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Abstract

We devise an abstraction of zero-knowledge protocols that is accessible to a fully mechanized analysis.
The abstraction is formalized within the applied pi-calculus using a novel equational theory that abstractly
characterizes the cryptographic semantics of zero-knowledge proofs. We present an encoding from the
equational theory into a convergent rewriting system that is suitable for the automated protocol verifier
ProVerif. The encoding is sound and fully automated. We successfully used ProVerif to obtain the first
mechanized analysis of the Direct Anonymous Attestation (DAA) protocol. This required us to devise
novel abstractions of sophisticated cryptographic security definitions based on interactive games. The
analysis reported a novel attack on DAA that was overlooked in its existing cryptographic security proof.
We propose a revised variant of DAA that we successfully prove secure using ProVerif.

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system aspects of
multiple interleaved protocol runs, awkward to make for humans. In fact, vulnerabilities have accompanied
the design of such protocols ever since early authentication protocols like Needham-Schroeder [11, 25], over
carefully designed de-facto standards like SSL and PKCS [29, 8], up to current widely deployed products like
Microsoft Passport [13] and Kerberos [10]. Hence work towards the automation of such proofs has started
soon after the first protocols were developed; some important examples of automated security proofs are [24,
23, 19, 22, 26, 28, 5, 6]. Language-based techniques are now widely considered a particularly salient approach
for formally analyzing security protocols, dating back to Abadi’s seminal work on secrecy by typing [1]. The
ability to reason about security at the language level often allows for concisely clarifying why certain message
components are included in a protocol, how their entirety suffices for establishing desired security guarantees,
and for identifying ambiguities in protocol messages that could be exploited by an adversary to mount a
successful attack on the protocol.

One of the central challenges in the analysis of complex and industrial-size protocols is the expressiveness
of the formalism used in the formal analysis and its capability to model complex cryptographic operations.
While such protocols traditionally relied only on the basic cryptographic operations such as encryption and
digital signatures, modern cryptography has invented more sophisticated primitives with unique security fea-
tures that go far beyond the traditional understanding of cryptography to solely offer secrecy and authenticity
of a communication. Zero-knowledge proofs constitute the most prominent and arguably most amazing such
primitive. A zero-knowledge proof consists of a message or a sequence of messages that combines two seem-
ingly contradictory properties: First, it constitutes a proof of a statementx (e.g,x = ”the message within this
ciphertext begins with0”) that cannot be forged, i.e., it is impossible, or at least computationally infeasible, to
produce a zero-knowledge proof of a wrong statement. On the other hand, a zero-knowledge proof does not
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reveal any information besides the bare fact thatx constitutes a valid statement. In particular, a proof about
some ciphertext would not leak the decryption key or the plaintext. Zero-knowledge proofs were introduced
in [17] and were proven to exist for virtually all statements [16]. Zero-knowledge proofs have since shown
to constitute very powerful building blocks for the construction of sophisticated cryptographic protocols to
solve demanding protocol tasks: they allow for commonly evaluating a function on distributed inputs without
revealing any inputs to the other protocol participants [15], they allow for developing encryption schemes that
are secure under very strong active attacks [12], and many more.

Early general-purpose zero-knowledge proofs were mainly invented to show the mere existence of such
proofs for the class of statements under consideration. These proofs were very inefficient and consequently
of only limited use in practical applications. The recent advent of efficient zero-knowledge proofs for special
classes of statements changed this. The unique security features that zero-knowledge proofs offer combined
with the possibility to efficiently implement some of these proofs have paved these proofs the way into modern
cryptographic protocols such as e-voting protocols and anonymity protocols. The best known representative
of these protocols is the Direct Anonymous Attestation (DAA) protocol [9]. DAA constitutes a cryptographic
protocol that enables the remote authentication of a Trusted Platform Module (TPM) while preserving the
user’s privacy. More precisely, if the user talks to the same verifier twice, the verifier is not able to tell if he
communicates with the same user as before or with a different one. DAA achieves its anonymity properties
by heavily relying on non-interactive zero-knowledge proofs. Intuitively, these allow the TPM to authenticate
with the verifier without revealing the TPM’s secret identifier.

1.1 Contributions

The contribution of this paper is threefold: First, we present an abstraction of non-interactive zero-knowledge
proofs within the applied pi-calculus [4] using a novel equational theory that abstractly characterizes the cryp-
tographic semantics of these proofs. Second, we transform our abstraction into an equivalent formalization
that is accessible to ProVerif [7], a well-established tool for the mechanized analysis of different security
properties. Third, we apply our theory to the Direct Anonymous Attestation (DAA) protocol [9], the au-
thentication scheme for Trusted Platform Modules (TPMs), yielding its first mechanized security proof. The
analysis reported a novel attack on DAA that was overlooked in its existing cryptographic security proof. We
propose a revised variant that we successfully prove secure.

We express cryptographic protocols in the applied pi-calculus, an extension of the pi-calculus with an
arbitrary equational theory for terms, that has proven to constitute a salient foundation for the analysis of
cryptographic protocols, see [3, 21, 7, 2, 14]. We devise a novel equational theory that concisely and elegantly
characterizes the semantic properties of non-interactive zero-knowledge proofs, and that allows for abstractly
reasoning about such proofs. The design of the theory in particular requires to carefully address the important
principles that zero-knowledge proofs are based upon: the soundness and the completeness of the proof
verification as well as the actual zero-knowledge property, i.e., a verifier must not be able to learn any new
information from a zero-knowledge proof except for the validity of the proven statement. The only prior work
on abstracting in a general way zero-knowledge proofs aims at formalizing in modal logic the informal prose
used to describe the properties of these proofs [20]. In contrast to our abstraction, the abstraction in [20] has
not been applied to any example protocols, and no mechanization of security proofs is considered there.

The mechanization of language-based security proofs has recently enjoyed substantial improvements that
have further strengthened the position of language-based techniques as a promising approach for the analysis
of complex and industrial-size cryptographic protocols. ProVerif [7] constitutes a well-established automated
protocol verifier based on Horn clauses resolution that allows for the verification of observational equivalence
and of different trace-based security properties such as authenticity. We present a mechanized encoding of
our equational theory into a finite specification that is suitable for ProVerif. More precisely, the equational
theory is compiled into a convergent rewriting system that ProVerif can efficiently cope with. We prove that
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the encoding preserves observational equivalence and a large class of trace-based security properties.
Finally, we exemplify the applicability of our theory to real-world protocols by analyzing the security

properties of the Direct Anonymous Attestation (DAA) protocol [9]. DAA constitutes a cryptographic proto-
col that enables the remote authentication of a hardware module called the Trusted Platform Module (TPM),
while preserving the anonymity of the user owning the module. Such TPMs are now widely included in
end-user notebooks. The DAA protocol relies heavily on zero-knowledge proofs to achieve its anonymity
guarantees. Analyzing DAA first requires to devise novel abstractions of sophisticated cryptographic secu-
rity definitions based on interactive games between honest participants and the adversary; comprehensive
anonymity properties are of this form. We formulate the intended anonymity properties in terms of obser-
vational equivalence, we formulate authenticity as a trace-based property, and we prove these properties in
the presence of external active adversaries as well as corrupted participants. The analysis confirmed a known
attack on anonymity [27] and discovered a new attack on authenticity. We propose a revised variant and prove
it secure.

The proofs are fully automated using ProVerif. We are confident that the methodology presented in this
paper is general and the principles followed in the analysis of DAA can be successfully exploited for the
verification of other cryptographic protocols based on non-interactive zero-knowledge proofs.

1.2 Outline of the Paper

We start by reviewing the applied pi-calculus in Section 2. Section 3 contains the equational theory for
abstractly reasoning about non-interactive zero-knowledge proofs in the applied pi-calculus. This equational
theory is rewritten into an equivalent finite theory in terms of a convergent rewriting system in Section 4.
Section 5 and 6 elaborate on the analysis of DAA, the description of its security properties, and the use of
ProVerif for mechanizing the analysis. Section 7 concludes and outlines future work.

2 Review of the Applied Pi-calculus

The syntax of the applied pi-calculus [4] is given in Table 1. Terms are defined by means of asignatureΣ,
which consists of a set of function symbols, each with an arity. Theset of termsTΣ is the free algebra built
from names, variables, and function symbols inΣ applied to arguments. We letu range over names and
variables. We partition each signature intopublic andprivate function symbols. The only difference is that
private symbols are not available to the adversary: For more detail on their semantics, we refer to Table 7
in Section 4. Private function symbols are supported by ProVerif and are used in the finite encoding of the
equational theory for zero-knowledge proofs and in the DAA model. In the following, functions symbols
are public unless stated otherwise. We presuppose a sort system for the setN of names: we lets, k
(possibly with sub- and superscripts) range over names of base type (e.g.,Integer, Data, and so on),a, b over
channel names, andn,m over names of any sort. Terms are equipped with anequational theoryE, i.e., an
equivalence relation on terms that is closed under substitution of terms and under application of term contexts
(terms with a hole). We writeE ⊢ M = N andE 6⊢ M = N for an equality and an inequality, respectively,
moduloE.

The grammar of processes (orplain processes) is defined as follows. The null process0 does nothing;
νn.P generates a fresh namen and then behaves asP ; ifM = N then P else Q behaves asP if E ⊢ M =
N , and asQ otherwise;u(x).P receives a messageN from the channelu and then behaves asP{N/x};
u〈N 〉.P outputs the messageN on the channelu and then behaves asP ; P |Q executesP andQ in parallel;
!P generates an unbounded number of copies ofP .

Extended processesare plain processes extended withactive substitutions. An active substitution{M/x}
is a floating substitution that may apply to any process that it comes into contact with. To control the scope
of active substitutions, we can restrict the variablex. Intuitively, νx.(P | {M/x}) constrains the scope of
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Table 1Syntax of the applied pi-calculus

Terms

M,N,F,Z ::= s, k, . . . , a, b, . . . , n,m names
x, y, z vars
f(M1, . . . ,Mk) function

wheref ∈ Σ andk is the arity off.

Processes

P,Q ::= 0 nil
νn.P res
ifM = N then P else Q cond
u(x).P input
u〈N 〉.P output
P | Q par
!P repl

Extended Processes

A ::= P plain
A1 | A2 par
νn.A name res
νx.A var res
{M/x} subst

the substitution{M/x} to processP . If the variablex is not restricted, as it is the case in the process
(P | {M/x}), then the substitution is exported by the process and the environment has immediate access to
M . As usual, the scope of names and variables is delimited by restrictions and by inputs. We writefv(A)
andfn(A) (resp.bv(A) andbn(A)) to denote the free (bound) variables and names in an extended process
A, respectively. We letfree(A) := fv(A) ∪ fn(A) and bound(A) := bv(A) ∪ bn(A). For sequences
M̃ = M1, . . . ,Mk and x̃ = x1, . . . , xk, we let {M̃/x̃} denote{M1/x1} | . . . | {Mk/xk}. We always
assume that substitutions are cycle-free, that extended processes contain at most one substitution for each
variable, and that extended processes contain exactly one substitution for each restricted variable.

