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Abstract. In this paper, we prove that the quadratic polynomials modulo 3 with the
largest correlation with parity are unique up to permutation of variables and constant
factors. As a consequence of our result, we completely characterize the smallest MAJ◦
MOD3 ◦ AND2 circuits that compute parity, where a MAJ ◦ MOD3 ◦ AND2 circuit is
one that has a majority gate as output, a middle layer of MOD3 gates and a bottom
layer of AND gates of fan-in 2. We also prove that the sub-optimal circuits exhibit a
stepped behavior: any sub-optimal circuits of this class that compute parity must have
size at least a factor of 2√

3
times the optimal size. This verifies, for the special case of

m = 3, two conjectures made in [5] for general MAJ ◦MODm ◦AND2 circuits for any
odd m. The correlation and circuit bounds are obtained by studying the associated
exponential sums, based on some of the techniques developed in [7].

1. Introduction

In this paper, we investigate the correlation between parity (MOD2) and functions
computed by polynomial-size MODm ◦ANDf(n)-circuits: these are depth 2 circuits with
a MODm gate at the top (output) layer followed by a layer of AND-gates with fan-in
f(n) connected to the n Boolean inputs (our specific focus is on m = 3, f(n) = 2).
Note that the functions computed by MOD3 ◦ AND2 circuits correspond in a natural
manner to multilinear quadratic polynomials in Zm[x1, x2, . . . , xn]. The correlation of
two functions f, g : {0, 1}n → {0, 1}, defined as

C(f, g) = 2−n
∑

(x1,...,xn∈{0,1}n

(−1)f(x1,x2,...,xn)+g(x1,x2,...,xn),

is a measure of the statistical closeness of two functions over the input domain (note
C(f, g) < 1). In circuit complexity, bounds on the correlation enable us to prove re-
strictions on the computational power of threshold circuits. In particular, let f, g be
Boolean functions as above and suppose C(f, g) < ε. Then any circuit with a threshold
gate as output requires 1/ε input g-circuits to compute f (this is the ε-discriminator
lemma of Hajnal et al. [9]). Indeed, Green [7] proved that the correlation between par-

ity and MOD3 ◦ AND2 circuits is at most (
√

3/2)dn/2e, thereby proving an exponential
lower bound on the size of the corresponding threshold circuits. The proof of [7] used
a technique of Cai, Green and Thierauf [3], in which the correlation is expressed as the
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exponential sum,

Sm(t, k, n) =
1

2n

∑

xi∈{1,−1}
1≤i≤n

(

n
∏

i=1

xi

)

ωt(x1,x2,...,xn)+k(x1,x2,...,xn)

where ω = e2πi/m is the primitive m-th root of unity for odd m, and t = t(x1, . . . , xn)
and k = k(x1, . . . , xn) denote quadratic and linear forms respectively in Zm[x1, . . . , xn].
The goal is then to prove an exponentially small upper bound on the norm of Sm(t, k, n).
In this equivalent formulation, Green’s result is

(1) |S3(t, k, n)| ≤ (
√

3/2)dn/2e

This upper bound is also shown to be tight, since the maximum norm is achieved by
polynomials ±x1x2±x3x4±· · ·±xn−1xn if n is even and by ±x1±x2x3±x4x5±· · ·±xn−1xn

if n is odd. (These polynomials correspond in a natural way to the MOD3◦AND2 circuits
that best compute parity, i.e., agree with parity on the most inputs). The result given
in [7] was subsequently generalized dramatically to polynomials with degree O(lg n) and
arbitrary odd moduli m, by Bourgain [2] and further by Green, Roy and Straubing [8],
who proved a similar exponentially decreasing bound on the norm of the associated sums.
These bounds have been improved in subsequent work by Viola and Wigderson [12]
and Chattopadhyay [4]. In [6], Gál and Trifonov prove exponentially decreasing upper
bounds for special classes of polynomials modulo m.

Bourgain’s technique [2], essentially a sophisticated adaptation of Weyl differencing
(see e.g. [11]) to multidimensional sums, leads to bounds that are far from tight (as do
the techniques of Chattopadhyay [4] and Viola and Widgerson [12]). Furthermore, these
techniques do not seem to apply to polynomials of significantly higher degree. In fact, it
is believed that one can still obtain exponentially small upper bounds on the exponential
sum even for polynomials of degree O(lgk n) for any k. Some evidence supporting this

comes from the fact that such a bound exists for O(lgk n) degree symmetric polynomi-
als [3]. Furthermore, the bounds obtained by Gál and Trifonov [6] apply to polynomials
of very high degree (although they again do not hold for general polynomials).

