
Termination of Programs using Term Rewriting

and SAT Solving?

J. Giesl1, P. Schneider-Kamp1, R. Thiemann1, S. Swiderski1, M. T. Nguyen2,
D. De Schreye2, and A. Serebrenik3

1 LuFG Informatik 2, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
{giesl,psk,thiemann,swiderski}@informatik.rwth-aachen.de

2 Dept. of Computer Science, K. U. Leuven, Belgium,
{ManhThang.Nguyen,Danny.DeSchreye}@cs.kuleuven.be

3 Dept. of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, a.serebrenik@tue.nl

1 Introduction

There are many powerful techniques and tools for automated termination anal-
ysis of term rewrite systems (TRSs). However, up to now they have hardly been
used for real programming languages. Therefore, our goal is to apply existing
methods and systems from term rewriting in order to prove termination of pro-
grams automatically. We discuss two possible approaches:

1. One could transform programs into TRSs and then use existing tools to
verify termination of the resulting TRSs.

2. One could adapt TRS-techniques to the respective programming languages
in order to analyze programs directly.

We have developed such approaches for the functional language Haskell and
the logic language Prolog. More precisely, we developed

• a direct method for termination analysis of logic programs (Sect. 2) where we
adapted TRS-techniques in order to apply them to logic programs directly
• a transformational method for termination analysis of logic programs (Sect.

3), where we transform logic programs into TRSs
• a transformational method for termination analysis of functional programs

in the language Haskell (Sect. 4)

Our results have been implemented in the termination provers AProVE [7]
and Polytool [11, 12]. In order to handle termination problems resulting from real
programs, these provers had to be coupled with modern SAT solvers, since the
automation of the TRS-termination techniques had to be improved significantly,
cf. Sect. 5. Our resulting termination analyzers are currently the most powerful
ones for Haskell and Prolog.

? Supported by the Deutsche Forschungsgsmeinschaft DFG under grant GI 274/5-1.



2 Direct Termination of Logic Programs

Termination analysis of logic programs is a widely studied subject which has
been investigated for decades. Nevertheless, we showed that its power can be
increased dramatically by adapting termination techniques from term rewriting
to the logic programming domain. More precisely, we modified the concepts of
polynomial orderings [10] and of dependency pairs and dependency graphs [1] in
order to apply them to logic programs directly.

The main idea of this new approach is that termination conditions for a
program are established based on the decomposition of its dependency graph
into its strongly connected components. These conditions can then be analyzed
separately by possibly different well-founded orders. We developed a constraint-
based approach for automating this framework. Then, for example, termination
techniques based on polynomial interpretations can be plugged in as a component
to generate well-founded orders. For details on this approach, we refer to [13].

This approach has been implemented in the Polytool system [11, 12] which
obtained the second place in the International Competition of Termination Tools
2007 [9]. This shows that the use of term rewriting techniques indeed improves
the performance of termination analyzers for logic programs significantly. Indeed,
Polytool is now the most powerful direct termination analyzer for logic programs.

3 Transformational Termination of Logic Programs

There are two kinds of approaches for termination analysis of logic programs:
“transformational” and “direct” ones. Direct approaches (as in Sect. 2) prove
termination directly on the basis of the logic program. Transformational ap-
proaches transform a logic program into a TRS and then analyze termination of
the resulting TRS instead. Thus, transformational approaches make all methods
previously developed for TRSs available for logic programs as well. However, the
applicability of most existing transformations is quite restricted, as they can only
be used for certain subclasses of logic programs. (Most of them are restricted
to well-moded programs.) We improved these transformations such that they
become applicable for any definite logic program. Moreover, our transformation
results in TRSs which are indeed suitable for automated termination analysis. In
contrast to most other methods for termination of logic programs, our technique
is also sound for logic programming without occur check, which is typically used
in practice. For details on these contributions, we refer to [16].

We implemented our approach in the termination prover AProVE [7]. AProVE
was already the most powerful tool for termination analysis of TRSs and the
winner of the International Competitions of Termination Tools [9] for TRSs in all
years 2004 - 2007. But due to this new transformational approach, AProVE is now
also the most powerful system and the winner of the International Competition
of Termination Tools for logic programs. This shows that TRS-techniques can
really be used for existing programming languages and can clearly compete with
specialized termination methods developed for specific programming languages.