A contextis a process or an extended process with a hole. Anevaluation contextis a contextwithout
private function symbolswhose hole is not under a replication, a conditional, an input, or an output. A
contextC[_] closesA if C[A] is closed, i.e., it does not contain free variables. Aframeis an extended process
built up from 0 and active substitutions by parallel composition and restriction. We letφ andψ range over
frames. The domaindom(φ) of a frameφ is the set of variables thatφ exports, i.e., those variablesx for which
φ contains a substitution{M/x} not under a restriction onx. Every extended processA can be mapped to
a frameφ(A) by replacing every plain process embedded inA with 0. The frameφ(A) can be viewed as
an approximation ofA that accounts for the static knowledgeA exposes to its environment, but not forA’s
dynamic behavior.

As in the pi-calculus, the semantics is defined in terms ofstructural equivalence(≡) and internal re-
duction(→). Structural equivalence states which processes should be considered equivalent up to syntactic
re-arrangement.

Definition 1 (Structural Equivalence) Structural equivalence (≡) is the smallest equivalence relation on
extended processes that satisfies the rules in Table 2 and that is closed underα-renaming, i.e., renaming of
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Table 2Structural Equivalence

PAR-0 A ≡ A | 0
PAR-A A1 | (A2 | A3) ≡ (A1 | A2) | A3

PAR-C A1 | A2 ≡ A2 | A1

REPL !P ≡ P | !P
RES-0 νn.0 ≡ 0
RES-C νu.νu′.A ≡ νu′.νu.A
RES-PAR A1 | νu.A2 ≡ νu.(A1 | A2) if u /∈ free(A1)

ALIAS νx.{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x} if Σ ⊢M = N

Table 3 Internal reduction

COMM

a〈x〉.P | a(x).Q→ P | Q
THEN

ifM = M then P else Q → P

ELSE

E 6⊢M = N M,N ground

ifM = N then P else Q → Q

bound names and variables, and under application of evaluation contexts.

Internal reduction defines the semantics for extended processes.

Definition 2 (Internal Reduction) Internal reduction (→) is the smallest relation on extended processes
that satisfies the rules in Table 3 and that is closed under structural equivalence and under application of
evaluation contexts.

We writeA ⇓ a to denote thatA can send a message ona, i.e.,A→∗ C[a〈M 〉.P ] for some evaluation context
C[_] that does not binda. Observational equivalenceconstitutes an equivalence relation that captures the
equivalence of processes with respect to their dynamic behavior.

Definition 3 (Observational Equivalence) Observational equivalence (≈) is the largest symmetric relation
R between closed extended processes with the same domain such thatARB implies:

1. if A ⇓ a, thenB ⇓ a;

2. if A→∗ A′, thenB →∗ B′ andA′RB′ for someB′;

3. C[A]RC[B] for all closing evalution contextsC[_].

3 An Equational Theory of Zero-Knowledge

In this section we define a signature and an equational theory for abstractly reasoning about non-
interactive zero-knowledge proofs. Our equational theory is parametric in that it augments an arbitrary base
equational theory.

3.1 An Underlying Cryptographic Base Theory

The base equational theory we consider in this paper is given in Table 4. (Note again though that any other
base theory would work as well.) First, it consists of functions for constructing and destructing pairs, encrypt-
ing and decrypting messages by symmetric and asymmetric cryptography, signing messages and verifying
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Table 4A base equational theory containing basic cryptographic primitives and logical operators

Σbase =





pair, encsym, decsym, encasym, decasym,
sign, ver,msg, pk, sk, hash, blind,
unblind, blindsign, blindver, blindmsg,
∧,∨, eq, first, snd, true, false





ver andblindver of arity 3, pair, encsym, decsym, encasym, decasym, sign, blind, unblind, blindsign, ∧, ∨ and
eq of arity 2, msg, pk, sk, hash, blindmsg, first andsnd of arity 1, true andfalse of arity 0.

Ebase is the smallest equational theory satisfying the following equations defined over allx, y, z:

ver(sign(x, sk(y)), x, pk(y)) = true

eq(x, x) = true

∧(true, true) = true

∨(true, x) = true

∨(x, true) = true

first(pair(x, y)) = x
snd(pair(x, y)) = y
decsym(encsym(x, y), y) = x
decasym(encasym(x, pk(y)), sk(y)) = x
msg(sign(x, y)) = x

blindver(unblind(blindsign(blind(x, z),
sk(y)), z), x, pk(y)) = true

blindmsg(unblind(blindsign(blind(x, z), y), z)) = x

signatures, modelling public and private keys, hashing, andconstructing and verifying blind signatures. In
blind signature schemes, the content of a message is disguised before it is signed while still ensuring public
verifiability of the signature against the unmodified message. These functions have received prior investiga-
tion within the applied pi-calculus, e.g., to analyze the JFK protocol [3] and the electronic voting protocol
FOO 92 [21]. Second, the theory contains three binary functionseq, ∧, and∨ for modelling equality test,
conjunction, and disjunction, respectively; these functions allow for modelling monotone Boolean formu-
las. In our example theory, we do not consider additional functions for, e.g., negation or specifying explicit
inequalities. We shall often write= instead ofeq and use infix notation for the functionseq, ∧, and∨.

3.2 The Equational Theory for Zero-Knowledge

Our equational theory for abstractly reasoning about non-interactive zero-knowledge proofs is given in Table
5; its components are explained in the following. A non-interactive zero-knowledge proof is represented
as a term of the formZKi,j(M̃, Ñ , F ), whereM̃ andÑ denote sequencesM1, . . . ,Mi andN1, . . . ,Nj of
terms, respectively, and whereF constitutes a formula over those terms, see below. HenceZKi,j is a function
of arity i + j + 1. We shall often omit arities and write this statement asZK(M̃ ; Ñ ;F ), letting semicolons
separate the respective components. The statement will keep secret the termsM̃ , called the statement’sprivate
component, while the termsÑ , called the statement’spublic component, will be revealed to the verifier and
to the adversary. The formulaF constitutes a constant without names and variables, which is built upon
distinguished nullary functionsαi andβi with i ∈ N.

Definition 4 ((i, j)-formulas) We call a term an(i, j)-formula if the term contains neither names nor vari-
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Table 5Equational theory for zero-knowledge

ΣZK = Σbase ∪

{
ZKi,j,Veri,j,Publici,Formula,
αi, βi, true | i, j ∈ N

}

ZKi,j of arity i+ j + 1, Veri,j of arity 2,Publici andFormula of arity 1,αi, βi andtrue of arity 0.

EZK is the smallest equational theory satisfying the equations ofEbase and the following equations defined
over all termsM̃, Ñ , F :

Publicp(ZKi,j(M̃, Ñ , F )) = Np with p ∈ [1, j]

Formula(ZKi,j(M̃ , Ñ , F )) = F

Veri,j(F,ZKi,j(M̃, Ñ , F )) = true iff
1) EZK ⊢ F{M̃/α̃}{Ñ/β̃} = true

2) F is an(i, j)-formula

ables, and if for everyαk andβl occurring therein, we havek ∈ [1, i] and l ∈ [1, j].

The valuesαi andβj in F constitute placeholders for the termsMi andNj, respectively. For instance, the
term

ZK( k ; m, encsym(m,k) ; β2 = encsym(β1, α1))

denotes a zero-knowledge proof that the termencsym(m,k) is an encryption ofm with k. More precisely, the
statement reads: “There exists a key such that the ciphertextencsym(m,k) is an encryption ofm with this
key”. As mentioned before,encsym(m,k) andm are revealed by the proof whilek is kept secret. This is
formalized in general terms by the following infinite set of equational rules:

Publicp(ZKi,j(M̃, Ñ , F )) = Np with p ∈ [1, j]

Formula(ZKi,j(M̃ , Ñ , F )) = F

wherePublicp andFormula constitute functions of arity1. Since there is no destructor associated to the state-
ment’s private component, the terms̃M are kept secret. This models thezero-knowledgeproperty discussed
in the introduction. We define a statementZKi,j(M̃, Ñ , F ) to hold true ifF is an (i, j)-formula and the
formula obtained by substituting allαk ’s andβl’s in F with the corresponding valuesMk andNl is valid.
Verification of a statementZKi,j with respect to a formula is modelled as a functionVeri,j of arity 2 that is
defined by the following equational rule:

Veri,j(F,ZKi,j(M̃ , Ñ , F )) = true iff
1) EZK ⊢ F{M̃/α̃}{Ñ/β̃} = true

2) F is an(i, j)-formula

where{M̃/α̃}{Ñ/β̃} denotes the substitution of eachαk with Mk and of eachβl with Nl. This rule guaran-
tees in the abstract model thesoundnessandcorrectnessof zero-knowledge protocols.

3.3 An Illustrating Example

We illustrate the zero-knowledge abstraction by means of the following example protocol. We keep the proto-
col simplistic in order to focus on the usage of zero-knowledge proofs; in particular, we ignore vulnerabilities
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due to replay attacks and corresponding countermeasures such as nonces and timestamps.

A B Si

A,B //

oo {A,B}kSi
oo ZK

PartyB receives a signed message{A,B} from some serverSi ∈ {S1, . . . , Sn}. (This signed message
might, e.g., serve as a certificate that allowsB to prove that he has been authorized to contactA.) WhileB
should be able to convinceA that he owns a signature on this message issued by one of the possiblen servers,
the protocol should ensure thatA does not learn which serverSi in fact issued the signature. This prevents
B from simply forwarding the signed message toA. Instead,B proves knowledge of such a signature by a
non-interactive zero-knowledge proofZK.

We now carefully examine the proof of knowledgeZK. We aim at formalizing the following statement:
“There existsα such thatα is a signature ofA andB, and this signature was created using one of the
signature keyskS1

, . . . , kSn ”. Coming up with a formalization of this statement first requires us to tell the
secret terms from the terms leaked to the verifier. The identifiers ofA andB clearly have to be revealed
since the proof intends to allowB to prove that he has been authorized to contactA. The signature itself and
the corresponding verification keypk(kSi

), however, have to be kept secret to preserve the anonymity ofSi.
These requirements are cast in our zero-knowledge notation as follows:

ZK(sign(pair(A,B), sk(kSi
))) = ZK2,n+1




sign(pair(A,B), sk(kSi
)), pk(kSi

);
pk(kS1

), . . . , pk(kSn), pair(A,B);( ∨
i=1,n

α2 = βi

)
∧ ver(α1, βn+1, α2))




This statement captures that the signaturesign(pair(A,B), sk(kSi
)) and the public keypk(kSi

) used in
the verification are kept secret (i.e., the identity ofSi is not revealed) while the proof reveals the public
keys of all servers (this includespk(kSi

) but does not tell it from the remaining public keys) as well as
the identifiers ofA andB. The formula states that the verification key of the signature belongs to the set
{pk(kS1

), . . . , pk(kSn)}, and that the signed message consists of a pair composed of the identifiers ofA and
B. We obtain the following description of a single protocol run:

A , a(y).if Testthen b〈ok〉 else b〈badA〉

B , a(x).if (ver(x, pair(A,B), pk(kSi
)))

thena〈ZK(x)〉 elseb〈badB 〉

Si , a〈sign(pair(A,B), sk(kSi
))〉

Prot , νkA.νkB .νkS1
. . . . .νkSn .

a〈pk(kS1
)〉. . . . .a〈pk(kSn)〉.(A | B | Si)

whereTestconstitutes the following condition:

Ver2,n+1

(( ∨
i=1,n

α2 = βi

)
∧ ver(α1, βn+1, α2), y

)
= true

∧
i=1,n

Publici(y) = pk(kSi
) ∧ Publicn+1(y) = pair(A,B)

We wroteTestusing conjunctions only to increase readability;Testcan be straightforwardly encoded in the
syntax of the calculus by a sequence of conditionals.

