need a way to disprove innermost termination, a
problem which is harder than disproving termination since one has to take care
of the evaluation strategy.

However, in this paper we will present a technique which will disprove inner-
most termination of R and present an innermost loop to the user as counter-
example. This loop corresponds to the non-terminating reduction of the ACL2
program which does not terminate if one calls fact(n, 0) for a natural number
n > 0. The reason is that the first argument is increased over and over again,
and it will never become equal to 0.

Decision Procedures for Loop Detection 3

The paper is organized as follows. After recapitulating the basics of the DP
framework in Sect. 2, we present two significant improvements: in Sect. 3 we
show how to use the DP framework to prove non-termination with the help of
loops and in Sect. 4 we present a way to detect loops for standard rewriting.
Then in Sect. 5 we extend the notion of a loop to innermost rewriting, and
describe a novel decision procedure in Sect. 6 which detects whether a loop for
standard rewriting is still a loop in the innermost case.3 Sect. 7 contains related
work and summarizes our results.

2 The Dependency Pair Framework

We refer to [2] for the basics of rewriting and to [1,3,4,7] for motivations and
details on dependency pairs. We only regard finite signatures and TRSs. T (F ,V)
is the set of terms over the signature F and the infinite set of variables V =
{x, y, z, . . . , α, β, . . .}. A TRS R is a (finite) set of rules ` → r. We use the
notation {x/t1, . . . , xn/tn} for the substitution which replaces every variable xi

by the corresponding term ti.
For a TRS R over F , the defined symbols are D = {root(l) | l → r ∈ R}. For

every f ∈ F let f] be a fresh tuple symbol with the same arity as f. The set of
tuple symbols is denoted by F]. If t=g(t1, . . . , tm) with g∈D, we let t] denote
g](t1, . . . , tm).

Definition 2 (Dependency Pair). The set of dependency pairs for a TRS
R is DP (R) = {l] → t] | l → r ∈ R, t is a subterm of r, root(t) ∈ D}.

Example 3. In the TRS of Ex. 1, the defined symbols are factorial, fact, if, +, ×,
==, and chk. Hence, the dependency pairs of the TRS are the following ones.

factorial](x) → fact](0, x) (13)
fact](x, y) → if](x == y, x, y) (14)
fact](x, y) → x ==] y (15)

if](false, x, y) → fact(s(x), y) ×] s(x) (16)
if](false, x, y) → fact](s(x), y) (17)

s(x) +] y → x +] y (18)
s(x) ×] y → y +] (x × y) (19)
s(x) ×] y → x ×] y (20)
x ==] y → chk](eq(x, y)) (21)
x ==] y → eq](x, y) (22)

For termination, we try to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and a
chain represents a possible sequence of calls that can occur during a reduction.
In the following definition, P is usually a set of dependency pairs.
3 All results described in this draft including the proofs are available in [5] and [14].

4 R. Thiemann, J. Giesl, P. Schneider-Kamp

Definition 4 (Chain). Let P,R be TRSs. A (possibly infinite) (P,R)-chain is
a reduction of the form

s1 →P s2 →∗
R s3 →P s4 →∗

R . . .

where P-steps are only allowed at the root. It is an innermost (P,R)-chain iff

s1
i→P s2

i→∗
R s3

i→P s4
i→∗
R . . .

where again P-steps are only allowed at the root. Here, “ i→” denotes innermost
reductions w.r.t. R, i.e., all direct subterms of the redex have to be in R-normal
form.

Example 5. One can use the dependency pairs (14) and (17) of Ex. 3 to build a
chain:

fact](0, s(0)) i→{(14)} if](0 == s(0), 0, s(0))
i→∗
R if](false, 0, s(0))

i→{(17)} fact](s(0), s(0))

The following theorem states that an infinite reduction corresponds to an
infinite chain and vice versa.

Theorem 6 (Termination Criterion [1]). A TRS R is (innermost) non-
terminating iff there is an infinite (innermost) (DP (R),R)-chain.

The idea of the DP framework [4] is to treat a set of dependency pairs P
together with the TRSR and to prove absence of infinite (P,R)-chains instead of
examining →R. Formally, a dependency pair problem (“DP problem”) consists of
two TRSs P and R (where initially, P = DP (R)) and a flag e ∈ {t, i} standing
for “termination” or “innermost termination”. Instead of “(P,R)-chains” we
also speak of “(P,R, t)-chains” and instead of “innermost (P,R)-chains” we
speak of “(P,R, i)-chains”. Our goal is to show that there is an infinite (P,R, e)-
chain. In this case, we call the problem infinite, otherwise it is finite.4

Termination techniques should now operate on DP problems instead of TRSs.
We refer to such techniques as dependency pair processors (“DP processors”).
Formally, a DP processor is a function Proc which takes a DP problem as input
and returns a new set of DP problems which then have to be solved instead.
Alternatively, it can also return “no”. A DP processor Proc is sound if for all
DP problems d, d is finite whenever Proc(d) is not “no” and all DP problems
in Proc(d) are finite. Proc is complete if for all DP problems d, d is infinite
whenever Proc(d) is “no” or when Proc(d) contains an infinite DP problem.