In the interest of finding techniques for tighter bounds, we revisit the quadratic
case. It is our hope that a complete understanding of this case will point the way
to sharper bounds for higher degrees. Indeed, even for quadratic t(x) there are still
numerous unsettled questions. Prior to [7], Alon and Biegel [1] considered the quadratic
polynomials and general odd m. Using a Ramsey theoretic argument, they first reduced
the question to the symmetric quadratic case (which was studied in [3]) thereby getting

a 2−n(lg n)Ω(1)

bound, which is again not tight. In a subsequent paper, the quadratic case
for arbitrary moduli was analyzed by Dueñez et al. [5]. Specifically, they conjectured
that if t was quadratic, then

|Sm(t, k, n)| ≤
(

cos
( π

2m

))dn/2e

(this upper bound reduces to the upper bound of [7] when m = 3). Note that if the
conjecture is true, then this upper bound is also tight: there are polynomials that achieve
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this bound, namely

c(

n/2
∑

i=1

±x2i−1x2i) if n is even and ± cx1 +

(n−1)/2
∑

i=1

±cx2i+1x2i if n is odd

where c = b(m + 1)/4c. Dueñez et al. further conjectured that these were the unique
polynomials that gave the maximum norm (up to permutations of variables or constant
terms). They verified this conjecture for up to n = 10 variables for arbitrary odd m and
showed that, for all n, the bound holds for a special class of quadratic polynomials in
Zm (when the undirected graph corresponding to the quadratic form is “nearly” a tree).
In the course of their verification, they noticed that Sm(t, k, n) exhibited a “stepped”
behavior when it is close to the maximum norm. Thus they conjectured that if t, k were
such that S(t, k, n) was submaximal, then Sm(t, k, n) ≤ cos( π

2m) · Bm,n where Bm,n =

(cos( π
2m))dn/2e is the maximum possible norm. These conjectures, “uniqueness” and

“gap,” were key elements of Dueñez et al.’s argument. Thus they provide a framework
for an (as yet undiscovered) inductive proof for arbitrary odd m, since they could possibly
be used as a part of a stronger inductive hypothesis.

In this paper, we prove this conjecture of Dueñez et al. for the special case when
m = 3. The proof is quite nontrivial, even in this special case, and even given the basic
tools as set down in [7].

To summarize, the main contribution of our paper is:

Theorem: Let n ≥ 1. Then |S3(t, k, n)| = B3,n = (
√

3/2)dn/2e iff

(2) t(x) + k(x) =

{

α +
∑n/2

i=1 ±xπ(2i−1) xπ(2i) if n is even

α ± xπ(1) +
∑(n−1)/2

i=1 ±xπ(2i+1) xπ(2i) if n is odd

where α ∈ Z3 and π is some permutation of the variables.

Furthermore, if |S(t, k, n)| < B3,n, then |S(t, k, n)| ≤
√

3
2 B3,n.

For a permutation π of variables, we define the MOD3 ◦ AND circuit Cα
π (x) to be the

circuit that naturally corresponds to the polynomial t(x) + k(x) in Equation (2) (where
each monomial xixj is computed by an AND gate connected to inputs xi and xj). Using
the ε-discriminator Lemma ([9]), we get the following corollary:

Corollary: The smallest (i.e., optimal) MAJ ◦ MOD3 ◦ AND2 circuits that compute

parity consist of a majority gate connected to
(

2√
3

)dn/2e
MOD3 ◦ AND-circuits Cα

πi
(x)

for permutations {πi}i∈I , constants {αi}i∈I . Every non-optimal MAJ ◦ MOD3 ◦ AND2

circuit that computes parity has size at least 2√
3

the size of the optimal circuit.

Remark: We regard this result as being of intrinsic interest, since we are not aware of
any other non-trivial language in the circuit complexity literature for which one obtains
such a complete characterization of optimal circuits for Boolean functions or where one
observes a similar step-like behavior for non-optimal circuits. Further note that while
the theorem speaks to the optimal polynomials, the translation back into circuits in
the corollary introduces extra constants that are needed as inputs to the circuits (for
example, when we change basis from inputs over {1,−1} to {0, 1}), which may be realized
in different ways. But these are irrelevant to the main idea behind the characterization.
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For reasons of clarity and ease of exposition, we have broken up the above theorem
into two statements (Theorem 3.2 and Theorem 4.1) in Section 3 and Section 4.

2. Preliminaries and Notations

In the rest of the paper, we only consider S3(t, k, n) which we now refer to as S(t, k, n)
without any confusion. We similarly write Bn in place of B3,n. For the rest of the paper,

we let ω = e2πi/3 denote the primitive 3-rd root of unity, and note that ω−1 = ω̄. The
proof in [7] of the upper bound in Equation (1) relies on identities involving ω that we
make use of in our theorems. We use several of these identities in our proofs and for
completeness, we include derivations of the relevant identities in this section. As in [7], we
let χ : Z3 7→ C denote the quadratic character of Z3 (i.e. χ(1) = 1, χ(−1) = −1, χ(0) = 0,
so that χ(−x) = −χ(x)).

Lemma 2.1. [7] Let a, b ∈ Z3. Then

(i) ωa + ω−a = ω−a2
+ ω−a2

.
(ii) ωa − ω−a = (ω − ω̄)χ(a).

(iii) χ(1 + a)ωb + χ(1 − a)ω−b = ω(a−b)2 + ω−(a+b)2 .

(iv) ωa2
= 1+ωa−1+ω−a−1

ω̄−ω .

The preceding lemma can be proved by enumerating over all possible choices of a
and b in Z3 and verifying that the identities hold.

