Implementing RPO and POLO using SAT*

Carsten Fuhs', Peter Schneider-Kamp!, Rene Thiemann', Jiirgen Giesl!,
Elena Annov?, Michael Codish?, Aart Middeldorp?, and Harald Zankl?

! LuFG Informatik 2, RWTH Aachen, Germany,
{fuhs,psk,thiemann,giesl}@informatik.rwth-aachen.de
2 Department of Computer Science, Ben-Gurion University, Israel,
{annov,mcodish}@cs.bgu.ac.il
3 Institute of Computer Science, University of Innsbruck, Austria,
{aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. Well-founded orders are the most basic, but also most impor-
tant ingredient to virtually all termination analyses. Numerous fully au-
tomated search algorithms for these classes have therefore been devised
and implemented in termination tools. Unfortunately, for termination
problems occurring in practice, the performance of existing algorithms
is often insufficient.

Performance can be improved significantly by reducing these search prob-
lems to decision problems for which more efficient algorithms already
exist. Here, we introduce an encoding of RPO and POLO to the satis-
fiability of propositional logic (SAT). We implemented these encodings
in our termination tool AProVE. Extensive experiments have shown that
one can obtain speedups in orders of magnitude by this encoding and
the application of modern SAT solvers.

Keywords. termination, term rewriting, SAT solving, recursive path
order, polynomial interpretation, dependency pairs

1 Introduction

Well-founded orders are the most basic, but also the most important ingredient
to virtually all termination analyses. The recursive path order with status (RPO)
and polynomial interpretations (POLO) are two classes that are among the most
popular ones in the termination analysis of term rewrite systems (TRSs). Nu-
merous fully automated search algorithms for these classes have therefore been
devised and implemented in termination tools.

Unfortunately, the performance of these algorithms on all but the smallest
termination problems has been lacking. E.g., recently developed transformations
from programming languages like Haskell [2] or Prolog [14] allow to apply termi-
nation tools that were developed for term rewrite systems to real programming
languages. The results of the transformations are often of non-trivial size, though,
and cannot be handled efficiently by the existing algorithms.

* Supported by the DFG grant GI 274/5-1 and the FWF project P18763.
Dagstuhl Seminar Proceedings 07401

Deduction and Decision Procedures
http://drops.dagstuhl.de/opus/volltexte/2007/1249

2 C. Fuhs, P. Schneider-Kamp, R. Thiemann, J. Giesl et al.

The need for more efficient search algorithms has triggered research in re-
ducing these search problems into decision problems for which more efficient
algorithms already exist. Here, we introduce an encoding of RPO and POLO to
the satisfiability of propositional logic (SAT).

Since last year, several papers have illustrated the potential in applying SAT
solvers for termination analysis of TRSs. The key idea is classic: the termination
problem for a TRS is encoded to a propositional formula that is satisfiable if
the TRS has the desired termination property (for RPO we even have “iff”).
Satisfiability is decided using state of the art SAT solvers.

For the lexicographic path order (LPO) and the Knuth-Bendix order (KBO),
such encodings are described in [2,3,12] and [16] respectively. This draft extends
those works by introducing an encoding for RPO and for POLO. The main new
and interesting components* are the encodings for the lexicographic comparison
w.r.t. permutation and for the multiset extension of the base order for RPO
in Section 3 as well as the encoding of non-linear inequalities over integers for
POLO in Section 5.

All of the described encodings have been implemented in the termination
analysis tool AProVE. Extensive experiments indicate speedups in orders of mag-
nitude by these encodings and by the application of modern SAT solvers (cf.
Section 6).

2 Recursive Path Order (RPO)

Most termination methods for TRSs transform the termination problem into
a set of inequalities between terms. For example, the classical approach is to
generate inequalities ¢ > r for all rules £ — r. One way to instantiate the order
> is to use a recursive path order with status.

Let > denote a quasi-order (a so-called precedence) on the set of function
symbols F and let > = (># \ <x) and ~x = (> N <z). Each precedence
> 7 and status function o induce a recursive path order >, on terms. If £ >, r
holds for each rule £ — r in a TRS, then the TRS is RPO-terminating.