Soundness of a DP processor Proc is required to prove termination (in partic-
ular, to conclude that d is finite if Proc(d) = ∅). Completeness is needed to prove
non-termination (in particular, to conclude that d is infinite if Proc(d) = no).

4 To ease readability we use a simpler definition of DP problems than [4,7,14], since
this simple definition suffices for the new results of this paper. Moreover, we also use
a simplified notion of infinite DP problems.

Decision Procedures for Loop Detection 5

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R, e), where e depends on whether one wants to prove termination or
innermost termination. Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then
termination is proved. If one of the processors returns “no” and all processors
used before were complete, then one has disproved termination of the TRS R.

Example 7. If d0 is the initial DP problem (DP (R),R, e) and there are sound
processors Proc0, Proc1, Proc2 with Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, and
Proc2(d2) = ∅, then one can conclude termination. But if Proc1(d1) = no, and
both Proc0 and Proc1 are complete, then one can conclude non-termination.

3 Loops

Almost all techniques for automated termination analysis try to prove termina-
tion and there are hardly any methods to prove non-termination. But detecting
non-termination automatically would be very helpful when debugging programs.

We show that the DP framework is particularly suitable for combining both
termination and non-termination analysis. We introduce a DP processor which
tries to detect infinite DP problems in order to answer “no”. Then, if all previous
processors were complete, we can conclude non-termination of the original TRS.
An important advantage of the DP framework is that it can couple the search for
a proof and a disproof of termination: Processors which try to prove termination
are also helpful for the non-termination proof because they transform the initial
DP problem into sub-problems, where most of them can easily be proved finite.
So they detect those sub-problems which could cause non-termination. There-
fore, the non-termination processors should only operate on these sub-problems
and thus, they only have to regard a subset of the rules when searching for non-
termination. On the other hand, processors that try to disprove termination are
also helpful for the termination proof, even if some of the previous processors
were incomplete. The reason is that there are many indeterminisms in a termi-
nation proof attempt, since usually many DP processors can be applied to a DP
problem. Thus, if one can find out that a DP problem is infinite, one knows that
one has reached a “dead end” and should backtrack.

Example 8. Using sound and complete processors we can simplify the initial DP
problem (DP (R),R, e) of Ex. 1 and 3 to the DP problem ({(14), (17)}, {(9) −
(12)}, e). Hence, if the TRS is not (innermost) terminating then it is only due
to the recursion in the factorial function.

An obvious approach to find infinite reductions is to search for a term s
which evaluates to a term C[sµ] containing an instance of s. A TRS with such
reductions is called looping. Clearly, a naive search for looping terms is very
costly.

In contrast to “looping TRSs”, when adapting the concept of loopingness to
DP problems, we only have to consider terms s occurring in dependency pairs

6 R. Thiemann, J. Giesl, P. Schneider-Kamp

and we do not have to regard any contexts C. The reason is that such contexts
are already removed by the construction of dependency pairs. Thm. 10 shows
that in this way one can indeed detect all looping TRSs.

Definition 9 (Looping DP Problem [5]). A DP problem (P,R, t) is looping
iff there is a (P,R)-chain

s1 →P s2 →P∪R s3 →P∪R · · · →P∪R sm →P∪R s1µ

with m ≥ 1. Of course, whenever a rule of P is used then the corresponding
reduction must be at the root position.

The requirement that the first rule must be from P corresponds to the re-
quirement that the first reduction in a chain is done with P.

Theorem 10 (Looping TRSs and Looping DP Problems [5]). A TRS R
is looping iff the DP problem (DP (R),R, t) is looping.

Example 11. Consider the remaining DP problem ({(14), (17)}, {(9)− (12)}, e).
If e = t then this DP problem is looping since

fact](x, 0) →{(14)} if](x == 0, x, 0)
→R if](chk(eq(x, 0)), x, 0)
→R if](false, x, 0)
→{(17)} fact](s(x), s(0))
= fact](x, 0) {x/s(x)}

is a chain where the last term is an instance of the starting term.

Our goal is to detect looping DP problems (in the termination case) since
they are infinite and hence, if all preceding DP processors were complete, then
termination is disproved. We will discuss the innermost case in Sect. 5.