Remark: One possible avenue of generalization of our results to arbitrary odd moduli
and to a resolution of the conjectured upper bound of Dueñez et al. is to generalize
the identities in Lemma 2.1. While one can generalize identities (i) and (ii) to any m
with minor modifications, the generalization of (iii) to arbitrary m eludes us. We discuss
some possible approaches to this problem in Section 5.

Notation: To simplify notation, we let x denote the tuple (x1, x2, . . . , xn) and xb2 denote
(x2, . . . , xn). To simplify S(t, k, n) we often expand by x1 and look at the resulting
sums. We use the following notation, uniformly throughout the paper. We set t(x) =
x1 · r(xb2) + t2(x

b2) and k(x) = a1x1 + l(xb2) where a1 ∈ {0, 1,−1}, t2 is a quadratic
form in Z3[x2, . . . , xn], and both l and r are linear forms in Z3[x2, . . . , xn]. If a1 6= 0,
then without loss of generality, we may assume that a1 = 1: if not, then we can flip x1,
i.e. change the variable x1 7→ −x1, which does not affect the absolute value of S(t, k, n).
We state equalities in Z3 in the form “a = b” rather than “a ≡ b (mod 3).” The context
(usually equalities between polynomials) will make the meaning clear.

We frequently make the change of variables xi 7→ −xi for 1 ≤ i ≤ n. This induces
the maps

∏

xi 7→ (−1)n
∏

xi, t(x) 7→ t(x), k(x) 7→ −k(x). Thus we have S(t, k, n) =
(−1)nS(t,−k, n). Using Lemma 2.1 (i)–(iii), one can prove the following identities:

Corollary 2.2. [7] Let t(x) = t2(x
b2) + x1 · r(xb2).

(i) If n is even, then S(t, 0, n) = S(t2, r, n − 1). Furthermore,

S(t, k, n) =
1

2n+1

∑

x

(

n
∏

i=1

xi

)

ωt(x)(ωk(x)2 + ω−k(x)2)
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(ii) If n is odd, then S(t, 0, n) = 0. If k(x) 6= 0, let k(x) = x1 + l(xb2). Then,

S(t, k, n) =
1

2n

ω − ω−1

2

∑

xb2

(

n
∏

i=2

xi

)

ωt2(x) (ω(l−r)2 + ω−(l+r)2)

Green [7] derived an upper bound on S(t, k, n) using the identities in Corollary 2.2.
We now review the main idea of his inductive proof. If n is odd, on applying the triangle
inequality in part (ii) of the Lemma we have:

|S(t, k, n)| ≤ |ω − ω̄|
2

·
∣

∣S(t′, k′, n − 1)
∣

∣

for some t′ and k′. If n is even, then |S(t, k, n)| ≤ S(t′, k′, n−1) for some t′ and k′. Thus
we pick up a factor of |ω − ω̄| when we go from n odd to n− 1 even and pick up no new

factors from n even to n − 1 odd. This gives a bound of (|ω − ω̄| /2)dn/2e.

Remark: A reformulation of the Dueñez et al. conjecture [5] is the following conjecture
for arbitrary odd m: in the step from odd n to even n − 1, one picks up a factor of

maxi∈Zm

|ωi−ω−i|
2 = cos(π/2m). It is easy to prove that as is the m = 3 case, no factors

are picked up in the step from even n to odd n − 1. This leads to the conjectured
upper bound of (cos(π/2m))dn/2e. The obstacle is getting the right generalization of
Lemma 2.1 (iii) to apply in the crucial moment of the proof of Corollary 2.2, where we
are able to pull out a factor of ω− ω̄. We do not see how to pull out this requisite factor
of maxi∈Zm

∣

∣ωi − ω−i
∣

∣ for arbitrary odd m.

3. Uniqueness

In this section, we prove that the polynomials t + k such that S(t, k, n) has maximal
norm are unique up to permutations of variables and constant coefficients.

Notation: We let v̄m denote the ordered tuple (v1, v2, . . . , vm), and when m is obvious
from the context we write v̄. Let π be a permutation on n variables x1, x2, . . . , xn. Let
n > 0 be even and suppose c̄ ∈ {1,−1}n/2 and α ∈ Z3. Define

Qc̄
σ(x1, x2, . . . , xn) =

n/2
∑

i=1

ci xσ(2i−1) xσ(2i)

When n is odd, we similarly define

Qc̄
σ(x1, x2, . . . , xn) =

(n−1)/2
∑

i=1

ci xσ(2i−1) xσ(2i) + cn+1
2

xσ(n)

where c̄ ∈ {1,−1}(n+1)/2 . We denote Qc̄,α
σ (x) = Qc̄

σ(x) + α, where α ∈ Z3 (when α = 0,
we simply write Qc̄

σ(x)).