Definition 1 (status and multiset cover). A status function o maps each
f € F of arity n to mul or to a permutation on {1,...,n} and each pair of
tuples of terms § = (s1,...,8p) and t = (t1,...,tm) to a multiset cover (vy,¢)
sty A{Ll,...,m} — {1,...,n}, e : {1,...,n} — {false,true} and for each
1<i<m, ife(i) (indicating equality) then {j | v(j) =i} is a singleton set.

The status of symbol f indicates if the arguments of a term rooted by f are
compared lexicographically w.r.t. a permutation or as multisets. That a status
also maps pairs 5 and £ to a multiset cover is non-standard, but facilitates the
encoding to SAT. Such a multiset cover for 5 and # is a mapping between indices
which specifies which element i = v(j) of 5 covers element j of and in terms of
e(i) if that covering is by equality.

4 All results described in this draft have been published in two full papers [6,15].

Implementing RPO and POLO using SAT 3

Definition 2 (recursive path order with status). For a precedence >z and
status function o we define the relations >,p, and ~rp,, on terms. We use the
notation § = (s1,...,8n) and t = {t1, ..., tm).

® 5o tiff s= f(5) and one of the following holds:
(1) 8i >rpot OF S; ~oppo t for some 1 < i <n; or
(2) t=g(t) and s =ppo t; for all1 <j<m an_d either:
(i) f>rg or (i) f=rgands {5t
o 5ot iff (a) s=1t; or (b) s= f(5), t=g(t), f =7 g, and 5 ~[9 ;
where >fz’,90 and Nfz’,go are the tuple extensions of >=,po and ~yp, defined by:
® (S1,...,8n) >fz’,-‘{, (t1,...,tm) iff one of the following holds:

(1) o maps f and g to permutations py and pg; and
pplst, ..., 8n) >l£ff, Lglti, ... tn) where (ui,...,up) >l£ff, (V15 Um)
iff (a) m=0 andn > 0; or (b) uy >rpo v1; or
(c) ur ~prpo U1 and (Usg, ..., Uy) >l£f; (Vay vy Om);

(2) o maps f and g to mul; and (8,t) to a multiset cover (v,€) such that for
all i, 7, if ¥(j) = i then (i) — 8; ~rpo tj and —e(i) — $; =rpo tj; and
for some i, —e(i), i.e., some s; is not used for equality.

e (S1,...,5n) Nfbgo (t1,...,tm) iff n =m and one of the following holds:

(1) o maps f and g to py and pg; and for all i, s, (i) ~rpo Ly, (i)

(2) o maps f and g to mul; and (3,t) to a multiset cover (y,e) such that for
all i, €(i) and for some 1 < j < m we have y(j) =i and s; ~ppo t;.

Definition 2 can be specialized to other standard path orders by taking spe-
cific forms of status functions: lexicographic path order (LPO) when o maps all
symbols to the identity permutation; lexicographic path order w.r.t. permuta-
tion (LPOS) when o maps all symbols to some permutation; multiset path order
(MPO) when o maps all symbols to mul.

The RPO termination problem is to determine for a given TRS if there exists
a precedence and a status function such that the system is RPO terminating.
There are two variants of the problem: “strict-” and “quasi-RPO termination”
depending on if the precedence, >, is required to be strict or not. The corre-
sponding decision problems, strict- and quasi-RPO termination, are decidable
and NP complete [4]. In this draft we address the implementation of decision
procedures for RPO termination problems by encoding them into corresponding
SAT problems.

3 Encoding RPO problems

We introduce an encoding 7 which maps constraints of the form s >,,, t to
propositional statements about the status and the precedence of the symbols in
the terms s and ¢. A satisfying assignment for the encoding of such a constraint
indicates a precedence and a status function such that the constraint holds.

4 C. Fuhs, P. Schneider-Kamp, R. Thiemann, J. Giesl et al.

The first part of the encoding is straightforward and similar to [2,3]. All
“missing” cases (e.g., T7(x >rpo t) for variables x) are defined to be false.