8



4 Towards a Mechanized Analysis of Zero-Knowledge

The equational theoryΣZK defined in the previous section is not suitable for existing tools for mechanized
security protocol analysis. The reason is that the signatureΣZK, and consequently the number of equations
in the specification, is infinite. In this section, we specify an equivalent equational theory in terms of a
convergent rewriting system. This theory turns out to be suitable for ProVerif [7], a well-established tool for
mechanized verification of different security properties of cryptographic protocols specified in a variant of
the applied pi-calculus.

4.1 A Finite Specification of Zero-Knowledge

The central idea of our equivalent finite theory is to focus on the zero-knowledge proofs used within the
process specification and to abstract away from the additional ones that are possibly generated by the environ-
ment. This makes finite both the signature and the specification of the equational theory.

Pinning down this conceptually elegant and appealing idea requires to formally characterize the zero-
knowledge proofs generated, verified, and read in the process specification. First, we track the zero-
knowledge proofs generated or verified in the process specification by a setF of triples of the form(i, j, F ),
wherei is the arity of the private component,j the arity of the public component, andF the formula. Second,
we record the arityh (resp.l) of the largest private component (resp. public component) of zero-knowledge
proofs used in the process specification. For termsM and processesP , we let terms(M) denote the set
of subterms ofM and terms(P ) denote the set of terms inP . We can now formally define the notion of
(F , h, l)-validity of terms and processes.

Definition 5 (Process Validity) A termZ is (F , h, l)-valid if and only if the following conditions hold:

1. for everyZKi,j(M̃ , Ñ , F ) ∈ terms(Z) andVeri,j(F,M) ∈ terms(Z),

(a) F is an(i, j)-formula and(i, j, F ) ∈ F ,

(b) F ∈ TΣbase∪{αk ,βl |k∈[1,i],l∈[1,j]},

(c) and for every(i, j, F ′) ∈ F such thatEZK ⊢ F = F ′, we haveF = F ′.

2. For everyk ∈ N, αk andβk occur inZ only inside of the last argument of someZKi,j or Veri,j function.

3. for every(i, j, F ) ∈ F , we havei ∈ [0, h] andj ∈ [0, l].

4. for everyPublicp(M) ∈ terms(Z), we havep ∈ [1, l].

A processP is (F , h, l)-valid if and only ifM is (F , h, l)-valid for everyM ∈ terms(P ).

We check that each zero-knowledge proof generation and verification is tracked inF (condition 1a). For the
sake of simplicity, we prevent the occurrence of zero-knowledge operators within formulas in the process
specification (condition 1b). Without loss of generality, we also require that equivalent formulas occurring
in zero-knowledge proofs of the same arity are syntactically equal (condition 1c) and that theαi’s andβj ’s
only occur within formulas (condition 2). Finally, we check that the arity of private and public components of
zero-knowledge proofs used in the process specification is less or equal thanh andl, respectively (conditions
3 and 4).

Given an(F , h, l)-valid process, we can easily define a finite equational theoryEF ,h,l
FZK

for (F , h, l)-valid

terms by a convergent rewriting system. For any(i, j, F ) ∈ F , we include in the signatureΣF ,h,l
FZK

the function

symbolsZKF
i,j andVerFi,j of arity i + j and1, respectively. We then replace every termZKi,j(M̃, Ñ , F )

andVeri,j(F,M) in the process specification byZKF
i,j(M̃, Ñ ) andVerFi,j(M), respectively. Since formulas
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Table 6Finite equational theory for zero-knowledge with respect to an(F , h, l)-valid process.

ΣF ,h,l
FZK

= Σbase ∪





ZKF
i,j,PZKF

i,j,VerFi,j,FakeZKk,Publicp,

Formula,FakeCollect,FakePublic,FakeVer, αg, βp

| (i, j, F ) ∈ F , g ∈ [1, h], k ∈ [0, l], p ∈ [1, l]





PZKF
i,j of arity i + j + 1, ZKF

i,j of arity i + j, FakeZKk of arity k + 2, FakeVer of arity 4, FakePublic and
FakeCollect of arity 2, VerFi,j, Publicp, andFormula of arity 1, αg andβp of arity 0. PZKF

i,j is private.

EF ,h,l
FZK is the smallest equational theory satisfying the equations ofEbase and the following equations, for

every(i, j, F ) ∈ F :

ZKF
i,j(x̃, ỹ) = PZKF

i,j(x̃, ỹ, F{x̃/α̃}{ỹ/β̃})

VerFi,j(PZKF
i,j(x̃, ỹ, true)) = true

Publicp(PZKF
i,j(x̃, ỹ, z)) = yp p ∈ [1, j]

Formula(PZKF
i,j(x̃, ỹ, z)) = F

Publicp(FakeZKk(x, ỹ, z)) = yp p ∈ [1, k], k ∈ [0, l]

Formula(FakeZKk(x, ỹ, z)) = z k ∈ [0, l]

are uniquely determined by theZKF
i,j function symbol, they can be omitted from the protocol specification.

Furthermore, we need in the equational theory only those functionsαi andβj that satisfyi ∈ [1, h] andj ∈
[1, l]; the remaining ones can be safely omitted since they do not offer the adversary any additional capabilities.
For finitely modelling the verification of zero-knowledge proofs, we include inΣF ,h,l

FZK the function symbols

PZKF
i,j of arity i+ j + 1. A termZKF

i,j(M̃ , Ñ) is equivalent toPZKF
i,j(M̃, Ñ , F{M̃/α̃}{Ñ/β̃}). This can

be captured using a finite description, since the number of formulas in the process specification is finite:

ZKF
i,j(x̃, ỹ) = PZKF

i,j(x̃, ỹ, F{x̃/α̃}{ỹ/β̃})

For verifying a zero-knowledge proof, it thus suffices to check whether the last argument of thePZKF
i,j is true

or not:
VerFi,j(PZKF

i,j(x̃, ỹ, true)) = true

The rule for extracting the public component is defined in the expected manner. Extracting the formula
from a zero-knowledge proofPZKF

i,j(M̃ , Ñ , F{M̃/α̃}{Ñ/β̃}) requires an additional thought: for preserv-
ing the secrecy of private components, the functionFormula yields the formulaF (without the substitution
{M̃/α̃}{Ñ/β̃}) in order to prevent the adversary from deriving the formula instantiated with private terms.

Publicp(PZKF
i,j(x̃, ỹ, z)) = yp p ∈ [1, j]

Formula(PZKF
i,j(x̃, ỹ, z)) = F

We obtain a finite set of rules since the number ofZKF
i,j andVerFi,j constructors corresponds to the (finite)

number of formulas occurring in the process specification. ThePZKF
i,j functions are private; hence they

cannot be used by the adversary to derive terms of the formPZKF
i,j(M̃ , Ñ , true), which would be successfully

verified by trusted participants regardless of the value ofF{M̃/α̃}{Ñ/β̃}. The possibility to construct such
terms would break the soundness property of zero-knowledge proofs.

It now remains to encode the zero-knowledge proofs generated by the environment. These proofs possibly
contain formulas or have arities different from the ones specified in the process. We include inΣF ,h,l

FZK a finite
set of symbolsFakeZKk of arity k + 2, wherek ∈ [0, l]. The termFakeZKk(M, Ñ , F ) never occurs in
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process specifications and represents zero-knowledge statements forged by the adversary; hereM constitutes
a distinguished term that uniquely refers to the zero-knowledge proof and that plays a role only in the proof
of soundness,̃N denotes the firstk elements of the public component, andF is the formula. The equational
rules for extracting the public components and the formula fromFakeZKk terms are specified as follows:

Publicp(FakeZKk(x, ỹ, z)) = yk

Formula(FakeZKk(x, ỹ, z)) = z

for anyp ∈ [1, k] andk ∈ [0, l]. We additionally include inΣF ,h,l
FZK

functionsFakeCollect, FakePublic, and
FakeVer. These functions are only used for proving the finite theory equivalent to the infinite one in the next
section; the functions are free in that they do not occur in any equations.

4.2 Compilation into Finite Form

We now define the static compilation of terms and processes.

Definition 6 (Static Compilation) The(F , h, l)-static compilationis the partial functionσ : TΣZK
→ T

ΣF,h,l

FZK

recursively defined as follows:

ZKi,j(M̃ , Ñ , F )σ = ZKF
i,j(M̃σ, Ñσ) ∀(i, j, F ) ∈ F

Veri,j(F,M)σ = VerFi,j(Mσ) ∀(i, j, F ) ∈ F

Publicp(M)σ = Publicp(Mσ) ∀p ∈ [1, l]

Formula(M)σ = Formula(Mσ)

f(M1, . . . ,Mi)σ = f(M1σ, . . . ,Miσ) ∀f ∈ Σbase

xσ = x ∀x

nσ = n ∀n

The (F , h, l)- static compilation constitutes a total function when restricted to(F , h, l)-valid terms. The
first equations deal with the compilation of zero-knowledge proofs and operators acting on them. The static
compilation acts component-wise on the remaining terms and behaves as the identity function on names and
variables. The compilation of a processP , writtenPσ, is defined by the compilation of the terms occurring
therein.

The following theorem finally states that observational equivalence is preserved under static compilation
and hence asserts the soundness of the encoding from the infinite specification into the finite specification.

Theorem 1 (Preservation of Observational Equivalence)LetP andQ be(F , h, l)-valid processes andσ
be the(F , h, l)-static compilation. IfPσ ≈

E
F,h,l
FZK

Qσ, thenP ≈EZK
Q.

We additionally prove that a comprehensive class of trace-based properties is preserved under static com-
pilation. We first define the notion of an execution trace. This requires to review thelabelled operational
semantics that extends the semantics given in Table 3 by allowing us to reason about processes that interact
with their environment. The labelled transition system is given in Table 7.

Definition 7 (Execution Traces) The set of execution traces of an extended processA, written traces(A), is
defined as follows:

traces(A) = {µ1φ(A1), . . . , µnφ(An) | A→∗µ1
→ A1 . . .→

∗µn
→ An}

11



Table 7Labelled transition system

IN

M ∈ TΣ+

a(x).P
a(M)
→ P{M/x}

OUT-ATOM

a〈u〉.P
a〈u〉
→ P

OPEN-ATOM

A
a〈u〉
→ A′ u 6= a

νu.A
νu.a〈u〉
→ A′

SCOPE

A
µ
→ A′ u does not occur inµ

νu.A
µ
→ νu.A′

PAR

A
µ
→ A′ bound(µ) ∩ free(B) = ∅

A | B
µ
→ A′ | B

STRUCT

A ≡ B B
µ
→ B′ B′ ≡ A′

A
µ
→ A′

Notation: Σ+ contains the public function symbols inΣ. In OUT-ATOM, u is either a channel name or a
variable.

In the following, we lets range over execution traces. We now introduce the notion of trace-based security
property. We assume the existence of a special channelc that is never restricted by the process. In the
following, we letB(M1, . . . ,Mn) denote a boolean formula over the termsM1, . . . ,Mn: such terms are
meant to express trace-based security properties. For instance, the notion of authenticity can be formalized
aspair(end, x) ⇒ pair(begin, x), whereend andbegin are special nullary functions.