The parity of c̄ ∈ {1,−1}dn/2e is

parity(c̄) = |{i| ci = −1}| mod 2

The support of a linear form l, denoted by supp(l), is the set of variables that appear in
l with non-zero coefficient.
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Given a polynomial q with quadratic part
∑

i<j ai,jxixj , we associate with it an

undirected labelled graph G(q). The vertices of the graph are {x1, x2, . . . , xn} and edges
{{xi, xj}| ai,j 6= 0}. Edge {xi, xj} has label ai,j ∈ {1,−1}. We refer to vertices, cycles
and triangles in q, when we really mean in G(q). The following lemma is used throughout
our paper.

Lemma 3.1. Let q(x) be a quadratic form, and suppose a(x), b(x) are linear forms

in Z3[x] where x = (x1, . . . , xn). If q + a2 = Qc̄,α
σ (x) and q − b2 = Qd̄,β

τ (x) then either

(i) a = b = 0 and q = Qc̄,α
σ (x) = Qd̄,β

τ (x) or
(ii) parity(c̄) 6= parity(d̄) or
(iii) α 6= β mod 3.

In particular, if either a or b is non-zero, then
∣

∣

∣
parity(c̄)ωα + parity(d̄)ωβ

∣

∣

∣
≤ |ω − ω̄| =

√
3

Proof. Note that if |supp(a)| + |supp(b)| 6= 0 mod 3, then a2 + b2 has a non-zero
constant term mod 3 (a2 + b2 is a polynomial of degree at most 2). Since Qc̄,α

σ (x) −
Qd̄,β

τ (x) = a2 + b2, we conclude that α − β 6= 0 mod 3. So in what follows, we only
consider the situation when |supp(a)| + |supp(b)| = 0 mod 3.

Observation: if Qc̄
σ(x) − Qd̄

τ (x) = ±xixj for distinct variables xi, xj , then c̄ and d̄ have

differing parity. Further note that Qc̄,α
σ (x) − Qd̄,β

τ (x) cannot contain a triangle.

We argue by cases depending on whether a and b are linear forms over the same set
of variables.

Case 1: supp(a) = supp(b):

Without loss of generality (wlog), assume a =
∑

i∈S xi and b =
∑

i∈U xi−
∑

i∈S\U xi

for sets S ⊆ {1, 2, . . . , n} and U ⊆ S. If |U | ≥ 3, then a2 + b2 will contain a triangle,

whereas Qc̄,α
σ (x) − Qd̄,β

τ (x) cannot contain a triangle. Thus |U | ≤ 2 and |S \ U | ≤ 2 and
so |S| ≤ 4. We argue each possible case below:

(i) |S| = 0: Then a = b = 0 and so q = Qc̄,α
σ (x) = Qd̄,β

τ (x).

(ii) |S| = 1 or |S| = 2 or |S| = 4: In each of these cases, |supp(a)|+ |supp(b)| 6=
0 mod 3, thus α 6= β mod 3.

(iii) |S| = 3: Wlog, a = x1 +x2 +x3. Then a2 has a triangle whereas a2 + b2 does
not. So one of the edges in a2 has to be cancelled by an edge in b2. Wlog, b =

±(x1 +x2−x3) since |U | , |S \ U | ≤ 2. Thus, a2+b2 = x1x2 = Qc̄,α
σ (x)−Qd̄,β

τ (x)
and so c̄, d̄ have opposite parity.

Case 2: supp(a)4 supp(b) 6= ∅:

Wlog, x1 ∈ supp(a) \ supp(b) and assume a = x1 +
∑

i∈S xi. Note that |S| ≤ 2

otherwise x1 appears with degree ≥ 3 in a2 +b2 (since x1 6∈ supp(b)). We argue by cases:
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(i) |S| = 0: Then, a = x1 and |supp(b)| ≤ 2 (otherwise b2 and hence a2 + b2

has a triangle). Since |supp(a)| + |supp(b)| = 0 mod 3, we may assume that
a = x1 and b = x2 + x3, in which case a2 + b2 = −x2x3. This implies that
parity(c̄) 6= parity(d̄).

(ii) |S| = 1: Then wlog, a = x1 + x2. Note that this implies |supp(b)| ≤ 2, since
otherwise there are variables x3, x4 (say) in supp(b) which form a triangle with
either x2 or some other variable in supp(b). Avoiding |supp(a)| + |supp(b)| 6=
0 mod 3, we are left with |supp(b)| = 1 so wlog, b = x3 or x2. In which case
a2 + b2 has a single edge and parity(c̄) 6= parity(d̄).

(iii) |S| = 2: Then a = x1+x2+x3. Then a2 has a triangle, one of whose edges has
to cancel with a term from b2. Since x1 6∈ supp(b), this edge has to be {x2, x3}.
So wlog b = ±(x2 − x3 ±∑i∈T xi). If |T | ≥ 2, assume that x4, x5 ∈ supp(b)

(hence x4, x5 ∈ supp(b)\supp(a)). This implies that b2 has a triangle x4, x5, x2,
a contradiction. Thus |T | ≤ 1. If |T | = 0, then |supp(a)|+ |supp(b)| 6= 0 mod 3.
Thus |T | = 1 so wlog, b = ±(x2 −x3 + x4). But then a2 + b2 = −x1x2 −x1x3 −
x2x4 + x3x4. Thus there are two possibilities, either

Qc̄
σ(x) = −x1x2 + x3x4 + Qσ′(x5, . . . , xn) and

Qd̄
τ (x) = −x1x3 − x2x4 + Qσ′(x5, . . . , xn)

or

Qc̄
σ(x) = −x1x3 + x2x4 + Qσ′(x5, . . . , xn) and

Qd̄
τ (x) = −x1x2 − x3x4 + Qσ′(x5, . . . , xn)

In either case, c̄ and d̄ have different parities.