T(f(8) =rpo) = \/ (7(8i =rpo) V T(8i ~rpo £)) V' 72(f(5) =rpo t)

T2 (F) 0 90) = N\ TUE) = t) A ((F 5 9V (r 9) A (5 =1)
(5 ~rpo 8) = true T((3) ~opo 9B) = (f ~7 9) AT(5 ~A D

We proceed to show how to encode lexicographic comparisons w.r.t. permu-
tation and multiset comparisons by >lfe’g and >,,4. Then, we combine the two
into >£p%

With each symbol f € F (of arity n) we associate n? propositional variables
fiw with 4,k € {1,...,n}. Here, fiy is true iff ps(i) = k (i.e., the i-th argument
of f(s1,...,sy) is considered at k-th position when comparing lexicographically).
For the encoding to be correct, we introduce constraints on the variables f;

ensuring that they indeed correspond to a permutation on {1,...,n}. To encode

>lfeg, we define auxiliary relations - ’g’k, where £ € N denotes that the k-th

lex

component of § and ¢ is being compared. Thus, >lfef€ = *lféil and we obtain:

false ifk>n
(5>_,g, D= true iftm<k<n
o imt Njzy (fie A gie — otherwise

(T(si > rpo t5) V (T (1 ~rpo 1) AT(5 =122 1))

TE~MED = (n= </\ I\ Fik A ik = T(si ~rpo tj))
k=1i=1j=1

With each pair 5 and ¢ of term tuples, we associate n * m propositional
variables v; j, where «y; ; is true iff s; covers t;, and n variables €;, where ¢; is
true iff s; is used to cover a t; by equality. For the below encoding to be correct,
we introduce constraints on these variables to ensure that the implied mappings
are indeed a multiset cover. Then we obtain:

75 Zmu) = /\ N\ (vig = (& = 7(si ~rpo £5)) A (785 = 785 =rpo t5))))

i=1j=1

T(§ ~mul D - T(§ ,.>\:mul E) Al /\ Eiq T(§ ~mul E) == T(§ ,->\:mul E) A /\ E;
i=1 i=1

Implementing RPO and POLO using SAT 5

Finally, to combine >lfpjz and >, into >f},€), we introduce for each symbol
f € F an additional propositional variable my, which is true iff the arguments
of f are to be compared as multisets (i.e., the status function maps f to mul).

Then we encode:
(5055 8) = (my Amy AT(E0,, D) V (mmy Aoy Ar(5015 D) for o € {-,~}

One can show that the overall size of 7(s =, t) is in O(k?) where k is the
combined size of s and t.

Similar to Definition 2, the above encoding function 7 can be specialized to
other standard path orders: lexicographic path order w.r.t. permutation when
my is set to false for all f € F; lexicographic path order when additionally f; x
is set to true iff ¢ = k; multiset path order when my is set to true for all f € F.

Instead of the classical approach used so far (where one generates inequalities
£ = r for all rules £ —), an alternative is to use the dependency pair (DP)
framework [1,8,9]. Here, one generates strict inequalities for the DPs and non-
strict ones for the usable rules. One of the main differences is that montonicity of
the strict part of the order is not required anymore. As RPO is always monotonic,
using it directly is not advisable in this context. To search for RPOs where >
may be non-monotonic, one must combine the search for the order with the
search for an argument filtering. How to encode this combined search to SAT is
described in detail in [15].

4 Polynomial Interpretations (POLO)

Another popular method to search for terminatin orders automatically are orders
based on polynomial interpretations [13]. The basic idea is to map terms to
polynomials over the naturals.

More precisely, a polynomial interpretation Pol maps each n-ary function

symbol f to a polynomial fp,; over n variables 1, ...z, with coefficients from
N =1{0,1,2,...}. It is extended to a mapping [-]po on terms where [z]po = @
for variables z and [f(t1, ..., tn)]pot = fPoii®1/[t1]Pots - - - s Tn/[tn]Pot - We often

write [-] if Pol is clear from the context. Now a term wu is greater (resp. greater-
equal) than v iff [u] > [v] + 1 (resp. [u] > [v]) holds for all instantiations of the
variables with natural numbers.