2



4 Transformational Termination of Functional Programs

In addition to our work on logic programming, we also developed a new approach
which permits the application of existing techniques from term rewriting in order
to prove termination of programs in the functional language Haskell. Adapting
TRS-techniques for termination of Haskell is challenging for the following reasons:

• Haskell has a lazy evaluation strategy. However, most TRS-techniques ignore
such evaluation strategies and try to prove that all reductions terminate.
• Defining equations in Haskell are handled from top to bottom. In contrast

for TRSs, any rule may be used for rewriting.
• Haskell has polymorphic types, whereas TRSs are untyped.
• In Haskell-programs with infinite data objects, only certain functions are

terminating. But most TRS-methods try to prove termination of all terms.
• Haskell is a higher-order language, whereas most automatic termination tech-

niques for TRSs only handle first-order rewriting.

Up to now, there were only few techniques for automated termination analysis
of functional programs. These were all “stand-alone” methods which did not
allow the use of modern termination techniques from term rewriting. In our
approach we built upon the method of [14], but adapted it in order to make
TRS-techniques applicable. For details on our technique we refer to [6].

Again, we implemented our results in the termination prover AProVE [7]. It
accepts the full Haskell 98 language defined in [15] and we successfully evaluated
our implementation with standard Haskell-libraries from the Hugs-distribution
such as Prelude, Monad, List, FiniteMap, etc. It turns out that AProVE can auto-
matically prove termination of around 80 % of the functions in these libraries.
Hence, these experiments confirm that TRS-termination techniques and tools
can be successfully used for real-life programs in existing languages.

5 SAT Solving

In the preceding three sections, we showed how to apply TRS-techniques for
termination analysis of programs in different languages. However, termination
problems resulting from real programs are often large. For example, the transfor-
mation of logic programs in Sect. 3 often generates TRSs with function symbols
of high arity and the transformation of Haskell programs in Sect. 4 typically
results in TRSs with a large number of rules. Here, existing previous algorithms
to automate TRS-termination techniques often turned out to be too inefficient.

Therefore, recently several researchers have studied alternative ways to au-
tomate TRS-termination techniques using SAT solving (e.g., [2–5, 8, 17–19]). In-
deed, AProVE uses powerful SAT solvers for several different tasks and Polytool
applies AProVE’s SAT-based implementation for synthesizing polynomial order-
ings [5] as a back-end. So by SAT solving, the TRS-techniques can indeed be
automated efficiently and used successfully for real programs.

3



References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

2. M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO
termination. In Proc. RTA ’06, LNCS 4098, p. 4-18, 2006.

3. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT
solving for argument filterings. In Proc. LPAR ’06, LNAI 4246, p. 30-44, 2006.

4. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. IJCAR ’06, LNAI 4130, p. 574-588, 2006.

5. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT ’07, LNCS 4501, p. 340-354, 2007.

6. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-
tion analysis for Haskell: From term rewriting to programming languages. In Proc.
RTA ’06, LNCS 4098, p. 297-312, 2006.

7. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, p. 281-286, 2006.

8. A. Koprowski and A. Middeldorp. Predictive labeling with dependency pairs using
SAT. In Proc. CADE ’07, LNAI 4603, p. 410-425, 2007.

9. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07, LNCS
4533, p. 303-313, 2007.

10. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

11. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for ter-
mination analysis of logic programs. In Proc. ICLP ’05, LNCS 3668, p. 311-325,
2005.

12. M. T. Nguyen and D. De Schreye. Polytool: Proving termination automatically
based on polynomial interpretations. In Proc. LOPSTR ’06, LNCS 4407, p. 210-
218, 2007.

13. M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termination anal-
ysis of logic programs based on dependency graphs. In Proc. LOPSTR ’07, LNCS,
2007. To appear.

14. S. E. Panitz and M. Schmidt-Schauss. TEA: Automatically proving termination
of programs in a non-strict higher-order functional language. In Proc. SAS ’97,
LNCS 1302, p. 345–360, 1997.

15. S. Peyton Jones (ed.). Haskell 98 Languages and Libraries: The revised report.
Cambridge University Press, 2003.

16. P. Schneider-Kamp, J. Giesl, A. Serebrenik, R. Thiemann. Automated termination
analysis for logic programs by term rewriting. In Proc. LOPSTR ’06, LNCS 4407,
p. 177-193, 2007.

17. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
termination using recursive path orders and SAT solving. In Proc. FroCoS ’07,
LNAI 4720, p. 267-282, 2007.

18. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings.
In Proc. SOFSEM ’07, LNCS 4362, p. 579-590, 2007.

19. H. Zankl and A. Middeldorp. Satisfying KBO constraints. Proc. RTA ’07, LNCS
4533, p. 389-403, 2007.

4