�

The following theorem establishes uniqueness; it is also used in Section 4.

Theorem 3.2. Let n ≥ 1. Then |S(t, k, n)| = Bn iff t(x) + k(x) = Qc̄,α
σ (x) for some

permutation σ of variables, c̄ ∈ {1,−1}dn/2e and α ∈ Z3.

Proof. If t(x) + k(x) = Qc̄,α
σ (x) then a simple calculation shows that the bound

holds. The proof in the other direction is by induction on n. Our base case consists of
n = 1. Note that

S(0, ax, 1) = ωa − ω−a

so |S(0, ax, 1)| = B1 iff a ∈ {1,−1}. Thus the optimal polynomial is of the required
form.

Assume n ≥ 2. First consider the case when n is odd. Assume that |S(t, k, n)| =
Bn. This implies that there is at least one xi such that xi ∈ supp(k) (since otherwise

S(t, 0, n) = 0). Without loss of generality, assume that k = x1 + l(xb2). Write t(x) =

t2(x
b2) + x1 · r(xb2), where wlog, we may assume that l and r do not have any constant

terms. If r = 0, then expand by x1 to obtain:

S(t, k, n) =
(ω − ω̄)

2
S(t2, l, n − 1)
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If S(t, k, n) is optimal, then S(t2, l, n − 1) has to be optimal and so by induction, t2 =

Qc̄,α
σ (xb2) and l = 0 for some π. Then t + k = Qc̄,α

σ (xb2) + x1, as required.
We now prove that if r 6= 0, then S(t, k, n) is suboptimal, a contradiction. Corol-

lary 2.2 (ii) implies that

S(t, k, n) =
ω − ω

2
· 1

2
· (S+

n−1 + S−
n−1)

where

S+
n−1 = S(t2 + (l − r)2, 0, n − 1) and S−

n−1 = S(t2 − (l + r)2, 0, n − 1)

If S(t, k, n) has maximum norm, then so do S+
n−1 and S−

n−1: if not, then the triangle

inequality implies that |S(t, k, n)| <
√

3/2 · Bn−1 < Bn which violates maximality of

|S(t, k, n)|. By induction, there exist permutations π, σ, coefficients c̄, d̄ ∈ {1,−1}(n−1)/2

and constants α, β ∈ Z3 such that

t2 + (l − r)2 = Qc̄,α
σ (x)

t2 − (l + r)2 = Qd̄,β
τ (x)

Since r 6= 0, either l− r or l + r has to be non-trivial. Lemma 3.1 implies that either the
parities of c̄ and d̄ are different or α 6= β mod 3 (condition (i) of the Lemma does not
apply since l − r or l + r is non-trivial). Since S+ and S− have the same norm,

S(t, k, n) =
ω − ω

2
· parity(c̄)ωα + parity(d̄)ωβ

2
· i(n−1)/2 Bn−1

where note that this is an equality of expressions, not simply of their norms. If α −
β 6= 0 mod 3, then

∣

∣

∣

±ωα±ωβ

2

∣

∣

∣
< 1 and so |S(t, k, n)| < Bn, a contradiction. If instead

α = β mod 3, then S+ = −S− (S− is the conjugate of S+, and since the sums are over
disjoint pairs of variables, we have S− = −S+) and so S(t, k, n) = 0, a contradiction.
This concludes the proof for n odd.

Now suppose n is even and |S(t, k, n)| = Bn. Corollary 2.2 (i) implies that

S(t, k, n) =
1

2
(S(t+, 0, n) + S(t−, 0, n))

where t± = t±k(x)2. If S(t, k, n) has maximum norm, so do S(t±, 0, n). Write, as usual,

t+(x) = t2(x
b2) + x1 · r(xb2) + γ (where γ ∈ Z3 is non-zero if |supp(k)| 6= 0 mod 3). By

Corollary 2.2, we have

S(t+, 0, n) = ωγ S(t2(x
b2), r(xb2), n − 1)

Since S(t+, 0, n) has maximum norm, S(t2, r, n − 1) must have maximum norm. By
induction, we have wlog,

t2 = Qc̄,α+γ
σ (x3, . . . , xn) and r = x2

for some choice of parameters. This implies that

t+ = x1x2 + Qc̄,α+γ
σ (x3, . . . , xn)

Similarly, we have wlog,

t− = x1x3 + Qd̄,β+δ
τ (x2, x4, . . . , xn)
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for a (possibly) different choice of parameters d̄, τ, β, δ.
This implies that for some choice of parameters σ′, τ ′, c̄′, d̄′,

t + k2 = Qc̄′,α′

σ′ (x)

t − k2 = Qd̄′,β′

τ ′ (x)

Thus

|S(t, k, n)| =
1

2

∣

∣

∣
parity(c̄)ωα′

+ parity(d̄)ωβ′
∣

∣

∣
· Bn

Lemma 3.1 now implies that if k was non-zero then |S(t, k, n)| ≤ (
√

3/2) · Bn < Bn, a
contradiction. Thus k = 0 and t has the desired form. �

4. The Gap Theorem

Theorem 4.1. Let n ≥ 1. If |S(t, k, n)| < Bn, then |S(t, k, n)| ≤
√

3
2 · Bn.