Lemma 12 (Looping and Infinite DP Problems). If (P,R, t) is looping,
then (P,R, t) is infinite.

Now we can define the DP processor for proving non-termination.

Theorem 13 (Non-Termination Processor [5]). The following DP proces-
sor Proc is sound and complete. For a DP problem (P,R, e), Proc returns

• “no”, if (P,R, e) is looping and e = t
• {(P,R, e)}, otherwise

It only remains to detect looping DP problems. We consider this problem in
the upcoming section.

Decision Procedures for Loop Detection 7

4 Detecting Looping DP Problems

Our criteria to detect looping DP problems automatically use narrowing.

Definition 14 (Narrowing). Let R be a TRS. A term t narrows to s, denoted
t R,δ,p s, iff there is a substitution δ, a (variable-renamed) rule l → r ∈ R and
a non-variable position p of t where δ = mgu(t|p, l) and s = t[r]pδ. Let R,δ

be the relation which permits narrowing steps on all positions p. Let (P,R),δ

denote P,δ,ε ∪ R,δ, where ε is the root position. Moreover, ∗
(P,R),δ is the

smallest relation containing (P,R),δ1 ◦ . . . ◦ (P,R),δn
for all n ≥ 0 and all

substitutions where δ = δ1 . . . δn.

To find loops, we narrow the right-hand side t of a dependency pair s → t
until one reaches a term s′ such that sδ semi-unifies with s′ (i.e., sδσµ = s′σ
for some substitutions σ and µ). Here, δ is the substitution used for narrowing.
Then we indeed have a loop as in Def. 9 since sδσ →P tδσ →∗

P,R s′σ = (sδσ)µ.
Semi-unification encompasses both matching and unification and algorithms for
semi-unification can for example be found in [9,12].

Theorem 15 (Loop Detection by Narrowing [5]). Let (P,R, e) be a DP
problem. If there is an s → t ∈ P such that t ∗

(P,R),δ s′ and sδ semi-unifies
with s′, then (P,R, t) is looping.

Example 16. We now try to detect a loop of the DP problem (P,R, t) of Ex. 11
by narrowing. Starting with the right-hand side of (14) we obtain

if](x == y, x, y) R,{ } if](chk(eq(x, y)), x, y)
 R,{ } if](false, x, y)
 P,{ } fact](s(x), y)

where the resulting substitution δ is empty in this case. Since the instantiated
left-hand side fact](x, y) of (14) matches the resulting term fact](s(x), y) we know
that the DP problem is looping and the TRS of Ex. 1 does not terminate.

Further ways to find loops are backward narrowing where one narrows with
the reversed TRS (P ∪R)−1, and one can also permit narrowing into variables,
i.e., in Def. 14 the position p may be a variable position of t [5]. Sometimes these
extensions are required, but of course they increase the search space.

5 Innermost Loops

Unfortunately, if one does not consider full rewriting but innermost rewriting,
then loopingness does not imply non-termination, since i→R is not stable. The
reason is that from s i→+

R C[sµ] one cannot deduce sµ i→+
R Cµ[sµ2]. And even

if this is possible, then it might be the problem that later on for some larger n
the reduction sµn i→+

R Cµn[sµn+1] is not possible.

8 R. Thiemann, J. Giesl, P. Schneider-Kamp

As an example consider the TRS R = {f(g(x)) → f(g(g(x))), g(g(g(x))) →
a}. By choosing s = f(g(x)), C = �, and µ = {x/g(x)} we obtain the following
reduction.

s i→R C[sµ] = f(g(g(x))) i→R C[Cµ[sµ2]] = f(g(g(g(x))))

Now the only possible next reduction step yields the normal form f(a), such that
one cannot build an infinite reduction as in the termination case. And indeed,
the TRS R is innermost terminating.

To solve this problem, one can define that a TRS R is innermost looping
iff there is a term s, a substitution µ, and a context C such that sµn i→+

R
Cµn[sµn+1] for every natural number n. A similar definition was already used
in [5, Footnote 6]. Then indeed, innermost loopingness implies innermost non-
termination. However the following example shows that this definition does not
really correspond to a loop in the intuitive way where one has the same reduction
over and over again.

