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Abstract

We present classical simulation techniques for measure once quantum branching programs.
For bounded error syntactic quantum branching program of width w that computes a function

with error δ we present a classical deterministic branching program of the same length and width
at most (1 + 2/(1− 2δ))2w that computes the same function.

Second technique is a classical stochastic simulation technique for bounded error and un-
bounded error quantum branching programs. Our result is that it is possible stochastically-
classically simulate quantum branching programs with the same length and almost the same
width, but we lost bounded error acceptance property.

1 Introduction

Complexity of classical simulation of quantum computations for different models of computations
were investigated in numerous papers [3, 5, 8, 12, 9].

Branching programs are important model of computations, because of their natural relationships
to machines models (Turing machines, automata) and Circuit models. Different restricted models of
branching programs are widely used for hardware verification and in numerous CAD applications.
In the paper we present two classical simulation techniques for measure once quantum branching
programs.

2 Definitions and Results

We start with definition of branching programs according to [11] (we call it constructive definition).
Then we give an algebraic definition of branching programs and present results of the paper.

Definition 1 A branching program (BP) on the variable set X = {x1, . . . , xn} is a finite directed
acyclic graph with one source node and sink nodes partitioned into two sets – Accept and Reject.
Each non-sink node is labeled by a variable xi and has two outgoing edges labeled 0 and 1 respectively.
An input σ is accepted if and only if it induces a chain of transitions leading to a node in Accept,
and the set of such inputs is the language accepted by the program.

A branching program is oblivious if the nodes can be partitioned into levels V1, . . . , V` and a
level V`+1 such that the nodes in V`+1 are the sink nodes, nodes in each level Vj with j ≤ ` have
outgoing edges only to nodes in the next level Vj+1, and all nodes in a given level Vj query the same
bit σij of the input.
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Definition 2 The size Size(P ) of a branching program P is the number of its non-sink nodes. The
length Length(P ) of branching program P is the maximum length of a path from the source to one
of the sinks. The width Width(P ) of oblivious branching program P is the number Width(P ) =
maxj |Vj |.

Clearly we have that length of branching program corresponds to time of computation and width
on a level j corresponds to a space that can be used on the step j of computation.

In this paper we deal with polynomial size branching programs. Recall that arbitrary branch-
ing program can be transformed to oblivious branching program (see for example [4]) with only
polynomial increasing the size. So without loss of generality we consider only oblivious branching
programs in this paper.

Now we give a definition of a linear branching program based on oblivious model. This definition
is a generalization of the definition of quantum branching program presented in [2]. Deterministic,
stochastic, and quantum oblivious branching programs are particular cases of linear branching
programs. The model we consider is the influence of papers [4] and [5].

Let Vk be a k-dimensional vector space. We use |µ〉 and 〈µ| to denote column vectors and row
vectors of Vk, respectively, and 〈µ1 | µ2〉 denotes the complex inner product. We write µ when it
is not important whether µ is a column or a row vector.

Definition 3 (Linear branching program) A Linear Branching Program (LBP) P over Vk is
defined as

P = 〈T, |µ0〉,Accept〉 ,

where T = (T1, . . . , T`) is a sequence (of length `) of instructions. Each instruction Tj is a triple
Tj = {ij ,Mj(0),Mj(1)}, where ij determines a variable xij tested on the step j, Mj(0) and Mj(1)
are k-dimensional linear transformations of the vector space Vk. Vectors |µ〉 ∈ Vk are called states
(state vectors) of P , |µ0〉 ∈ Vk is the initial state of P , and Accept ⊆ {1, . . . , k} is the accepting
set.

According to the definition 2 it is natural to define the Width(P ) of linear BP as the di-
mension of state space Vk. Further for LBP P it is natural do define its size as Size(P ) =
Width(P )Length(P ).

We define a computation on P with an input σ = σ1 . . . σn ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |µ0〉;

2. The j’th step of computation of P applies instruction Tj: program P queries a variable xij , and
applies the transition matrix Mj(σij ) to the current state µ to obtain the state µ′ = Mj(σij )µ;

3. The final state (i.e., the state after step `) is

|µ(σ)〉 =
1∏

j=`

Mj(σij )|µ0〉 .

Now oblivious deterministic, stochastic, and quantum branching programs can be presented as
follows:

Deterministic branching programs. A deterministic branching program is a linear branching
program over a vector space Rk. A state µ of such a program is a Boolean vector with exactly one
1. The transition matrices M have exactly one 1 in each column.
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Stochastic branching programs. The concept of deterministic branching programs naturally
generalizes to stochastic branching programs (SBP), by letting µ be a probability distribution, and
by letting the Mj be stochastic matrices, i.e., matrices with non-negative entries where each column
sums to 1.

For a deterministic and stochastic branching program P , for an input σ ∈ {0, 1}n we define the
acceptance probability of σ as follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉| = ‖ΠAcceptµ(σ)‖1 . (1)

Here |i〉 is the basis vector with support on the node i (unit vector with value 1 at i and 0 elsewhere),
and ΠAccept is a projection operator on the accepting subspace span{|i〉 : i ∈ Accept}.