Definition 8 (Trace-based Security Property) A traces satisfies the eventM with substitutionξ, written
s ⊢ξ M if and only if there exists1, s2,N, ξ such thats ⊢ s1 :: c〈N 〉 :: s2 andEZK ⊢ N = Mξ.

A traces satisfies the propertyB(M1, . . . ,Mn) with substitutionξ, writtens ⊢ξ B(M1, . . . ,Mn), if and
only ifB(s ⊢ξ M1, . . . , s ⊢ξ Mn).

A process satisfies the propertyB(M1, . . . ,Mn), writtenP ⊢ξ B(M1, . . . ,Mn), if and only if for every
traces ∈ traces(P ), there existsξ such thats ⊢ξ B(M1, . . . ,Mn)

Finally, we can state the theorem of preservation for trace-based security properties.

Theorem 2 (Trace-based Security Property Preservation)Let P be a (F , h, l)-valid process,σ be the
(F , h, l)-static compilation, andM1, . . . ,Mn be (F , h, l)-valid terms. IfPσ ⊢ B(M1σ, . . . ,Mnσ), then
P ⊢ B(M1, . . . ,Mn).

4.3 Preservation of Observational Equivalence and Trace-based Security Properties

Instead of proving that observational equivalence is preserved under static compilation, we show preservation
of an equivalent formulation of observational equivalence based on static equivalence and labelled bisimilarity.
We first review these notions.

Definition 9 (Term Equality in Frames) Two termsM andN are equal in a frameφ, written (M = N)φ,
if and only ifφ ≡ νñ.σ, Mσ = Nσ, and{ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names̃n and substitution
σ.

Definition 10 (Static Equivalence) Two closed framesφ andψ are statically equivalent, writtenφ ≈s ψ
if and only if dom(φ) = dom(ψ) and for all termsM andN , it holds that(M = N)φ if and only if
(M = N)ψ.
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We say that two closed extended processes are statically equivalent, writtenA ≈s B if and only if their
frames are statically equivalent.

We now define the notion oflabelled bisimilarity, which constitutes an equivalent notion of observational
equivalence. Labelled bisimilarity does not rely on the universal quantification over evalution contexts used
in the definition of observational equivalence.

Definition 11 (Labelled Bisimilarity) Labelled bisimilarity (≈l) is the largest symmetric relationR on
closed extended processes such thatARB implies:

1. A ≈s B;

2. if A→ A′, thenB →∗ B′ andA′RB′ for someB′;

3. if A
µ
→ A′ andfv(µ) ⊆ dom(A) andbn(µ) ∩ fn(B) = ∅, thenB →∗ µ

→→∗ B′ andA′RB′ for some
B′.

We finally state the well-known equivalence between observational equivalence and labelled bisimilarity [4].

Theorem 3 (Observational Equivalence and Labelled Bisimilarity) Observational equivalence coincides
with labelled bisimilarity:≈=≈l.

It hence remains to be shown that labelled bisimilarity is preserved under static compilation. In the following,
we writeP ≡E Q to emphasize thatP andQ are structurally equivalent with respect to an equational theory
E. Furthermore, we writeMφ for the ground term obtained by repeated application of the substitution inφ to
M , where we assume thatfv(M) ⊆ fv(φ). This notation is well-defined since frames do not contain substi-
tutions with cyclic dependencies. The next definition introduces a normal form for terms. Intuitively, a term
is in (F , h, l)-normal form if the subterms generated by the environment cannot be further simplified (condi-
tions 1 and 2) and, in the case of zero-knowledge proofs, they either comply with the process specification or
belong to a different equivalence class (condition 3).

Definition 12 (Normal Form) A termM ∈ TΣZK
is in (F , h, l)-normal form with respect to a frameφ if and

only if the following conditions hold:

1. for everyPublicj(Z) ∈ terms(M), i, j′, M̃ , Ñ , F such thatj > l andEZK ⊢ Zφ = ZKi,j′(M̃, Ñ , F ),
we havej′ < j.

2. for everyVeri,j(F,Z) ∈ terms(M), M̃, Ñ such thatEZK ⊢ Zφ = ZKi,j(M̃ , Ñ , F ), we have that
(i, j, F ) ∈ F .

3. for everyZKi,j(M̃, Ñ , F ) ∈ terms(M), F ′ such that(i, j, F ′) ∈ F and ΣZK ⊢ F = F ′, we have
F = F ′.

For any term there exists an equivalent term in normal form.

Proposition 1 (Normal Form) For any termM ∈ TΣZK
and frameφ, there exists a termN ∈ TΣZK

in
(F , h, l)-normal form with respect toφ such thatEZK ⊢ (M = N)φ.

Proof. By an inspection of the equational rules in Table 5 and Definition 12.

We now characterize the notion of validity of extended processes. Intuitively, an extended process is(F , h, l)-
valid if it can be separated into an(F , h, l)-valid process and a frame where free variables, referring to
output messages, are associated to(F , h, l)-valid terms, and bound variables, referring to input messages, are
associated to terms in(F , h, l)-normal form that only contain free names and free variables.
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Definition 13 (Extended Process Validity)A frameφ is (F , h, l)-valid if and only if there exist̃n, ỹ, {Z̃/x̃},
with ỹ ⊆ x̃, such that the following conditions hold:

1. φ ≡ νñ.νỹ.{Z̃/x̃}.

2. for everyxk ∈ fv(φ), we have thatZk is (F , h, l)-valid.

3. for everyxk ∈ bv(φ), we have thatZk is in (F , h, l)-normal form with respect toφ and free(Zk) ∩
bound(φ) = ∅.

An extended processA is (F , h, l)-valid if and only if there exist̃n, ỹ, {M̃/x̃}, with ỹ ⊆ x̃, such that the
following conditions hold:

1. A = νñ.νỹ.({Z̃/x̃}|P ).

2. νñ.νỹ.{Z̃/x̃} is (F , h, l)-valid.

3. P is (F , h, l)-valid.

In the following, we useFakeCollect(M̃) for M̃ = M1, . . . ,Mn as an abbreviation for the term
FakeCollect(M1,FakeCollect(M2, . . . ,FakeCollect(Mn−1,Mn))). We further consider a countable set of
names that are meant to represent natural numbers, denotedi, j, and nullary functionsαi andβj with i > h
andj > l, denotedfαi

andfβj
, respectively. Without loss of generality, we disciplineα-renaming to guaran-

tee that such names are never restricted in the process.
We now introduce the dynamic compilation of terms at run-time.

Definition 14 (Dynamic Compilation) The (F , h, l)-dynamic compilationis the functionρ : TΣZK
→

T
ΣF,h,l

FZK

recursively defined as follows:

Publicj(M)ρ = Publicj(Mρ) if j ∈ [1, l]
FakePublic(j,Mρ) otherwise

ZKi,j(M̃ , Ñ , F )ρ = ZKF
i,j(M̃ρ, Ñρ) if (i, j, F ) ∈ F

FakeZKk(g, Ñkρ, Fρ) otherwise
(k = min(j, l),

g = FakeCollect(i, j, M̃ρ, Ñρ))

Formula(M)ρ = Formula(Mρ)

αiρ = αi if i ∈ [1, h]
fαi

otherwise

βjρ = βj if j ∈ [1, l]
fβj

otherwise

Veri,j(F,M)ρ = VerFi,j(Fρ,Mρ) if (i, j, F ) ∈ F
FakeVer(i, j, Fρ,Mρ) otherwise

f(M1, . . . ,Mi)ρ = f(M1ρ, . . . ,Miρ) ∀f ∈ Σbase

xρ = x ∀x

nρ = n ∀n

The next proposition states thatρ is closed under variable substitution.

Proposition 2 (Closure of Dynamic Compilation) Let ρ be the(F , h, l)-dynamic compilation. For every
frameφ and every termM in (F , h, l)-normal form with respect toφ, we have(Mρ)φρ = (Mφ)ρ
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Proof. By an inspection of Definition 14 and Definition 12.

We next lemma states that term equality is preserved by dynamic compilation.

Lemma 1 (Preservation of Term Equality) Letφ be an(F , h, l)-valid frame andρ be the(F , h, l)-dynamic
compilation. Then for any ground termsM1,M2 ∈ TΣZK

in (F , h, l)-normal form with respect toφ, we have
EZK ⊢M1 = M2 ⇔ EF ,h,l

FZK ⊢M1ρ = M2ρ.

Proof. We prove the⇒ implication by induction on the length of the derivation ofM1. We first discuss the
interesting base cases:

M1 = Publick(ZKi,j(M̃, Ñ , F )), M2 = Nk We have two cases:

1. (i, j, F ) ∈ F : By definition ofρ (cf. Definition 14), we getM1ρ = Publick(ZKF
i,j(M̃ρ, Ñρ)). By

definition ofEF ,h,l
FZK (cf. Table 6), we getEF ,h,l

FZK ⊢ Publick(ZKF
i,j(M̃ρ, Ñρ)) = Nkρ, as desired.

2. (i, j, F ) /∈ F : By definition of ρ, we can derive that M1ρ =
Publick(FakeZKmin(j,l)(FakeCollect(i, j, M̃ρ, Ñρ), Ñ1min(j,l), Fρ). By definition of EF ,h,l

FZK
,

EF ,h,l
FZK ⊢M1ρ = Nkρ, as desired.

M1 = Formula(ZKi,j(M̃, Ñ , F )),M2 = F We have two cases:

1. (i, j, F ) ∈ F : By definition of ρ, we getM1ρ = Formula( ZKF
i,j(M̃ρ, Ñρ)). By definition of

EF ,h,l
FZK , we getEF ,h,l

FZK ⊢ Formula(ZKF
i,j(M̃ρ, Ñρ)) = F and, sinceM1 is in (F , h, l)-normal

form with respect toφ, by definition ofρ we have thatFρ = F , as desired.

2. (i, j, F ) /∈ F : By Definition 14, we obtain M1ρ = Formula(

FakeZKmin(j,l)(FakeCollect(i, j, M̃ ρ, Ñρ), Ñ1min(j,l), Fρ). By an inspection of Table 6, we

haveEF ,h,l
FZK ⊢M1ρ = Fρ, as desired.

M1 = Ver(F,ZKi,j(M̃ , Ñ , F )) andM2 = true It must be the case that(i, j, F ) ∈ F , otherwiseM1 is not
in (F , h, l)-normal form with respect toφ. By definition ofρ,M1ρ = VerFi,j(ZKF

i,j(M̃ρ, Ñρ)). By the

equational theory of Table 6,EF ,h,l
FZK

⊢M1ρ = true, as desired.

We prove the induction step by cases:

Symmetry We have thatEZK ⊢ M1 = M2 is proved by symmetry fromEZK ⊢ M2 = M1. By induction
hypothesis,EF ,h,l

FZK ⊢M2ρ = M1ρ. The result follows by symmetry ofEF ,h,l
FZK .

Transitivity The result follows directly from the induction hypothesis.

The proof of the⇐ implication is similar and relies on the fact thatρ is injective when applied to terms in
(F , h, l)-normal form with respect toφ.