Example 17. Consider the TRS R with the following rules.

f(x, y) → f(s(x), g(h(x, 0)))
h(s(x), y) → h(x, s(y))
g(h(x, y)) → i(y)

Then R is “innermost looping”, as for s = f(s(x), g(h(x, 0))), C = �, and µ =
{x/s(x)} there are the following reductions.

sµn = f(s(x), g(h(x, 0)))µn

= f(sn+1(x), g(h(sn(x), 0)))
i→n
R f(sn+1(x), g(h(x, sn(0))))

i→R f(sn+1(x), i(sn(0)))
i→R f(sn+2(x), g(h(sn+1(x), 0)))
= Cµn[sµn+1]

The problem is that the reductions from sµn to Cµn[sµn+1] depend on n. In
this example it might still be possible to represent and check the reductions in
a finite way as they have a regular structure, but in general the problem is not
even semi-decidable.

Suppose we want to solve the undecidable problem whether a function i over
the naturals is total. Since term rewriting is Turing-complete we can assume that
there are corresponding rules for i which compute that function by innermost
rewriting. But then we can add the three rules of R and totality of i is equivalent
to the question whether s, µ, and C as above form an innermost loop, since we
obtain a loop iff all terms i(sn(0)) for n ∈ IN have a normal form.

So, the problem with the requirement sµn i→+
R Cµn[sµn+1] is that although

there are some intermediate terms in the infinite reduction that have a regular
structure, it is possible that for every n the reduction from sµn to Cµn[sµn+1]
is completely different.

Decision Procedures for Loop Detection 9

However, in the infinite reduction that corresponds to a loop for standard
rewriting there is a strong regularity in the reductions from sµn to Cµn[sµn+1].
For every n one can apply exactly the same rules in exactly the same order at
exactly the same positions. Hence, one only has to give the reduction of s to
C[sµ] to know how to continue for sµ, sµ2, This gives rise to the our final
definition of innermost looping.

Definition 18 (Innermost Looping TRS [14]). A TRS R is innermost
looping iff there is a term s, a context C, a substitution µ, a number m ≥ 1,
and if there are rules `1 → r1, . . . , `m → rm ∈ R and positions p1, . . . , pm such
that for all n ∈ IN there is the following reduction.5

s1µ
n i→`1→r1,p1 s2µ

n i→`2→r2,p2 s3µ
n . . . smµn i→`m→rm,pm

Cµn[sµn+1]

Note that Def. 18 essentially is the requirement that one has a loop for
standard rewriting where all steps in the corresponding infinite reduction are
innermost steps. Hence, one can represent an innermost loop in the same way
as a loop for termination: just give the reduction s1 →R s2 →R . . . →R sm →R
C[sµ], i.e., choosing n = 0. The only problem is to check whether a given loop
really is an innermost loop. Before we tackle this problem in the next section,
we will state the desired fact that innermost loopingness implies innermost non-
termination, and we will lift the notion of innermost loopingness to DP problems
where again we will show that even for innermost rewriting, loopingness of a TRS
coincides with loopingness of the initial DP problem.

Lemma 19 (Innermost Loops and Innermost Non-Termination). Let R
be a TRS. If R is innermost looping then R is not innermost terminating.

Definition 20 (Innermost Looping DP Problem [14]). A DP problem (P,
R, i) is innermost looping iff there are rules `1 → r1 ∈ P, `2 → r2, . . . , `m →
rm ∈ P ∪R and positions p1, . . . , pm and a substitution µ such that

s1µ
n i→`1→r1,p1 s2µ

n i→`2→r2,p2 s3µ
n . . . smµn i→`m→rm,pm s1µ

n+1

for all n ∈ IN. As in Def. 9, whenever a rule of P is used then the corresponding
position must be the root position.

The following theorem states that loopingness implies non-termination.

Theorem 21 (Innermost Non-Termination Processor [14]). The follow-
ing DP processor Proc is sound and complete. For a DP problem (P,R, e), Proc
returns

• no, if (P,R, e) is innermost looping and e = i
• {(P,R, e)}, otherwise

5 Here, i→`→r,p denotes an innermost rewrite step with the rule ` → r at position p.

10 R. Thiemann, J. Giesl, P. Schneider-Kamp

Like in the termination case we have the same advantages when using de-
pendency pairs to search for innermost loops: There is no need to search for a
context and one can simplify the initial DP problem before trying to disprove
innermost termination.

The following theorem shows that one can detect all innermost looping TRSs
by looking for innermost loops in the corresponding DP problems.

Theorem 22 (Innermost Looping TRSs and Innermost Looping DP
Problems [14]). A TRS R is innermost looping iff (DP (R),R, i) is innermost
looping.

6 Detecting Innermost Loops

We remain with the problem to detect innermost looping DP problems. Up to
now we only have a way to detect loops with the help of narrowing. Such a
loop definitely is a good starting point to find an innermost loop because for
every innermost loop there is a loop which satisfies the additional requirements
of Def. 20.