The proof is by induction on n. The base case is n = 1 for which a simple calculation
shows that the statement is true: the norm has two possible values, |(ω − ω̄)/2| or 0.

Let n > 1 be odd and suppose that |S(t, k, n)| < Bn. As before, we write t(x) =

t2(x
b2) + x1 · r(xb2) and k(x) = x1 + l(xb2). Without loss of generality, we may assume

that k 6= 0 since otherwise S(t, k, n) = 0 and the statement to be proved is clearly true.
Now recall from Corollary 2.2 that

(3) S(t, k, n) =
1

2
.
ω − ω̄

2
(S+

n−1 + S−
n−1)

where S+
n−1 = S(t2 + (l − r)2, 0, n − 1) and S−

n−1 = S(t2 − (l + r)2, 0, n − 1).

A number of easy cases are taken care of in the following. The proof is in Appendix A.

Lemma 4.2. If r = 0, l = 0, or if both S+
n−1 and S−

n−1 are either optimal or subopti-

mal, then |S(t, k, n)| ≤ (
√

3/2)Bn.

Thus we need only consider the case when exactly one of S+
n−1 and S−

n−1 is optimal.

Wlog, assume that S+
n−1 is optimal and S−

n−1 is suboptimal. This implies, wlog, that

t2 + (l − r)2 =
∑

x2x3(4)

where
∑

x2x3 is shorthand for
∑(n−1)/2

i=1 x2i+1x2i.
If l = r then, by definition of S(t, k, n) and summing over x1,

S(t, k, n) =
1

2n

∑

x∈{−1,1}n

∏

x ωt2+x1.r+x1+r

=
1

2n

∑

x∈{−1,1}n

∏

x (ωt2+1+2r − ωt2−1)

=
1

2
(ω S1 − ω̄ S2)

where S1 = S(t2,−r, n − 1) and S2 = S(t2, 0, n − 1). Since t2 =
∑

x2x3, |S2| = Bn−1.
To evaluate S1, we need the following lemma, which a simple calculation can verify.
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Lemma 4.3. If a 6= 0 or b 6= 0,

|S(x1x2, ax1 + bx2, 2)| ≤
√

3

4

Since r 6= 0, one of the blocks {xi, xi+1} in t2 must be associated with a linear part
axi + bxi+1 where either a 6= 0 or b 6= 0. Since S1 factors into sums over the blocks,

|S1| ≤
(√

3

4

)

· Bn−3 =
Bn−1

2

Thus the triangle inequality implies that

|S| ≤ 1

2

[

Bn−1

2
+ Bn−1

]

=
3

4
Bn−1 =

√
3

2
Bn,

as desired. Similarly, if l = −r, we get the desired bound. So now assume that l 6= ±r,
l 6= 0 and r 6= 0. In particular, l, r, l + r, l − r are all non-zero. Collecting terms and
simplifying we get, using Equations (3) and (4):

S(t, k, n) =
ω − ω̄

2

1

2n

∑

xb2

(

n
∏

i=2

xi

)

ω
P

x2x3 (1 + ωl2+r2
)(5)

Lemma 2.1 (iv) implies that:

1 + ωl2+r2
=

2

3
− 1

3
ω̄ (ωl + ωr + ω−l + ω−r) − 1

3
ω (ωl+r + ω−l−r + ωl−r + ωr−l)

Substituting this expression for 1 + ωl2+r2
into Equation (5), we get

S(t, k, n) =
ω − ω̄

2
· 1

2
·
[

2

3
S
(

∑

x2x3, 0, n − 1
)

− 1

3
ω̄ T1(l, r) −

1

3
ω T2(l, r)

]

where

T1(a, b) = S
(

∑

x2x3, a, n − 1
)

+ S
(

∑

x2x3,−a, n − 1
)

+

S
(

∑

x2x3, b, n − 1
)

+ S
(

∑

x2z3,−b, n − 1
)

and T2(a, b) = T1(a + b, a − b).
We say that a linear form l is incident on a block {xi, xi+1} of

∑

x2x3 if {xi, xi+1} ∩
supp(l) 6= ∅. The following Lemma has an easy proof, given in Appendix B.