In contrast to RPO, orders based on polynomial interpretatios can trivially
be non-monotonic by having some of the coefficients be 0. Thus, in the following
we directly use the more powerful dependency pair (DP) framework to generate
inequalities.

Consider the following example for subtraction.

p(0) — 0 minus(z,0) — x
p(s(z)) — = minus(z,s(y)) — minus(p(x),y)

For the DP of the recursive minus-call we get the following constraints. Here, M
is the tuple-symbol of minus.

p(0) Z0 (1) p(s(x)) Tz (2) M(z,s(y)) = M(p(x),y) (3)

6 C. Fuhs, P. Schneider-Kamp, R. Thiemann, J. Giesl et al.

The constraints of the above example can indeed be satisfied using the poly-
nomial interpretation Pol; with Mpey;, = 2, ppol, = %1, Spoi, = 1 + 1, and
Opor, = 0. Thus, termination of the example is proved.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. In the linear case we obtain

fPot = fo+ fiz1+ -+ + faz, for each f with arity n (4)

where the coefficients f; are left open. Then one translates the term constraints
into polynomial constraints. In the example we obtain

po +p10o > 0o (5) (Po + p1So) + (p1s1) *x >z (6)
(M0—|—M250)+M1 *x—i—Mgsl *yz (M0+M1p0—|—1)—|—M1p1*1‘+M2*y (7)

Next one simplifies these constraints by deleting the variables x,y, ... that are
(implicitly) universally quantified. To this end, instead of an inequality between
polynomials we only compare the respective coefficients (“absolute positiveness”
[11]). In the example, the resulting constraints are (5), (8) and (9) (using = =
0+ 1x*2z), and (10) — (12).

Po + p1so > 0 (8) pis; > 1 9)
Mosg > |\/|1po +1 (10) My > M1p1 (11) Mss; > My (12)

Now to prove termination one has to show the satisfiability of such Diophantine
constraints over the naturals. In the example, a solution of the constraints is
0o = po = Mg =M; =0 and p; =sp =s1 = My = 1. In this way, the abstract
interpretation is turned into the polynomial interpretation Pol;.

In the next section, we show how to check satisfiability of Diophantine con-
straints by encoding to satisfiability of propositional logic.

5 Encoding Diophantine Constraints to SAT

To encode Diophantine constraints into SAT we first present a mapping |||
from polynomials to tuples of propositional formulas which are interpreted as
binary representations of the polynomials. We restrict the search to coefficients
in the range {0, ...,2% — 1} for a fixed k. Then each coefficient f is encoded into
I1£]] = (fF=1,..., f°) where f9 ..., f*=1 are propositional variables. Similarly,
a natural number n = by *2°+. .. by *2' + by is encoded into ||n|| = (be, . .., b1, bo)
where 0 and 1 are identified with false and true. So if & = 2 then ||so|| = (s, s)
and |[6|| = (1,1,0). For addition and multiplication, we introduce operations BT
and B* on tuples of propositional formulas and define

llp+qll = B (llpll, llal]) and ||p=*ql| = B*(|[pl],lq]])

for all polynomials p and ¢q. For BT we essentially use the idea of a ripple-carry-

adder. The details are presented in [6]. For example ||sg + 6|| = (s}, —s}, s}, s9).

Implementing RPO and POLO using SAT 7

We encode multiplication by summing up partial products as follows:

° B*(<<P1, .. .,QOn>, <¢>) = <(p1 A, .. on /\¢> m—1 times
.B*(<<pl’...’¢n>’<¢1""’wm>) :B+(<<)01A¢1a--‘a@ﬂ,Awlvm>a
B*((01,- s @n)s (2, ..., ¥m))) if m > 2.

Now we extend |||| to map each Diophantine constraint to a formula (not to a
tuple). To this end, we define the operation BZ which encodes comparisons:

llp > qll = B=(llpll; llq]])

For BZ we apply zero-padding and compare tuples lexicographically:

* B=({), (¥)) =t -
® BZ((¢1, -y), (1, ¥n)) = (1 A1) V
((‘Pl A ¢1) A BZ(<<)025 L) Spn>; <¢27 s 7¢n>)) if n Z 2.