Example 23. In Ex. 16 we have detected the following looping reduction.

fact](x, y) →P,ε if](x == y, x, y)
→R,1 if](chk(eq(x, y)), x, y)
→R,1 if](false, x, y)
→P,ε fact](s(x), y)
= fact](x, y){x/s(x)}

To check whether this is an innermost loop we have to check for µ = {x/s(x)}
and for all n ∈ IN whether the corresponding steps are innermost steps when
instantiating the terms with µn. The main problem in this example is the third
reduction since the redex contains the subterm eq(x, y)µn which might not be a
normal form w.r.t. the rule eq(x, x) → true for some n.

In the remainder of this section we will show the main result that it is indeed
decidable whether a given loop is an innermost loop. For example, it will turn
out that the loop in our example is indeed an innermost loop.

Note that a looping reduction

s1µ
n →`1→r1,p1 s2µ

n →`2→r2,p2 . . . smµn →`m→rm,pm sµn+1

is innermost looping iff every direct subterm si|pi·j µn of every redex siµ
n|pi is

in normal form. Since a term t is in normal form iff t does not contain a redex
w.r.t. R, we can reformulate the question about innermost loopingness in terms
of so-called redex problems.

Definition 24 (Redex, Matching, and Identity Problems [14]). Let s
and ` be terms, let µ be a substitution with finite domain. Then a redex problem

Decision Procedures for Loop Detection 11

is a triple (s |m `, µ), a matching problem is a triple (s m `, µ), and an identity
problem is a triple (s u `, µ).

A redex problem (s |m `, µ) is solvable iff there is a natural number n, a
position p, and a substitution σ such that sµn|p = `σ, a matching problem is
solvable iff there is a natural number n and a substitution σ such that sµn = `σ,
and an identity problem is solvable iff there is a natural number n such that
sµn = `µn.

Obviously, for every term s the redex problem (s |m µ, `) is not solvable for
any ` → r ∈ R iff sµn is in normal form w.r.t. R for all n ∈ IN.

Example 25. We consider the loop of Ex. 23. It is innermost looping iff for µ =
{x/s(x)} all redex problems (s |m `, µ) are not solvable where s is chosen from
{x, y, eq(x, y), false} and ` is a left-hand side of rules (9)− (12).

To answer the question whether a redex problem (s |m `, µ) is solvable, we
have to look for three unknowns: the position p, the substitution σ, and the
number n. We will now eliminate these unknowns one by one and start with
the position p. This will result in matching problems. Then in a second step
we will further transform matching problems into identity problems where only
the number n is unknown. Finally, we will present a novel algorithm to decide
identity problems. Therefore, at the end of this section we will have a decision
procedure for redex problems, and thus also for the question whether a given
loop respects the strategy.

To start with simplifying a redex problem (s |m `, µ) into a finite disjunction
of matching problems, note that since the position can be chosen freely from all
terms s, sµ, sµ2, . . . it is not possible to just unroll the possible choices for the
position. But the following theorem shows that it is indeed possible to reduce
redex problems to matching problems.

Theorem 26 (Solving Redex Problems [14]). Let (s |m `, µ) be a redex
problem. Let W =

⋃
i∈IN V(sµi). Then (s |m `, µ) is solvable iff ` is a variable

or if the matching problem (u m `, µ) is solvable for some non-variable subterm
u of a term in {s} ∪ {xµ | x ∈ W}.

Note that the set W is finite since it is a subset of the finite set of variables
V(s) ∪

⋃
x∈Dom(µ) V(xµ). Hence, Thm. 26 can easily be automated.

Example 27. We use Thm. 26 for the redex problems of Ex. 25. Since there are
no new variables occurring when applying µ we obtain W = {x, y}. Thus, one
of the redex problems is solvable iff one of the matching problems (s m `, µ) is
solvable where s is now chosen from {s(x), eq(x, y), false}. (The variables have
been dropped, but one has to consider the new term s(x) from the substitution.)

Now the question whether a given matching problem is solvable remains.
This amounts to detecting the unknown number n and the matcher σ. Our next
aim is again to reduce this problem to a conjunction of identity problems where
there is no matcher σ any more. However, we first have to generalize the notion
of a matching problem (s m `, µ) which includes one pair of terms s m ` into a
matching problem which allows a set of pairs of terms.

12 R. Thiemann, J. Giesl, P. Schneider-Kamp

Definition 28 (Matching Problem [14]). A matching problem (M, µ) con-
sists of a set M of pairs {s1 m `1, . . . , sk m `k} together with a substitution µ. A
matching problem (M, µ) is solvable iff there is a substitution σ and a number
n ∈ IN such that for all 1 ≤ j ≤ k the equality sjµ

n = `jσ is valid.
If M only contains one pair s m ` then we identify (M, µ) with (s m `, µ),

and if µ is clear from the context we write M as an abbreviation for (M, µ).