Quantum branching programs. We define a quantum branching program (QBP) as a linear
branching program over a Hilbert space Ck. The µ for such a program are complex state vectors
with ‖µ‖2 = 1, and the Mj are complex-valued unitary matrices. For a quantum branching program
P , for an input σ ∈ {0, 1}n we define the acceptance probability of σ as follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉|2 = ‖ΠAcceptµ(σ)‖2
2 , (2)

that is, the probability that if we measure µ(σ), we will observe it in the accepting subspace. Note
that this is a “measure-once” model analogous to the model of quantum finite automata in [6], in
which the system evolves unitarily except for a single measurement at the end.

Notice that in contrast to algebraic definition of quantum and stochastic BPs one can define
these models in a (so called) constructive form. See for example book [11] for constructive definition
of SBP and the paper [8] for constructive definition of QBP.

Acceptance criteria. We say that a LBP P computes a Boolean function f with unbounded
error if PrP (σ) > 1/2 if f(σ) = 1 and PrP (σ) ≤ 1/2 if f(σ) = 0. We say that P computes f with
threshold 1/2.

We say that a LBP P computes a Boolean function f with bounded error if there is some ε > 0
such that PrP (σ) ≥ 1/2 + ε if f(σ) = 1 and PrP (σ) ≤ 1/2− ε if f(σ) = 0. We say that P computes
f with error δ = 1/2− ε (with margin ε).

2.1 Deterministic Simulations of Stochastic and Quantum Branching Programs

Syntactic Stochastic and Quantum Programs For unbounded and bounded error stochastic
and quantum branching programs we define two subsets A and R of the set F of sink state vectors
(consistent and inconsistent) as follows. For unbounded error programs, we define

A = {µ ∈ V`+1 : Pr(µ) > 1/2} and R = {µ ∈ V`+1 : Pr(µ) ≤ 1/2};

and for bounded error programs, we define

A = {µ ∈ V`+1 : Pr(µ) ≥ 1/2 + ε} and R = {µ ∈ V`+1 : Pr(µ) ≤ 1/2− ε}

We call A and R the accepting and rejecting sets respectively.
Recall that V`+1 includes the final states reachable by all possible paths, both consistent and

inconsistent. Then:
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Definition 4 ([1]) We call a stochastic or a quantum branching program syntactic if its accepting
and rejecting set of state vectors form a partition of the set of sink states, i.e., if V`+1 = A ∪R.

Note that without the syntactic restriction, it might happen that V`+1 6= A ∪ R, and that some
inconsistent final state vector µ ∈ V`+1 has the property that 1/2− ε < Pr(µ) < 1/2 + ε.

Theorem 1 (Deterministic Simulation Theorem) Let function f be bounded error δ (δ ∈
(0, 1/2)) computed by syntactic QBP P . Then there exists deterministic BP P ′ that computes
f and has the following complexity characteristics: Length(P ′) = Length(P ) and

Width(P ′) ≤
(

1 +
2

1− 2δ

)2Width(P )

.

Similarly, we can deterministically simulate classical stochastic BP.

Theorem 2 If a function is computed with bounded error δ (δ ∈ (0, 1/2)) by a width-w syntactic
stochastic branching program, then it is also computed by a deterministic branching program of the
same length, and width

w′ ≤
(

1 +
2

1− 2δ

)w

.

The construction of corresponding deterministic branching program is based on the following
properties:

1. Quantum states are unit vectors (a set of quantum states form bounded set for || · ||2 norm).

2. Unitary transformations of quantum states preserves a distance.

3. Bounded-error acceptance criteria.

Bounded-error acceptance criteria together with the properties 1 and 2 forms topological structure
on the set of quantum states which leads to a desired deterministic branching program.

Notice that Theorem 1 and Theorem 2 imply that constant width quantum and stochastic
branching programs can be simulated by a constant width deterministic branching programs and
hence — by an NC1 circuits. For more information and results see [1].

2.2 Stochastic Classical Simulation of Quantum Branching Programs

Theorem 3 (Stochastic Simulation Theorem) Let function f be unbounded error (bounded er-
ror) computed by QBP Q. Then there exists SBP P that unbounded error computes f of the same
length Length(P ) = Length(Q) and width Width(P ) = 4Width2(Q) + 3.

The proof of the Theorem uses another technique which is a classical stochastic simulation
technique for bounded-error quantum branching programs.Informally our result is that a resulting
stochastic classical branching program is of the same length and almost the same width, but we
lost bounded-error acceptance.

Our construction of classical stochastic branching program is based on:

1. Replacing complex matrices with real ones with dimension doubled and tensor product con-
struction as a bridge between ||·||1 norm and ||·||2 norm. This construction gives new matrices
with quadratic increase in dimension.
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2. A Turakainen-type construction [10] to replace arbitrary real matrices with stochastic ones
with ”good properties” of the original ones.

Now we define probabilistic and quantum complexity classes based on branching programs as
follows.

Definition 5 Let BPP -BP and PP -BP be the classes of functions computable with bounded error
and unbounded error respectively by stochastic branching program of polynomial size;

Let BQP -BP and PrQP -BP be the classes of functions computable with bounded error and
unbounded error respectively by quantum branching program of polynomial size.

Theorem 4

PrQP -BP ⊆ PP -BP

BQP -BP ⊆ PP -BP

Notice that Sasaki in [9] proved that BQP -BP ⊆ BPL/poly where BPL/poly is a class of
languages accepted by Logarithmic-space bounded error nonuniform probabilistic Turing machines.
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