So to determine the satisfiability of a set of Diophantine constraints p; > ¢; with
coefficients from {0,...,2% — 1}, we encode it as a conjunction A, ||p; > g;|| of
propositional formulas.

Then we use a SAT solver to find an assignment for the coefficients. Note that
the space complexity of our encoding is polynomial. More precisely, whenever
all numbers in “p > ¢” are smaller than 2% — 1, then the size of |[p > ¢|| is in
O(lp > qf” * k?).

6 Implementation and Experiments

We have implemented the encodings of RPO and POLO in the termination
analyzer AProVE [7]. The implementation of RPO is modularized in such a way
that all path orders using lexicographic and/or multiset comparisons can be
encoded. The implementation supports also RPO with argument filters (cf. [15])
and POLO with negative constants (cf. [6]).

The tables below summarize the results of the experiments running on the set
of 865 TRSs from the TPDB 2006 [17]. All experiments were run on a 2.2 GHz
AMD Athlon 64 with a time limit of 60 seconds (comparable to the setting of
the annual International Termination Competition 2006). For each encoding we
provide the number of TRSs which can be proved terminating (with the number
of time-outs in brackets) and the total analysis times (in seconds) for the full
collection.

In the first table, the first two rows compare the performance of our new
SAT-based approach to the dedicated solvers for path orders in AProVE 1.2
which do not use SAT solving. The third and the fourth row apply path orders
(combined with argument filters) within the dependency pair framework.

The columns show data for LPO with strict and quasi-precedence (denoted
Ipo/qlpo), for LPO with status (Ipos/qlpos), for MPO (mpo/qmpo), and, finally,
for RPO (rpo/qrpo).

8 C. Fuhs, P. Schneider-Kamp, R. Thiemann, J. Giesl et al.

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

1[SAT-based|123 (0)[127 (0)|141 (0)[155 (0)] 92 (0)| 98 (0)[146 (0)[162 (0)
(direct) 31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3
dedicated |123 (5)[127(16)[141 (6)|154(45)] 92 (7)| 98(31)[145(10)|158 (65)
(direct) 334.4(1426.3| 460.4(3291.7| 653.2|2669.1| 908.6| 4708.2
3[SAT-based[357 (0)[389 (0)[362 (0)[395 (2)[369 (0)[408 (1)[375 (0)[416 (2)
(arg. filt.) 79.3| 199.6 69.0| 261.1| 110.9| 267.8| 108.8| 331.4
dedicated |350(55)|374(79)[355(57)|380(92)[359(69)|391(82)|364(74)|394(102)
(arg. filt.) |4039.6|5469.4|4522.8|6476.5|5169.7 | 5839.5|5536.6 | 7186.1

Table 1. SAT-based vs. dedicated solvers for (subclasses of) RPO

)

W~

The above table shows an orders of magnitude improvement over existing
dedicated solvers both for direct analysis with recursive path orders and for the
combination of recursive path orders and argument filters in the dependency pair
framework. Note that without a time limit, this effect would only be aggravated.

A similar situation can be seen in the following table for POLO. Here, we
evaluate our new SAT-based implementation (AProVE-SAT) against the non-
SAT-based implementations in the termination tools AProVE 1.2 and TTT [10].
The implementation in AProVE 1.2 solves Diophantine constraints by a spe-
cialized finite domain constraint satisfaction procedure [5], while TTT uses a
“generate-and-test” approach instead.®

The columns show data for POLO with different finite domains and different
degrees of the polynomial which are specified by a pair (n,d). Here, if the the
first component is n, then we only searched for coefficients from {0, ...,n}. If the
second component is “lin”, then we used linear polynomials, and if it is “sm”,
we used simple-mixed® polynomials (which are not available in TTT).

Solver (1,lin) (2,lin) (3,lin) (3,sm)
1[AProVE-SAT|421 (0)[431 (0)[434 (0)|440 (51)
45.5 91.8 118.6 5585.9

DO

AProVE 12 |421 (1)|414 (48)[408 (81)]404 (171)
151.8 | 3633.2 | 5793.2 | 11608.1
3[TTT 326 (32)[335 (83)|338 (110)] n/a
2568.5 | 5677.6 | 7426.9 | n/a

Table 2. SAT-based vs. dedicated solvers for POLO

The comparison of the SAT-based configuration AProVE-SAT with the non-
SAT-based configurations shows that the provers based on SAT solving with our
proposed encoding are faster by orders of magnitude.