Exploiting that term equality is preserved under dynamic compilation, we proceed by showing the preser-
vation of process reduction. The following lemma also proves that the validity of extended processes is
preserved by internal reduction and labelled transition, up to structural equivalence. In addition, Theorem 2
constitutes a direct consequence of this lemma.

Lemma 2 (Preservation of Process Reduction)Let A be an extended process such thatA ≡EZK

νñ.νỹ.({M̃/x̃}|P ), for some(F , h, l)-valid extended processνñ.νỹ.({M̃/x̃}|P ), letσ be the(F , h, l) static
compilation, and letρ be the(F , h, l)-dynamic compilation. Then the following statements hold:
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1. For every B, A →EZK
B if and only if there exists an(F , h, l)-valid extended process

νñ.νỹ.({M̃ ′/x̃′}|P ′) ≡EZK
B such thatνñ.νỹ.({M̃/x̃}ρ|Pσ) →

E
F,h,l
FZK

νñ.νỹ.({M̃/x̃}ρ|P ′σ).

2. For everyµ containing only terms in(F , h, l)-normal form with respect toνñ.νỹ.{M̃/x̃} and everyB,
A

µ
→EZK

B if and only if there exists an(F , h, l)-valid extended processνñ′.νỹ′.({M̃ ′/x̃′}|P ′) ≡EZK

B such thatνñ.νỹ.({M̃/x̃}ρ| Pσ)
µρ
→

E
F,h,l
FZK

νñ′.νỹ′.({M̃ ′/x̃′}ρ|P ′σ) where

• if µ = a(M), thenñ = ñ′, ỹ′ = ỹ, x, for somex /∈ {x̃}, and{M̃ ′/x̃′} = {M̃/x̃} | {M/x}.

• if µ = a〈b〉, thenñ = ñ′, ỹ′ = ỹ, and{M̃ ′/x̃′} = {M̃/x̃}.

• if µ = νb.a〈b〉, thenñ = (ñ′, b), ỹ′ = ỹ, and{M̃ ′/x̃′} = {M̃/x̃}.

• if µ = νx.a〈x〉, thenñ = ñ′, ỹ′ = ỹ, and{M̃ ′/x̃′} = {M̃/x̃} | {M/x}, for some(F , h, l)-valid
M .

Proof. We prove statement 1 by cases on the internal reduction rule. Let us first deal with the “only if”
implication.

COMM By an inspection of Table 2, there existM,x,Q,P1, P2 such thatνñ.νỹ.({M̃/x̃} | P ) ≡EZK

νñ.νỹ.({M̃/x̃}|Q | a〈M 〉.P1 | a(x).P2) andQ | a〈M 〉.P1 | a(x).P2 is (F , h, l)-valid. Byα-renaming,
we can assume thatx /∈ fv(P1). We also have thatB ≡EZK

νñ.νỹ.({M̃/x̃}| Q | P1| P2{M/x}).

By ALIAS, RES-PAR, and SUBST, we get νñ.νỹ.({M̃/x̃} | P ) ≡EZK
νñ.νỹ.νx.({M̃/x̃} |

{M/x} | Q | a〈x〉.P1| a(x).P2). Sinceσ behaves as the identity function on variables and names
and it is defined on(F , h, l)-valid terms and processes, we getνñ.νỹ.({M̃/x̃} ρ | Pσ) ≡

E
F,h,l
FZK

νñ.νỹ.νx.({M̃/x̃} ρ | {Mσ/x} | Qσ | a〈x〉.P1σ| a(x).P2σ). By COMM, SUBST, RES-PAR, and
ALIAS, we have thatνñ.νỹ.νx.({M̃/x̃} ρ | {Mσ/x} |Qσ | a〈x〉.P1σ| a(x).P2σ) → νñ.νỹ.({M̃/x̃} |
P1σ | P2{M/x}σ), as desired. Notice that internal reduction is closed by structural equivalence. It is
easy to see thatP2{M/x} is (F , h, l)-valid sinceM occurs in the(F , h, l)-valid processa〈M 〉.P1 and
it is thus(F , h, l)-valid as well.

THEN By an inspection of Table 2, there existM,N,Q,P1, P2 such thatνn.νỹ.({M̃/x̃} | P ) ≡EZK

νn.νỹ.({M̃/x̃} | Q | if (M = N) thenP1 elseP2, for someM,N,P1, P2, Q such that the pro-
cessQ | ifM = N then P1 else P2 is (F , h, l)-valid and ΣZK ⊢ M{M̃/x̃} = N{M̃/x̃}. We
also have thatB ≡EZK

P2. Similarly, by applying SUBST, we get νn.νỹ.({M̃/x̃}ρ | Pσ)

≡EZK
νn.νỹ.({M̃/x̃}ρ | Q{M̃/x̃}ρ | (if (M = N) thenP1 elseP2)σ{M̃/x̃}ρ). SinceM̃ is in

(F , h, l)-normal form with respect toνn.νỹ.{M̃/x̃} andM is (F , h, l)-valid, it is easy to see that
EF ,h,l

FZK ⊢ (Mσ){M̃/x̃}ρ = (M{M̃/x̃})ρ and(M{M̃/x̃})ρ is in (F , h, l)-normal form with respect

to νn.νỹ.{M̃/x̃}. The reasoning is the same forN . By Lemma 1, we getEF ,h,l
FZK ⊢ M{M̃/x̃}ρ =

N{M̃/x̃}ρ. The result follows from THEN and structural equivalence.

ELSE The reasoning is similar to the one in the previous item.

Notice that the previous cases cover both the application of evaluation contexts and the closure by structural
equivalence. The proof for the “if” implication is similar and relies on the fact thatρ is injective when applied
to terms in(F , h, l)-normal form.

We now prove that process reduction, as defined by the labelled transition systems, is preserved as well.
We proceed by cases on the labelµ:
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µ = a(M) By an inspection of Table 7, there existx, P ′, Q such thatνñ.νỹ.({M̃/x̃} | P ) ≡EZK

νñ.νỹ.({M̃/x̃} | a(x).P ′ | Q) andB ≡EZK
νñ.νỹ.({M̃/x̃} | P ′{M/x} | Q). Similarly, we have

thatνñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK
νñ.νỹ.({M̃/x̃}ρ | a(x).P ′σ |Qσ). By α-renaming, we can assume

x /∈ x̃ and, by SCOPE, we derivefree(M) ∩ {ñ, ỹ} = ∅. By IN, ALIAS, SUBST, and RES-PAR, we get
νñ.νỹ.({M̃/x̃}ρ | a(x).P ′σ | Qσ)

µ
→ νñ.νỹ.νx.({M/x}ρ | {M̃/x̃}ρ | P ′σ | Qσ).

µ = a〈b〉 The output term is a free channel. We have thatνñ.νỹ. ({M̃/x̃} | P ) ≡EZK

νñ.νỹ.({M̃/x̃} | a〈b〉.P ′ | Q) andB ≡EZK
νñ.νỹ.({M̃/x̃} | P ′ | Q). By SCOPE, a /∈ ñ, and

b /∈ ñ. Similarly, we have thatνñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK
νñ.νỹ.({M̃/x̃}ρ | a〈b〉.P ′σ | Qσ). The

result follows from OUT-ATOM and SCOPE.

µ = νb.a〈b〉 The output term is a private channel. We have thatνñ, b.νỹ.({M̃/x̃} | P ) ≡EZK

νñ, b.νỹ.({M̃/x̃} | a〈b〉.P ′ | Q) and B ≡EZK
νñ.νỹ.({M̃/x̃} | P ′ | Q). Similarly, νñ, b.νỹ.

({M̃/x̃}ρ | Pσ) ≡EZK
νñ, b.νỹ.({M̃/x̃}ρ | a〈b〉.P ′σ | Qσ). The result follows from OUT-ATOM

and OPEN-ATOM.

µ = νx.a〈x〉 We have thatνñ.νỹ.({M̃/x̃} | P ) ≡EZK
νñ.νỹ. ({M̃/x̃} | a〈M 〉.P ′ | Q), and, by ALIAS,

RES-PAR, OUT-ATOM, and OPEN-ATOM, B ≡EZK
νñ.νỹ.({M/x} | {M̃/x̃} | P ′ | Q), for some

x /∈ x̃ and withfv(M) ⊆ x̃. Similarly, we have thatνñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK
νñ.νỹ.({M̃/x̃}ρ |

a〈M 〉.P ′σ | Qσ). The result follows from ALIAS, RES-PAR, OUT-ATOM, and OPEN-ATOM.

In all cases, it is easy to see that the resulting extended process is(F , h, l)-valid. The proof for the “if”
implication is similar and relies on the fact thatρ is injective when applied to terms in(F , h, l)-normal form.

We are finally ready to prove that the dynamic compilation preserves static equivalence. We first characterize
a notion of similarity for frames. The crucial ingredient of this definition is that the two frames coincide
when restricted to bound variables, i.e., if the terms received as input by the corresponding extended processes
coincide. This property is naturally fulfilled by the frames associated to labelled bisimilar extended processes.

The next lemma says that a test succeeds if and only if its compilation does.

Lemma 3 (Test Preservation) Letφ be an(F , h, l)-valid frame andρ be the(F , h, l)-dynamic compilation.
For everyM,N in (F , h, l)-normal form with respect toφ such that(free(M) ∪ free(N)) ∩ bound(φ) = ∅,
we have that(M = N)φ⇔ (Mρ = Nρ)φρ.

Proof. The proof follows from Lemma 1 and Proposition 2.

The next definition introduces the notion of similarity for frames.

Definition 15 (Frame Similarity) Two framesφ andψ are similar, writtenφ ∼ ψ, if and only if the following
conditions hold:

1. There existF , h, andl such thatφ andψ are (F , h, l)-valid frames.

2. φ = νñ.νỹ.{M̃/x̃} andψ = νm̃.νỹ.{Ñ/x̃}.

3. For everyxi ∈ bv(φ), we haveMi = Ni.

The next lemma says that for testing similar frames, it suffices to only consider terms in(F , h, l)-normal
form.
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Lemma 4 (Valid Tests) Let φ andψ be two(F , h, l)-valid and similar frames. For everyM,N such that
(M = N)φ holds and(M = N)ψ does not hold, there existM ′,N ′ in (F , h, l)-normal form with respect to
φ andψ such that(M ′ = N ′)φ holds and(M ′ = N ′)ψ does not hold.

Proof. We first show that it is possible to replaceM by a termM ′ such that every subterm of the form
Publicj(Z) is in (F , h, l)-normal form with respect toφ.

M = T [Publicj(Z)] andEZK ⊢ Zφ = ZKi, j′(M̃ , Ñ , F ), with j′ ≥ j > l. By an inspection of the
equational theory, we have two cases:

• There existsZ ′ = ZKi, j′(M̃ ′, Ñ ′, F ′) ∈ terms(Z) such thatEZK ⊢ Z ′φ = ZKi, j′(M̃, Ñ , F ).
Therefore,EZK ⊢ Publicj(Z)φ = N ′

jφ. If EZK ⊢ Publicj(Z)ψ = N ′
jψ, then we can replace

Publicj(Z) by N ′
j. Otherwise, we have that(Z = Z ′)φ holds and(Z = Z ′)ψ does not hold, as

desired.