We now give a set of four transformation rules which either detect that a
matching problem is not solvable (indicated by ⊥), or which transform a match-
ing problem into solved form. And once we have reached a matching problem in
solved form, it is possible to translate it into identity problems.

Definition 29 (Transformation of Matching Problems [14]). Let V be
the set of variables and let µ = {x1/t1, . . . , xm/tm} be a substitution. We define
Vincr = {x ∈ V | there is some n ∈ IN with xµn /∈ V} as the set of increasing
variables.

For each matching problem (M, µ) with M = M′] {s m `} with ` /∈ V there
is a corresponding transformation rule.

1. M⇒ {s′µ m `′ | s′ m `′ ∈M}, if s ∈ Vincr

2. M⇒⊥, if s ∈ V \ Vincr

3. M⇒⊥, if s = f(. . .), ` = g(. . .), and f 6= g
4. M⇒M′ ∪ {s1 m `1, . . . , sk m `k}, if s = f(s1, . . . , sk), ` = f(`1, . . . , `k)

Otherwise, a matching problem is in solved form.

The following theorem shows that every matching problem (s m `, µ) can be
reduced to a set of identity problems.

Theorem 30 (Solving Matching Problems [14]). Let (M, µ) be a matching
problem.

1. The transformation rules of Def. 29 are confluent and terminating.
2. If M⇒⊥ then M is not solvable.
3. If M⇒M′ then M is solvable iff M′ is solvable.
4. M is solvable iff M ⇒∗ M′ for some matching problem M′ = {s1 m

x1, . . . , sk m xk} in solved form, such that for all i 6= j with xi = xj the
identity problem (si u sj , µ) is solvable.

Example 31. We illustrate the transformation rules of Def. 29 by continuing
Ex. 27, where at the end we had to analyze the matching problems (s m `, µ)
where s ∈ {s(x), eq(x, y), false} and ` is a left-hand side of one of the rules
(9)− (12).

• The matching problems (s(x)m`, µ) and (falsem`, µ) can be reduced to ⊥ by
rule (3). The same is valid for all matching problems (eq(x, y) m `, µ) except
for the one where ` is the left-hand side eq(x, x).

Decision Procedures for Loop Detection 13

• The remaining matching problem (eq(x, y) m eq(x, x), µ) is transformed by
rule (4) into its solved form {x m x, y m x}. Hence, by Thm. 30 all matching
problems are not solvable iff the identity problem (x u y, µ) is not solvable.

It only remains to give an algorithm which decides solvability of an iden-
tity problem. The full algorithm is presented in Fig. 1, and we will explain the
performed steps one by one.

Input: An identity problem (s u t, µ).
Output: “Yes”, if the identity problem is solvable, and “No”, if it is not.

1. While µ contains a cycle of length n > 1 do µ := µn.
2. S := ∅
3. If s = t then stop with result “Yes”.
4. If there is a shared position p of s and t such that s|p = f(. . .) and t|p = g(. . .)

and f 6= g then stop with result “No”.
5. If there is a shared position p of s and t such that s|p = x, t|p = g(. . .), and x

is not an increasing variable then stop with result “No”.
Repeat this step with s and t exchanged.

6. If there is a shared position p of s and t such that s|p = x, t|p = y, x 6= y, and
x, y /∈ Dom(µ) then stop with result “No”.

7. Add the triple (x, p, t|p) to S for all shared positions p of s and t such that
x = s|p 6= t|p where x is an increasing variable.
Repeat this step with s and t exchanged.

8. If (x, p1, u1) ∈ S and (x, p2, u2) ∈ S where
(a) u1 and u2 are not unifiable or where
(b) u1 = u2 and p1 < p2,
then stop with result “No”.

9. s := sµ, t := tµ
10. Continue with step (3).

Fig. 1. An algorithm to decide solvability of identity problems

First we replace the substitution µ by µn such that µn does not contain
cycles. Here, a substitution δ contains a cycle of length n iff δ = {x1/x2, x2/x3,
. . . , xn/x1, . . . } where the xi are pairwise different variables. Obviously, if δ
contains a cycle of length n then in δn all variables x1, . . . , xn do not belong to
the domain any more. Thus, step (1) will terminate and afterwards µ does not
contain cycles of length 2 or more.