Lemma 4.4. If any two of the forms l, r, l+r, l−r are incident on two distinct blocks
of
∑

x2x3, then

|S(t, k, n)| ≤
√

3

2
Bn

Note that wlog we may assume that both l and r are incident on at most one block
(since l, r 6= 0, this implies that they are incident on exactly one block). If one of them
is incident on one block and the other on 2 blocks, then one of l + r or l − r is incident
on 2 blocks and Lemma 4.4 applies. Also wlog, we may assume that l and r are both
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incident on block {x2, x3}. This means that we can factor out of S(t, k, n) the sum over
variables x4, x5 . . . , xn. Thus

S(t, k, n) =
(ω − ω̄)

2
· 1

2
· S
(

∑

x4x5, 0, n − 1
)

· S′(6)

where

S′ =

[

2

3
S2(x2x3) −

1

3
ω̄T1(l2x2 + l3x3, r2x2 + r3x3) −

1

3
ωT2(l2x2 + l3x3, r2x2 + r3x3)

]

We can find out the maximum norm of S′ under the assumption that l 6= ±r, l 6= 0,
r 6= 0 by simple enumeration. Under this restriction, we see that the maximum norm of
S′ is

√
3/2 (the other higher values correspond to the invalid choices of l and r).

Thus from Equation 6, we get

|S(t, k, n)| ≤
√

3

2
· 1

2
·
(√

3

2

)(n−3)/2

·
√

3

2
=

1√
3
·
√

3

2
Bn ≤

√
3

2
Bn

as required. This concludes the inductive step for odd n.
The case for even n is similar, although somewhat simpler. The argument is given

in Appendix C, which concludes the proof of Theorem 4.1.

5. Conclusion and Future Work

In this paper, we proved two conjectures made by Dueñez et al. [5] for quadratic
polynomials defined over Z3. The conjecture is still open for arbitrary odd moduli (even
for m = 5), despite large experimental evidence supporting it (along with the verification
by [5] for all odd moduli and up to 10 variables). Here are two directions to pursue, and
some of the difficulties they present.

Perhaps the most obvious route to a complete understanding of the quadratic case
would be to isolate precisely what elements of the n ≤ 10 technique of [5] can be used
to obtain an induction that works for all n. Our results here are a step in that direction,
since the uniqueness and gap properties were instrumental in the argument given in [5],
and at least we now know for sure that they hold when m = 3. What properties are
sufficient to obtain a full inductive proof for all odd m?

Another possible way to overcome these obstacles is to generalize Lemma 2.1 to
arbitrary odd moduli m. In fact, one can readily prove analogues for identities (i) and
(ii) as below when m is prime (here Z

∗
m denotes non-zero elements of the ring Zm):

Lemma 5.1. (see e.g., [10]) Let p be prime, a, b ∈ Zp and χ : Zp 7→ C be a non-trivial
multiplicative character of Zp. Then

(i)
∑

x∈Z∗
p
ωx a =

∑

x∈Z∗
p
ωx a2

(ii)
∑

x∈Z∗
p
χ(x)ωax = (

∑

x∈Z∗
p
χ(x)ωx)χ(a)

One would expect that if p is any odd prime (not just 3), then the presence of
the finite field would enable us to get tight upper bounds. It is, however, not obvious
how to generalize Lemma 2.1 (iii). Even if this generalization was possible, use of the
above lemma would require “completion” of the sum (i.e., to express it in terms of a
sum over all non-zero field elements rather than just 1 and −1). We have explored
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a number of schemes for completion of the sum, but none have as yet yielded any
insight. For such complete sums, the main technique that is often used in finite field
sums for quadratics is to diagonalize the quadratic form t in S(t, k, n). Unfortunately
this technique does not work in this instance because χ(

∏n
i=1 xi) does not transform

nicely under linear transformations of the xi (and also because we restrict our variables
to {1,−1}). Finally, if indeed bounds can be obtained for odd primes p (or odd prime
powers, e.g., via a suitable generalization of Lemma 2.1 (iii)), would it then be possible to
reduce the problem of estimating the maximum norm of Sm(t, k, n) when m is composite,
to when m is a prime power?
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Appendix

A. Proof of Lemma 4.2

Suppose r = 0, then

S(t, k, n) =
ω − ω̄

2
S(t2, l, n − 1)

Thus if |S(t, k, n)| is suboptimal, so is S(t2, l, n−1). By induction we have |S(t2, l, n − 1)| ≤
(
√

3/2)Bn−1 and so |S(t, k, n)| ≤ (
√

3/2)2Bn−1 = (
√

3/2) Bn as desired.
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If l = 0, then

S(t, k, n) =
1

2n

∑

x∈{−1,1}n

∏

xi ωt2+x1.r+x1

=
1

2n

∑

xb2

∏

i≥2

xi (ωt2+1+r − ωt2−1−r) (expanding x1)

=
1

2n

∑

xb2

∏

xi ωt2(ωr+1 − ω−r−1)

=
1

2n





∑

xb2

∏

xi ωt2ωr+1 −
∑

xb2

∏

x ωt2ω−r−1





=
1

2n

∑

xb2

∏

xi ωt2(ωr+1 − ωr−1) (flipping all variables in second sum)