• There exists a variablex ∈ terms(Z) such thatZKi, j′(M̃ ′, Ñ ′, F ′) ∈ terms(xφ) and
EZK ⊢ ZKi, j′(M̃ ′, Ñ ′, F ′) = ZKi, j′(M̃ , Ñ , F ). By definition 13 and definition 15, there
exists a variabley ∈ bound(φ) ∩ bound(ψ) and a termZ bound toy in φ andψ such that
ZKi, j′(M̃ ′′, Ñ ′′, F ′′) ∈ terms(Z), free(Z) ∩ bound(φ) = ∅, andN ′′

j φ = Nj . If EZK ⊢

Publicj(Z)ψ = N ′′
j ψ, then we can replacePublicj(Z) byN ′′

j . Otherwise,(Z = ZKi, j′(M̃ ′′, Ñ ′′,

F ′′))φ holds and(Z = ZKi, j′(M̃ ′′, Ñ ′′, F ′′))ψ does not hold, as desired. By Definition 13,
ZKi, j′(M̃ ′′, Ñ ′′, F ′′) andN ′′

j are in normal form with respect toφ andψ.

We can similarly prove that it is possible to remove every subterm of the formVeri,j(F,Z) that is not in
(F , h, l)-normal form. At the end of such a process, possibly applied toN , we get two termsM ′ andN ′ in
(F , h, l)-normal form with respect toφ andψ such that(M ′ = N ′)φ holds and(M ′ = N ′)ψ does not hold,
as desired.

We can now formulate the theorem stating that verifying static equivalence on frames obtained by the encod-
ing suffices to prove static equivalence on the original frames.

Lemma 5 (Preservation of Static Equivalence)Letφ andψ be similar and(F , h, l)-valid frames. Letρ be
the(F , h, l)-dynamic compilation. Ifφρ ≈s

E
F,h,l
FZK

ψρ thenφ ≈s
EZK

ψ.

Proof. By Definition 10, we have to prove thatEZK ⊢ (M = N)φ ⇔ EZK ⊢ (M = N)ψ, for every
M,N ∈ TΣZK

, only if EF ,h,l
FZK ⊢ (M ′ = N ′)φρ ⇔ EF ,h,l

FZK ⊢ (M ′ = N ′)ψρ, for everyM ′,N ′ ∈ T
ΣF,h,l

FZK

.

Suppose that there existM,N such that(M = N)φ holds and(M = N)ψ does not hold. By Lemma 4, we
can assume thatM andN are in(F , h, l)-normal form with respect toφ andψ. By Lemma 3,(Mρ = Nρ)φρ
holds and(Mρ = Nρ)ψρ does not hold. Therefore,φρ andψρ are not statically equivalent, yielding a
contradiction.

The following lemma asserts that the equivalence of the termsoccurring in input labels does not affect labelled
bisimilarity.

Lemma 6 (Equivalent Labels) LetA andB be extended processes such thatA
a(M)
→ A′, B

a(M)
→ B′, and

φ(A) ≈s
EZK

φ(B). Then for everyN such thatEZK ⊢ Mφ(A) = Nφ(A) andA
a(N)
→ A′, we have that

B
a(N)
→ B′.
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Proof. Since the frames of the two extended processes are statically equivalent, we have thatEZK ⊢
Mφ(B) = Nφ(B) anddom(φ(A)) = dom(φ(B)). Possibly after applyingα-renaming on bound names,
we get the result by applying IN, SCOPE, and STRUCT.

We can finally show that verifying labelled bisimilarity on extended processes obtained by the compilation
suffices to prove labelled bisimilarity on the original extended processes. With Theorem 3, this proves Theo-
rem 1 as desired. In the following, for every(F , h, l)-validA = νñ.νỹ.({M̃/x̃}|P ), we writeAρσ to denote
νñ.νỹ.({M̃/x̃}ρ|Pσ).

Lemma 7 (Preservation of Labelled Bisimilarity) Let A,B be extended processes such thatA =
νñ.νỹ.({M̃/x̃}|P ), B = νñ′.νỹ.({M̃ ′/x̃}| P ′), for some(F , h, l)-valid P andP ′ and νñ.νỹ.{M̃/x̃} ∼

νñ′.νỹ.{M̃ ′/x̃}. Let σ be the(F , h, l) static compilation andρ be the(F , h, l)-dynamic compilation. If
Aρσ ≈l

E
F,h,l
FZK

Bρσ, thenA ≈l
EZK

B.

Proof. SinceAρσ ≈l

E
F,h,l
FZK

Bρσ, we can consider the smallest symmetric relationR′ ⊆≈l

E
F,h,l
FZK

satisfying the

conditions 1, 2, and 3 of Definition 11 and such thatAρσR′Bρσ. Givenρ andσ, let us define the relationR
as the smallest symmetric relation satisfying the following conditions:

1. for every(F , h, l)-valid A,B such thatAρσR′Bρσ andφ(Aρσ) ∼ φ(Bρσ), we have thatARB.

2. for everyA,B,A′, B′ such thatARB, A ≡EZK
A′ andB ≡EZK

B′, we have thatA′RB′.

We want to prove thatR satisfies the conditions 1, 2, and 3 of Definition 11.

Condition 1 We want to prove that for everyA,B such thatARB, we have thatφ(A) ≈s
EZK

φ(B). If ARB,
then there exist(F , h, l)-valid A′ andB′ such thatA ≡EZK

A′, B ≡EZK
B′, andA′ρσR′B′ρσ. By

definition ofR′, φ(A′ρσ) ∼ φ(B′ρσ) andφ(A′ρσ) ≈s

E
F,h,l
FZK

φ(B′ρσ). It is easy to see thatφ(A′) ∼

φ(B′). By Lemma 5,φ(A′) ≈s
EZK

φ(B′). Since structural equivalence preserves static equivalence,
φ(A) ≈s

EZK
φ(B), as desired.

Condition 2 We want to prove that for everyA,B such thatARB, we have that ( ifA→ A1, thenB →∗ B1

andA1RB1 for someB′). If ARB, then there exist(F , h, l)-valid A′ andB′ such thatA ≡EZK
A′,

B ≡EZK
B′, andA′ρσR′B′ρσ. By Lemma 2, for everyA1 such thatA → A1, there exists a(F , h, l)-

validA′
1 such thatA′ → A′

1, A′
1 ≡EZK

A1, andA′ρσ → A′
1ρσ; we can find similarB1 andB′

1 for B
andB′, respectively. By Lemma 2 and Definition 15, it is easy to see thatφ(A′

1ρσ) ∼ φ(B′
1ρσ). By

definition ofR,A′
1RB

′
1 and, sinceρ is closed by structural equivalence,A1RB1, as desired.

Condition 3 We want to prove that for everyA,B such thatARB, we have that (ifA
µ
→ A1 andfv(µ) ⊆

dom(A) andbn(µ) ∩ fn(B) = ∅, thenB →∗ µ
→→∗ B1 andA1RB1 for someB1). If ARB, then

there exist(F , h, l)-valid A′ andB′ such thatA ≡EZK
A′, B ≡EZK

B′, andA′ρσR′B′ρσ. By Lemma

2 and Lemma 6, for everyA1 such thatA
µ
→ A1, there exists a(F , h, l)-valid A′

1 such thatA′ µ
→ A′

1,
A′

1 ≡EZK
A1, andA′ρσ → A′

1ρσ; we can find similarB1 andB′
1 for B andB′, respectively. By

Lemma 2 and Definition 15, it is easy to see thatφ(A′
1ρσ) ∼ φ(B′

1ρσ). By definition ofR, A′
1RB

′
1

and, sinceρ is closed by structural equivalence,A1RB1, as desired.

ThereforeA ≈l
EZK

B, as desired.
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Theorem 1 then follows directly from Lemma 7 since≈l and≈ coincide in the applied pi-calculus.
In some cases, the analysis of observational equivalence using the tool ProVerif [7] does not terminate due

to the presence of the constructors∧ and∨ and their equations. In these cases, it is useful to remove∧ and
∨ from the equational theory if they are not used in the protocol. Protocols often contain these constructors
only in the formulas of zero-knowledge proofs. Then, after compilation, the protocol does not contain∧ and
∨ any more, but the equational theory produced by the compiler does. In these cases, the following theorem
often allows to modify the equational theory produced by the compiler in such a way that∧ and∨ do not
occur any more:

Theorem 4 (Unfolding) GivenF , h, l, letEF ,h,l
FZK be the equational theory defined in Table 6. LetF ′ ⊆ F

and τ̃1
i,j,F , . . . , τ̃

n
i,j,F be tuples of arityi + j associated to each(i, j, F ) ∈ F ′, wheren = ni,j,F . Assume

that for every(i, j, F ) and tuplesM̃ = M1, . . . ,Mi+j of arity i + j, we have that (∃k, σ such thatM̃ =

τ̃k
i,j,Fσ ⇔ EF ,h,l

FZK ⊢ F{M̃1,i/α1,i}{M̃i+1,i+j/β1,j} = true), whereM̃1,i = M1, . . . ,Mi and M̃i+1,i+j =

Mi+1, . . . ,Mi+j . LetE be obtained by replacing all the rules containingPZKF
i,j, for every(i, j, F ) ∈ F ′, by

the following set of rules:

VerFi,j(ZKF
i,j(τ̃

1
i,j,F )) = true, . . . ,VerFi,j(ZKF

i,j(τ̃
n
i,j,F )) = true

Publick(ZKF
i,j(x̃, ỹ)) = yk

Formula(ZKF
i,j(x̃, ỹ)) = F

ThenEF ,h,l
FZK \{(M,N) | PZKF

i,j occurs inM or N ∧ (i, j, F ) ∈ F ′} = E.

Note thatEF ,h,l
FZK \{(M,N) | PZKF

i,j occurs inM orN∧(i, j, F ) ∈ F ′} = E trivially implies the preservation
of observational equivalence, sincePZKF

i,j is a private constructor not used in the protocol and thus never
appears in terms produced by the protocol or the adversary.

Proof. All the equations definingEF ,h,l
FZK and depending onPZKF

i,j have a direct counterpart in the definition
of E. The only subtlety concerns the equations for the verification of zero-knowledge proofs: for every
(i, j, F ) ∈ F ′, M̃ , Ñ such thatF{M̃1i/α1i, M̃i+1,j/β1j} = true, EF ,h,l

FZK ⊢ VerFi,j(PZKF
i,j(M̃ , Ñ , true)) =

true can be exploited to proveVerFi,j(ZKF
i,j(M̃ , Ñ)) = true. However, for every(i, j, F ) ∈ F ′, M̃, Ñ there

exist τk
i,j,F , σ such thatM̃ , Ñ = τkσ if and only if EF ,h,l

FZK ⊢ F{M̃1i/α1i, M̃i+1,j/β1j} = true. Therefore

EF ,h,l
FZK ⊢ VerFi,j(ZKF

i,j(M̃ , Ñ)) = true if and only ifE ⊢ VerFi,j(ZKF
i,j(M̃, Ñ)) = true.