Note that like in Thm. 26 where we replaced µ by δ = µj−i, the identity
problem (s u t, µ) is solvable iff (s u t, µn) is solvable. Hence, after step (1) we
still have to decide solvability of (s u t, µ) for the modified µ. The advantage is
that now µ has a special structure. For all x ∈ Dom(µ) either x is an increasing
variable or for some n the term xµn is a variable which is not in the domain of µ.
And for such substitutions µ the terms s, sµ, sµ2, . . . finally become stationary
at each position, i.e., for every position p there is some n such that either all

14 R. Thiemann, J. Giesl, P. Schneider-Kamp

terms sµn|p, sµn+1|p, sµn+2|p, . . . are of the form f(. . .), or all these terms are
the same variable x /∈ Dom(µ). Therefore, it is possible to define sµ∞ as the
limit of all terms s, sµ, sµ2,

If the identity problem is solvable then there is some n such that sµn = tµn

which is detected in step (3). The reason is that with steps (9) and (10) one
iterates over all term pairs (s, t), (sµ, tµ), (sµ2, tµ2),

On the other hand it might be the case that an identity problem has a
stationary conflict, i.e., sµ∞ 6= tµ∞. Then the identity problem is unsolvable
since sµn = tµn implies sµ∞ = tµ∞. However, if the terms sµ∞ and tµ∞ differ,
then there is some position p such that the symbols at position p differ, or sµ∞|p
is a variable and tµ∞|p is not a variable (or vice versa), or both sµ∞|p and tµ∞|p
are different variables. Hence, if we choose n high enough then p is stationary
for both sµn|p and tµn|p. But then one of three cases in steps (4)-(6) will hold.
The reason is that all variables in sµ∞ and tµ∞ are not from the domain of µ.

Up to now we can detect all solvable identity problems and all identity
problems which are not solvable due to a stationary conflict. However, there
remain other identity problems which are neither solvable nor do they pos-
sess a stationary conflict. As an example consider (x u y, {x/f(x), y/f(y)}).
Then sµ∞ = f(f(f(. . .))) = tµ∞ but this identity problem is not solvable since
xµn = fn(x) 6= fn(y) = yµn. We call these identity problems infinite.

The remaining steps (2), (7), and (8) are used to detect infinite identity
problems. In the set S we store subproblems (x, p, u) such that whenever the
identity problem is solvable, then xµm = uµm must hold for some m to make
the terms sµn and tµn equal at position p.

We give some intuitive arguments why the two abortion criteria in step (8)
are correct. For (8a) notice that if u1 and u2 are not unifiable then xµm cannot
be both u1µ

m and u2µ
m, which would be a conflict. And if in the problem to

make xµm equal to u1µ
m we again produce the same problem at a lower position,

then this will continue forever. Hence, the problem is not solvable, which will be
detected by step (8b).

The following theorem shows that indeed all answers of the algorithm are
correct and it also shows that we will always get an answer. However, especially
the termination proof is quite involved since we have to show that the criteria
in step (8) suffice to detect all infinity identity problems.

Theorem 32 (Solving Identity Problems [14]). The algorithm in Fig. 1 to
decide solvability of identity problems is correct and it terminates.

Example 33. We illustrate the algorithm with the identity problem (x u y, µ)
where µ = {x/f(y, u0), y/f(z, u0), z/f(x, u0), u0/u1, u1/u0}.

As µ contains a cycle of length 2 we replace µ by µ2 = {x/f(f(z, u0), u1),
y/f(f(x, u0), u1), z/f(f(y, u0), u1)}. Since xµ∞ = f(f(f(. . . , u1), u0), u1) = yµ∞

we know that the problem is solvable or infinite. Hence, the steps (4)-(6) will
never succeed. We start with s = x and t = y. Since the terms are different we
add (x, ε, y) and (y, ε, x) to S. In the next iteration we have s = f(f(z, u0), u1)
and t = f(f(x, u0), u1). Again, the terms are different and we add (x, 11, z)

Decision Procedures for Loop Detection 15

and (z, 11, x) to S. The next iteration yields the new triples (y, 1111, z) and
(z, 1111, y), and after having applied µ three times we get the two last triples
(x, 111111, y) and (y, 111111, x). Then due to (8b) the algorithm terminates with
“No”.

By simply combining the theorems of this section we have finally obtained
a decision procedure which can solve the question whether a loop is also an
innermost loop.

Corollary 34 (Deciding Innermost Loops [14]). For every looping reduc-
tion of a TRS or of a DP problem it is decidable whether that reduction is an
innermost loop.

Example 35. At the end of Ex. 31 we knew that the given loop is an innermost
loop iff (x u y, µ) is not solvable where µ = {x/s(x)}. We apply the algorithm
of Fig. 1 to show that this identity problem is indeed not solvable, and hence we
show that the loop is also innermost looping and thus, the TRS of Ex. 1 is not
innermost terminating.