=
ω − ω̄

2

1

2n−1

∑

xb2

∏

xi ωt2+r =
ω − ω̄

2
S(t2, r, n − 1)

If S(t, k, n) is suboptimal, so is S(t2, r, n− 1). Thus following a similar argument for
r = 0, we conclude that

|S(t, k, n)| ≤ (
√

3/2) Bn

Now assume that both l and r are non-zero. Adopting the notation of Equation 3,
if both S+

n−1 and S−
n−1 are optimal, then by Theorem 3.2,

t2 + (l − r)2 = Qc̄,α
σ (x) and t2 − (l + r)2 = Qd̄,β

τ (x)

where σ, τ are permutations on x2, . . . , xn. But then,

S(t, k, n) =
ω − ω̄

2
· parity(c̄)ωα + parity(d̄)ωβ

2
· i(n−1)/2Bn−1

Lemma 3.1 implies that either parity(c̄) 6= parity(d̄) or α 6= β mod 3 (case (i) of
Lemma 3.1 cannot arise since both l and r are non-zero). In either case,

∣

∣

∣

∣

parity(c̄)ωα + parity(d̄)ωβ

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

ωα − ωβ

2

∣

∣

∣

∣

≤
√

3

2

and so

|S(t, k, n)| =

(√
3

2

)2

Bn−1 =

√
3

2
Bn

as required. Similarly, if both S+
n−1 and S−

n−1 are suboptimal, induction implies that
∣

∣S+
n−1

∣

∣ ≤ (
√

3/2) Bn−1 and
∣

∣S−
n−1

∣

∣ ≤ (
√

3/2) Bn−1. Now Equation (3) and the triangle
inequality imply as before:

|S(t, k, n)| ≤ (
√

3/2)2 Bn−1 ≤ (
√

3/2) Bn

as required. �
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B. Proof of Lemma 4.4

We start with,

Lemma B.1. If a linear form l =
∑n

i=2 l2x2 is incident on at least k blocks of
∑

x2x3,
then

|S
(

∑

x2x3, l, n − 1
)

| ≤ 1

2k
Bn−1

Proof. A straightforward computation and Lemma 4.3 imply that
∣

∣

∣

∣

∣

1

4
·
∑

x,y

xy ωaxy+bx+cy

∣

∣

∣

∣

∣

=

√
3

2
if b = c = 0 and a 6= 0

and otherwise it has norm ≤
√

3
4 when a 6= 0. Thus

|S
(

∑

x2x3, l, n − 1
)

| ≤
(√

3

4

)k(√
3

2

)
n−1−2k

2

(on removing the at most 2k variables in the k blocks, we are left with an optimal form
on at most n − 2k − 1 variables). The result now follows. �

Proof of Lemma 4.4: The hypothesis implies that 4 of the forms l, r,−l,−r, l + r,−l −
r, l − r,−l + r are incident on two distinct blocks of

∑

x2x3. Also note that each of
the other 4 forms have non-zero support so are incident on at least one block (since
l 6= ±r, l 6= 0, r 6= 0). So by Lemma B.1, 4 of the corresponding S(t, k, n) terms have
norm at most (1/4)Bn−1 each and the other 4 have norm at most (1/2)Bn−1.

Applying the triangle inequality and Lemma B.1,

|S(t, k, n)| ≤
√

3

2
· 1

2
·
[

2

3
Bn−1 +

1

3
(4 · Bn−1

4
+ 4 · Bn−1

2
)

]

=
5

6
·
√

3

2
· Bn−1 =

5

6
· Bn ≤

√
3

2
Bn

�

C. The Even n Case for Theorem 4.1

Let n be even. First consider the situation when we have a quadratic form (i.e.,
k = 0). Then, by Corollary 2.2(i),

S(t, 0, n) = S(t2(x
b2), r(xb2), n − 1)

If S(t, 0, n) is suboptimal, so is S(t2(x
b2), r(xb2), n − 1) and so

|S(t, 0, n)| =
∣

∣

∣
S(t2(x

b2), r(xb2), n − 1)
∣

∣

∣
≤

√
3

2
Bn−1 =

√
3

2
Bn,

as desired. Now suppose that k 6= 0. Then, by Corollary 2.2(i),

|S(t, k, n)| ≤ 1

2
(
∣

∣S(t+, 0, n)
∣

∣+
∣

∣S(t−, 0, n)
∣

∣)
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where t± = t ± k(x)2. If both S(t+, 0, n) and S(t−, 0, n) are optimal (in which case
|S(t, k, n)| is also maximal), Theorem 3.2 implies that

t + k2 = Qd̄,β
τ (x), t − k2 = Qc̄,α

σ (x)

This implies that k2 = Qc̄,α
σ (x) − Qd̄,β

τ (x) and hence |supp(k)| ≤ 2 (otherwise, k2 would

have a triangle). If |supp(k)| = 1, then Qd̄,β
τ (x)−Qc̄,α

σ (x) is a constant so σ = τ , and wlog
t + k =

∑

x1x2 + x1. Thus S(t, k, n) factors into sums over the connected components

of t, and the component that contains x1 gives a factor of
√

3/4 (Lemma 4.3). Thus

|S(t, k, n)| ≤
√

3

4
· Bn−2 ≤

√
3

2
Bn

Similarly, we get the desired factor for |supp(k)| = 2.
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