Additionally, after having removed all occurrences of∧ and∨, we need to be able to remove their equational
rules. The soundness of this transformation is shown by the following simple lemma:

Lemma 8 (Removal of∧ and ∨) LetE0 be an equational theory with signatureΣ0 and∧,∨ /∈ Σ0 and
true ∈ Σ0. LetΣ1 := Σ0 ∪ {∧,∨} and letE1 be the smallest equational theory overΣ1 containingE0 and
the equations{∧(true, true) = true,∨(true, x) = true,∨(x, true) = true}. LetΣ2 := Σ1 and letE2 be the
smallest equational theory overΣ2 containingE0. Then for all processesP andQ not containing∧ or ∨, we
have thatP ≈E1

Q if and only ifP ≈E2
Q.

Proof. The proof has the same structure as the proof of Theorem 1. We first define a notion of normal form for
TΣ1

terms with respect toφ, requiring that for any term of the form∧(M1,M2) (resp.∨(M1,M2)) occurring
therein,EZK 0 M1φ = true or EZK 0 M2φ = true (resp.EZK 0 M1φ = true andEZK 0 M2φ = true).
We then define a notion of validity for terms and plain processes, which requires that∧ and∨ do not occur
therein. The definition of validity for frames and extended processes is similar to Definition 13, where the
new definition of normal form and validity for terms and plain processes is taken into account. Finally, the
compilation fromTΣ1

to TΣ2
is simply defined as the identity function. It is easy to see that Proposition 1,

Proposition 2, and Lemma 1 still hold. Since the identity function is bijective, we have the double implication
in Lemma 5 and Lemma 7, as desired.
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The previous proof shows that the framework proposed in this section provides a methodology for proving the
soundness of any transformation of equational theories for which Proposition 1, Proposition 2, and Lemma 1
hold.

5 Case Study: Direct Anonymous Attestation

To exemplify the applicability of our theory to real-world protocols, we analyze the security properties of the
Direct Anonymous Attestation (DAA) scheme [9]. DAA constitutes a cryptographic protocol that enables the
remote authentication of a hardware module called the Trusted Platform Module (TPM), while preserving the
privacy of the user owning the module. Such TPMs are now widely included in end-user notebooks.

The goal of the DAA protocol is to enable the TPM to sign arbitrary messages and to send them to an
entity called the verifier in such a way that the verifier will only learn that a valid TPM signed that message,
but without revealing the TPM’s identity. The DAA protocol relies heavily on zero-knowledge proofs to
achieve anonymity.

The DAA protocol is composed of two subprotocols: thejoin protocol and theDAA-sign protocol. The
join protocol allows a TPM to obtain a certificate from an entity called the issuer. The protocol ensures that
even the issuer cannot link the TPM to its subsequently produced signatures. The DAA-sign protocol enables
a TPM to sign a message. This signed message is then verified by the verifier. The DAA protocol includes also
a rogue-tagging procedure preventing corrupted TPMs from getting certificates and authenticating messages.

Every TPM has a unique id as well as a key-pair calledendorsement key(EK). The issuer is assumed to
know the public component of each EK. We assume further a publicly known stringbsnI called the basename
of the issuer, as well as a publicly known unique stringbsnV for each verifierV . Every TPM has a secret seed
daaseed id that allows for deriving secret valuesfcnt := H(daaseed id , cnt) whereH is some hash function.
We will call fcnt the f-value for countercnt . Each such f-value represents a virtual identity with respect to
which the TPM can execute the join and the DAA-sign protocol.

5.1 Join protocol

In the join protocol, the TPM can receive a certificate for one of its f-valuesf from the issuer. Such a
certificate is basically just a signature onf of the TPM. However, since we do not want the issuer to learn
f , we have to use blind signatures, i.e., the request from the TPM to the issuer containsblind(f, v), for some
randomv, instead of justf . Furthermore, for reasons that will become clear in the description of rogue-
tagging below, the TPM is required to also send the hash valueNI := exp(ζI , f) along with its request where
ζI is a value derived from the issuer’s basenamebsnI . The functionexp constitutes an exponentation in
the original specification of DAA; we model it as a hash function with two arguments. Since we do not want
the TPM to use different f-values in the computation ofNI and ofblind(f, v), we have to attach a ZK proof
that the same f-value has been used in both cases. After checking the proof, the issuer signs the blinded
f-value blind(f, v) and returns this signaturex := blindsign(blind(f, v), skI). Thencert := unblind(x, v)
is a valid blind signature onf . This certificatecert will be used for the DAA-sign protocol. Since we want
to guarantee that only valid TPMs can receive certificates, the TPM authenticates all its communication by a
challenge-response nonce handshake: the issuer outputs a nonce encrypted by the TPM’s public endorsement
key, and the TPM proves its identity by hashing the nonce together with the blinded f-valueblind(f, v). The
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join protocol has the following overall shape:

TPM Issuer

id , ZK(f,v;blind(f,v),NI ,ζI ;Fjoin) //

oo encasym(nonce,pkid)

hash(blind(f,v),nonce) //

oo blindsign(blind(f,v),skI )

with Fjoin := (β1 = blind(α1, α2) ∧ β2 = exp(β3, α1)). In our calculus, we can model the behavior of
the TPM in the join protocol as follows:

tpmjoin := let f = hash(pair(daaseed(id), cnt)) in

νv.
let U = blind(f, v) in

let ζI = hash(pair(n1, bsnI)) in

let NI = exp(ζI , f) in

let zkp = ZK(f, v;U,NI , ζI ;Fjoin) in

pub〈pair(id, zkp)〉.
pub(encn).
let nonce = decsym(encn, sk(ek(id))) in

pub〈hash((U,nonce))〉
pub(x).
let cert = unblind(x, v) in

if blindver(cert , f, pk(issuerK)) = true then

event JOINED(id , cnt , cert).
och〈cert 〉

Here we uselet x = M in P as syntactic sugar forP{M/x}. The occurence of an eventM is modeled
asc〈M 〉 wherec is a distinguished channel used only for events. Given the explanations above, most steps
in this process should be self-explanatory, however, a few points merit further explanation: The secret seed
daaseedid is modelled by the private constructordaaseed taking as inputid. In the computation ofζI :=
hash(pair(n1,bsnI)), n1 is a free name. In the original DAA protocol [9], the integer1 is used here. For
communication with the issuer, we use the channelpub. The public keyspkid and pk I are modeled as
pk(ek(id)) andpk(issuerK) whereek and issuerK are private constructors. That is, byek(id) we model a
secret function mapping a TPM’s identity to the endorsement key pair. We then use the operatorssk andpk

to access the secret and the public key. The functionissuerK is nullary since, for the sake of simplicity, we
model a single issuer. The private channeloch will later be modeled as a secret channel to pass the received
certificate to the DAA-sign process.
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Accordingly, we model the issuer’s part in the join protocol as follows:

issuer := ! pub(msg).
let id = first(msg) in

let zkp = snd(msg) in

if Ver2,3(Fjoin; zkp) = true then

let U = Public1(zkp) in

νnonce.

pub〈encasym(nonce, pk(ek(id)))〉.
pub(hashn).
if hashn = hash((U,nonce)) then

let N = Public2(zkp) in

let ζ = Public3(zkp) in

if rogue = true then 0 else

if rogueid = true then 0 else

if ζ = hash(pair(n1, bsnI)) then

let cert = blindsign(U, sk(issuerK)) in

event CERTIFIED(id)

pub〈cert 〉

In this process,rogue androgueid represent predicates depending onN , ζ and id . These are used for the
detection of rogue TPMs. We will specifyrogue androgueid in more detail below when we discuss rogue
detection.

5.2 DAA-sign protocol

After successfully executing the join protocol, the TPM has a valid certificatecert for its f-valuef signed
by the issuer. Since we only want valid TPMs to be able to DAA-sign a messagem, the TPM will have to
convince a verifierV that it possesses a valid certificatecert. Of course, the TPM cannot directly sendcert
to the verifierV , since this would revealf . Instead, the TPM produces a zero-knowledge proofzkp that it
knows a valid certificate. If the TPM, however, would just send(zkp,m) to the verifier, the protocol would be
subject to a trivial message substitution attack. We instead combinem with the proof such that one can only
replacem if one redoes the proof (and this again can only be done by knowing a valid certificate). Fortunately,
this can easily be done in our formalism by includingm in the public parameters of the zero-knowledge proof
zkp (there is no condition that a parameter included in the proof actually has to be used by the formula). In
this fashion we produce a kind of zero-knowledge signature that can only be forged if the attacker is able to
produce a valid proof. Furthermore, we again include a valueN := exp(ζ, f) whose importance will become
clear below. The overall shape of the DAA-sign protocol is hence as follows:

TPM Verifier

ZK(f,cert ;N,ζ,pkI ,m;Fsign) //

with Fsign := β1 = exp(β2, α1) ∧ blindver(α2, α1, β3). An interesting point here is the choice ofζ.
By prescribing different derivations ofζ, we get different modes of DAA-signing: an anonymous and a
pseudonymous one. In case of anonymous DAA-signing,ζ is a fresh name chosen by the host. In this case,
two signatures by the same TPM will contain valuesN = exp(ζ, f) andN ′ = exp(ζ ′, f) for differentζ, ζ ′, so
the attacker will not be able to link these signatures. In the case of pseudonymous DAA-signatures, however,
we deriveζ in a deterministic fashion from the basenamebsnV of the verifier. Then any two signatures for
the same verifier using the same f-value will have the same value ofN ; hence these signatures can be linked.
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It will not be possible, however, to link these signatures to the execution of the join-protocol or to signatures
for other verifiers.N takes the role of a verifier-specific pseudonym.

We now discuss how to write this protocol in our calculus. We start with the anonymous variant whereζ
is a fresh name.

daasigna :=

νζ.

let f = hash(pair(daaseed(id), cnt)) in

let N = exp(ζ, f) in

let zkp = ZK(f, cert ;N, ζ, pk(issuerK),m;Fsign) in

event DAASIGNEDA(id , cnt ,m).

pub〈zkp〉

daavera :=

pub(zkp).

if Ver2,4(Fsign; zkp) = true then

let N = Public1(zkp) in

let ζ = Public2(zkp) in

if Public3(zkp) = pk(issuerK) then

let m = Public4(zkp) in

if rogue = true then 0 else

event DAAVERIFIEDA(m)

As in the case of theissuer process,rogue is a predicate depending onζ andN that we will elaborate
upon further when we discuss rogue detection below. The pseudonymous variants of these processes are
similarly defined: The pseudonymous DAA-signing processdaasignp is defined likedaasigna, except thatνζ
is replaced bylet ζ = hash(pair(n1, bsnV )) in . The corresponding verification processdaaverp is defined
like daavera, except that afterlet ζ = Public2(zkp) in we insertif ζ = H(pair(n1, bsnV )) then . Further-
more, to be able to formulate a more fine-grained authenticity property below, we output the more informative
eventsDAASIGNEDP(id, cnt, bsnV ,m) andDAAVERIFIEDP(m, bsnV ,N) instead ofDAASIGNEDA(id, cnt,m)
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andDAAVERIFIEDA(m), respectively. These changes yield the following two processes:

daasignp := let ζ = hash(pair(nV , bsnV )) in (∗)

let f = hash(pair(daaseed(id), cnt)) in

let N = exp(ζ, f) in

let zkp = ZK(f, cert ;N, ζ, pk(issuerK),m;Fsign) in

event DAASIGNEDP(id , cnt , bsnV ,m).

pub〈zkp〉

daaverp := pub(zkp).

if Ver2,4(Fsign; zkp) = true then

let N = Public1(zkp) in

let ζ = Public2(zkp) in

if ζ = hash(pair(nV , bsnV )) then (∗)

if Public3(zkp) = pk(issuerK) then

let m = Public4(zkp) in

if rogue = true then 0 else

event DAAVERIFIEDP(m, bsnV ,N)

with nV := n1. The most important changes with respect to the anonymous DAA-sign protocol are marked
with (∗). Note that we parametrized these processes with respect to the valuenV := n1 used in the computa-
tion of ζ. This is to be able to express the changes needed for circumventing the attack described in [27], see
below.