Since µ only contains cycles of length 1, we skip step (1). So, let s = x and
t = y. Then none of the steps (3)-(6) is applicable. Hence, we add (x, ε, y) to S
and continue with s = s(x) and t = y. Then, in step (5) the algorithm is stopped
with answer “No” due to a stationary conflict.

7 Conclusion and Related Work

We have shown how one can identify looping DP problems by narrowing. This
is related to the concept of forward closures of a TRS R [10]. However, our
approach differs from forward closures by starting from the rules of another TRS
P and by also allowing narrowings with P’s rules on root level. (The reason is
that we prove non-termination within the DP framework.) Moreover, we also
regard backward narrowing, and we allow narrowing into variables. The latter
is partially done in [13] as well.

There are only a few papers on automatically proving non-termination of
TRSs. Recently, [16,17] (Matchbox and Torpa) presented methods for proving
non-termination of string rewrite systems (i.e., TRSs where all function symbols
have arity 1). Similar to our approach, [16] uses (forward) narrowing and [17]
uses ancestor graphs which correspond to (backward) narrowing. However, our
approach differs substantially from [16,17]: our technique works within the DP
framework, whereas [16,17] operate on the whole set of rules. Therefore, we can
benefit from all previous DP processors which decompose the initial DP prob-
lem into smaller sub-problems and identify those parts which could cause non-
termination. Moreover, we regard full term rewriting instead of string rewriting.
Therefore, we use semi-unification to detect loops, whereas for string rewriting,
matching is sufficient.

In [13] (NTI) forward closures6 are used in combination with semi-unification
to find loops of TRSs, but as in [16,17] their method works directly on the level
6 In [13] forward closures are called unfoldings.

16 R. Thiemann, J. Giesl, P. Schneider-Kamp

of the TRS without using dependency pairs. To increase the power they perform
a preprocessing step which corresponds to one narrowing step into variables.
However, it is easy to give examples where one needs two narrowing steps into
variables showing that our approach of narrowing into variables at any time is
strictly more powerful.

Both forward and backward narrowing are subsumed by overlap closures [8],
a technique by which one can go in both directions at the same time. But if one
allows narrowing into variables then our technique is of incomparable power to
overlap closures. E.g., the loop of the TRS {f(x, y, x, y, z) → f(0, 1, z, z, z), a →
0, a → 1} of [18] cannot be detected by overlap closures, but using narrowing
into variables will find the loop.

Finally, we also considered innermost rewriting where we developed the no-
tion of an innermost loop, both for TRSs and for DP problems. Moreover, we
presented a decision procedure to detect whether a loop is an innermost loop.

All techniques described in this paper have been implemented in our termi-
nation prover AProVE [6]. Since AProVE is currently the only tool (participating
in the annual termination competition [11]) which can handle innermost non-
termination, it is not surprising that AProVE has achieved the highest score in
disproving innermost termination at the competition. However, due to the com-
bination with dependency pairs, AProVE also had the highest score for disproving
termination.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, pages 301–331, 2005.

5. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, pages 216–231,
2005.

6. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286,
2006.

7. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

8. J. Guttag, D. Kapur, and D. Musser. On proving uniform termination and re-
stricted termination of rewriting systems. SIAM J. Computation, 12:189–214, 1983.

9. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical
Computer Science, 81(2):169–187, 1991.

10. D. Lankford and D. Musser. A finite termination criterion. Unpublished Draft.
USC Information Scienes Institue, 1978.

Decision Procedures for Loop Detection 17

11. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07,
LNCS 4533, pages 303–313, 2007.

12. A. Oliart and W. Snyder. A fast algorithm for uniform semi-unification. In Proc.
CADE ’98, LNCS 1421, pages 239–253, 1998.

13. É. Payet. Detecting non-termination of term rewriting systems using an unfolding
operator. In Proc. LOPSTR ’06, LNCS 4407, pages 177–193, 2006.

14. R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen University, 2007. Available as technical report AIB-
2007-17, http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf.

15. D. Vroon. Personal communication, 2007.
16. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th

RTA, LNCS 3091, pages 85–94, 2004.
17. H. Zantema. Termination of string rewriting proved automatically. Journal of

Automated Reasoning, 34:105–139, 2005.
18. X. Zhang. Overlap closures do not suffice for termination of general term rewriting

systems. Information Processing Letters, 37(1):9–11, 1991.

http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf

	Decision Procedures for Loop Detection
	René Thiemann, Jürgen Giesl, Peter Schneider-Kamp