5 As AProVE and TTT use slightly different techniques for estimating dependency
graphs and usable rules, their performance is not directly comparable. The exper-
iments are meant to show that there is a big difference between the SAT-based
implementation on the one side and all other implementations on the other side.

6 A non-unary polynomial (with n > 1in (4)) is simple-mized if we have e; ; < 1 for all
its exponents. A unary polynomial is simple-mixed if it has the form a+b z1 + ¢ 3.

Implementing RPO and POLO using SAT 9

This holds in particular if one considers a higher time limit or polynomials
with higher coefficients or degrees (which are needed to increase the number of
examples that can be proved, i.e., the power of automated termination proving).
Note that for linear polynomials, there are no time-outs in the configuration
AProVE-SAT, whereas the non-SAT-based configurations have many time-outs.
Due to the increased efficiency, the number of examples where termination can
be proved within the time limit is considerably higher in the SAT-based config-
uration.

7 Conclusion

The SAT-based implementations of RPO and POLO were used by AProVE in
the International Competition of Termination Tools 2006. Here, AProVE was
configured to use several other termination techniques in addition to RPO and
POLO. Due to the speed of our new SAT-based approach, AProVE could try
polynomial interpretations (also with higher ranges) as one of the first termi-
nation techniques. In case of failure, there was still enough time to try other
termination techniques afterwards. With a time limit of 60 s for each example,
AProVE could prove termination of 633 TRSs and thereby it was the winner
of the competition for termination of TRSs. Similarly, AProVE also won the
corresponding competition in 2007.

To summarize, automated termination analysis is a field where SAT solving
has turned out to be extremely useful. At the same time, this field also poses
new challenges for SAT solving, since for higher ranges and higher degrees of the
polynomials, one sometimes obtains SAT problems which are hard for current
SAT solvers.”

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

2. M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints for
LPO termination. In Proc. RTA ’06, LNCS 4098, pages 4-18, 2006.

3. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT
solving for argument filterings. In Proc. LPAR 06, LNAI 4246, pages 30-44, 2006.

4. H. Comon and R. Treinen. Ordering constraints on trees. In Proc. CAAP 94,
LNCS 787, pp. 1-14, 1994.

5. E. Contejean, C. Marché, A. P. Tomds, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reasoning,
34(4):325-363, 2005.

6. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT Solving for Termination Analysis with Polynomial Interpretations. In Proc.
SAT °07, LNCS 4501, pages 340-354, 2007.

7 We have therefore submitted some of these problems to the SAT competition 2007.

10

10.

11.

12.

13.

14.

15.

16.

17.

C. Fuhs, P. Schneider-Kamp, R. Thiemann, J. Giesl et al.

J. Giesl, P. Schneider-Kamp, and R. Thiemann AProVE 1.2: Automatic Termina-
tion Proofs in the Dependency Pair Framework. In Proc. IJCAR ’06, LNAT 4130,
pages 281-286, 2006.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Framework:
Combining Techniques for Automated Termination Proofs. In Proc. LPAR’04,
LNAT 3452, pages 301-331, 2005.

N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172-199, 2005.

N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

H. Hong and D. Jakus. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23-38, 1998.

M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints
with application to expert systems in software verification. In Proc. IEA/AIE 04,
LNCS 3029, pages 827-837, 2004.

D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Ter-
mination Analysis for Logic Programs by Term Rewriting, In Proc. LOPSTR ’06,
LNCS 4407, pages 177-193, 2007.

P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
Termination using Recursive Path Orders and SAT solving. In Proc. FroCoS 07,
LNAT 4720, pages 267282, 2007.

H. Zankl and A. Middeldorp. Satisfying KBO Constraints. In Proc. RTA 07,
LNCS 4533, pages 389-403, 2007.

The termination problem data base. http://www.lri.fr/~marche/tpdb/.