5.3 Rogue-tagging

So far, we presented the DAA protocol under the assumption that no TPM is compromised. A TPM is a single
chip so that it is very difficult to extract private information from a TPM. Extracting such private information
is however not impossible, so we have to expect that a few TPMs can get compromised. But as soon as a
single TPM is compromised, the attacker can sign arbitrary messages, and these signatures even cannot be
traced to this specific TPM. Even worse, the attacker could release the f-value and a corresponding certificate
on the Internet; this would allow everyone to fake DAA-signatures. To capture this last case, a so-called rogue
list is introduced that contains all f-values that have been published on the Internet. Furthermore, the issuer
maintains a list of revoked TPM ids. Since the communication with the issuer is authenticated, the issuer can
refuse to issue certificates to a revoked TPM. Already issued certificates stay valid. To address this problem
– note that in every protocol execution (join or DAA-sign) based on some f-valuef – the TPM sends a pair
(ζ,N) withN = exp(ζ, f). So given a list of rogue f-valuesF := (f1, . . . , fn), we can check whetherf ∈ F
by checking whetherN = exp(ζ, fi) for somei ∈ [1, n]. Thus the attacker cannot use a certificate relative to
an f-value that has been marked rogue.

To model this mechanism in our calculus, we introduce two predicatesrogueid androgue in the issuer
and verifier processes above. The predicaterogueid (used only be the issuer) is defined to evaluate to true iff
the TPM id is marked rogue. So if, e.g., the idsid1, id2, id3 are marked rogue, we would setrogueid := (id =
id1 ∨ id = id2 ∨ id = id3). The predicaterogue checks whetherN = exp(ζ, f ′) for somef ′ on the rogue
list, so if, e.g., the f-valuesf1, f2, f3 were rogue-listed, we would definerogue := (N = exp(ζ, f1) ∨ N =
exp(ζ, f2) ∨N = exp(ζ, f3)).
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5.4 Security properties of DAA

We will now discuss the main security properties of DAA and how to model them in our calculus.

5.4.1 Authenticity of the DAA-sign protocol

The first property we would like to model is authenticity: If the verifier accepts a messagem, thensomeTPM
has DAA-signed this messagem. To model this, we consider the following process:

issuer|pub〈pk(issuerK)〉|!pub(id).TPMs|!daavera|!daaverp

The outputpub〈pk(issuerK)〉 reflects that the public keypk(issuerK) is publicly known. if we omitted this
output, the adversary could not generate this term, sinceissuerK is a private name (otherwise the adversary
would know sk(issuerK)). The subprocessTPMs reflects that we require authenticity to hold even if the
adversary controls the execution of an arbitrary number of TPMs in an arbitrary fashion (except for learning
their secrets). We model this process as follows:

TPMs :=!pub(cnt).νoch.(tpmjoin|

(och(cert).!pub(m).(daasigna|pub(bsnV ).daasignp))).

Thus for any pair ofid , cnt received from the adversary, this process performs a join, and with the certificate
cert received from the issuer, it DAA-signs any messagem anonymously or pseudonymously with respect to
arbitrary basenamesbsnV . Note how we used inputs to bind the free variablesid , cnt ,m, bsnV in tpmjoin,
daasigna, anddaasignp.

Given this process, authenticity is defined as the fulfillment of the following two trace properties:

DAAVERIFIEDP(m, bsn ,N) ⇒ DAASIGNEDP(id , cnt , bsn,m)

DAAVERIFIEDA(m) ⇒
(

DAASIGNEDA(id , cnt ,m) ∨
DAASIGNEDP(id , cnt , bsn,m)

)
.

Intuitively, the first property means that if an eventDAAVERIFIEDP(m, bsn ,N) occurs, then also
DAASIGNEDP(id , cnt , bsn ,m) occurs in that tracewith the same values ofbsn andm, i.e., when a veri-
fier accepts a pseudonymously signed messagem, then a valid TPM actually sent that messagem for that
verifier. Similarly, the second property guarantees that if a verifier accepts a message as anonymously signed,
that message has been signed anonymously or pseudonymously by some valid TPM. (An inspection of the
protocol reveals that we cannot expect pseudonymously signed messages not to be accepted by anonymous
verification.) We refer to Definition 8 for a formal definition of these trace properties.

Trace properties such as the above authenticity properties can be verified with the mechanized prover
ProVerif [7]. We applied the compilation described in Section 4 and feed the output – now a process in a
finitely generated equational theory – to ProVerif. ProVerif successfully verifies the authenticity properties.
The running time of this proof is 3 seconds on a Pentium 4, 3 GHz. A more detailed description of the
necessary steps is given in Section 6.2. The tool implementing the compiler from Section 4.1 can be found
at [18]. So far, we have not investigated the case that some TPMs are rogue-listed (i.e.,rogue = rogueid =
false). An analysis of this case can be found in Section 6.2.3.

5.4.2 Authenticity of the Join Protocol

In contrast to the DAA-sign operation, after a join the issuer learns the identity of the joining party (since
the joining party authenticates itself using its endorsement key). This is necessary for verifying that no rogue
TPM joins but is also used to limit the number of times a given TPM can join with respect to different f-values.
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It is therefore a natural question whether the following authenticity property holds:JOINED(id , cnt , cert) ⇒
CERTIFIED(id). We investigated whether this property holds in the following process which represents a
situation where the attacker may corrupt or control arbitrary TPMs.

!pub(id).leaktpm|leakpublic|issuer|TPMs|!daavera|!daaverp

with
leaktpm := event LEAKTPM(id).pub〈daaseed(id)〉.pub〈sk(ek(id))〉.pub〈pk(ek(id))〉

and
leakpublic := pub〈pk(issuerK)〉|!pub(id); pub〈pk(ek(id))〉.

As it turned out, ProVerif proves that the property is not fulfilled and finds the following attack:

TPMB TPMA Issuer

B, ZK(...blind(f,v)...) //

A, ZK(...blind(f,v)...) //

oo encasym(n,pkA)

oo encasym(n,pkB)

hash(blind(f,v),n) //

oo blindsign(blind(f,v),skI )

The adversary corrupts TPMA and retrieves its endorsement key. When the (uncorrupted) TPMB joins, it
sends a ZK proofZ containing some f-valuef to the issuer and authenticatesZ as coming fromB. The
adversary interceptsZ and sendsZ to the issuer and authenticatesZ as coming fromA. The issuer checks
the authentication and the ZK proof. Since the ID ofB is not included in the ZK proof1 the issuer accepts
and issues a certificate forf . Then the adversary forwards the certificate toB andB successfully checks the
certificate. After this interaction, the issuer believes to have certifiedA, andB has successfully joined. To
the best of our knowledge, this attack was not known before. Note that this attack also violates the security
guarantees given in [9].2 Fortunately, the DAA protocol can be easily modified to exclude this attack: One
simply includes the ID of the joining TPM in the ZK proof as an additional public parameter. Then the
issuer checks whether the ZK proofs contains the correct ID.3 Using ProVerif and our compiler, we could
then successfully verify that the modified protocol indeed satisfies the above trace property. Note that this
modification can be applied to the original DAA protocol from [9] without loosing efficiency by including
the ID of the TPM in the hash valuec := H(ch‖nt) (see the protocol description in [9]).

Besides the propertyJOINED(id , cnt , cert) ⇒ CERTIFIED(id), there are a few more properties that are
related to the authenticity of the join protocol. First,

CERTIFIED(id , exp(z,H(pair(daaseed(id2), cnt))))

=⇒ STARTJOIN(id , exp(z, hash(pair(daaseed(id), cnt)))) ∧ id = id2

∨ LEAKTPM(id) ∧ LEAKTPM(id2).

Here the eventSTARTJOIN(id , f) is defined to be raised as soon as an honest TPM tries to join with IDid

and f-valuef (i.e., this event is raised at the beginning oftpmjoin). Intuitively this property means, if some
process joins using an f-value that belongs toid2 but the issuer believes thatid joined, then (i) the join was
performed by an honest TPMid andid2 = id , or (ii) the adversary has corrupted both TPMsid andid2 (i.e.,

1At least not directly. An honestly generated f-value depends on the ID, however, this is not verified in the ZK proof.
2They defined security via an ideal functionality. In this ideal functionality, the issuer is notified when a party joins, and a party

can check whether it joined successfully (e.g., by DAA-signing a message).
3Note that the statementFjoin is not changed, we do not prove anything about the ID. However, similar to the messagem in the

signing operation, the attacker cannot replace the ID by some other ID without producing a new proof from scratch.
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accessed their internal secrets). Further, we want that it isonly possible that a message is successfully signed
using an f-value belonging to an IDid if the TPM with that ID has either been certified or corrupted.

DAAVERIFIEDA(m, exp(z,H(pair(daaseed(id), cnt)))) ⇒ CERTIFIED(id ,N)|LEAKTPM(id).

DAAVERIFIEDP(m, bsn, exp(z,H(pair(daaseed(id), cnt)))) ⇒ CERTIFIED(id ,N)|LEAKTPM(id).

Note that we cannot guarantee that if the TPMid is corrupted then it uses an f-value that belongs to it. It can
use an f-value that belongs to another corrupted TPM. So the above property only guarantees that a corrupted
TPM cannot “steal” the f-value of another uncorrupted TPM. (As done in the attack described above.)

All these property are proven by ProVerif not to hold in the original DAA protocol but to hold in our
modified protocol.

5.4.3 Anonymity

The second property we would like to examine is the anonymity of the anonymous DAA-sign operation.
In other words, if two TPMsT1, T2 might have signed a given message, the attacker should not be able to
distinguish which TPM has signed the message. Obviously, this can be formalized as observational equiva-
lence between two processesP1, P2, where inPi the TPMTi signed the concerned message. E.g., a natural
formulation would be to defineP1 andP2 as follows:

Pi := leak |

(let (id , cnt , och) = (id1, n1, int1) in tpmjoin) |

(let (id , cnt , och) = (id2, n1, int1) in tpmjoin) |

(int1(cert1).int2(cert2).

let (id , cnt , cert) = (id i, n1, cert i) in daasigna)

with leak :=
(
!pub(id).pub〈pk(ek(id))〉

)
|pub〈pk(issuerK)〉 | pub〈sk(issuerK)〉, whereid1, id2, n1 are

free names andint1, int2 are private channels for transmitting the certificate from thetpmjoin process to the
daasigna process. Theleak process leaks all public information and all secrets of the issuer. This models the
case that the issuer is corrupted, thus making the security property stronger since anonymity holds even when
the issuer colludes with the attacker. The two invocations oftpmjoin request certificates for different idsid1

andid2. These certificates are then assigned to the variablescert1 andcert2. Then a messagem (m is a free
name indaasigna) is signed with respect to eitherid1 andcert1 or id2 andcert2, depending on whether we
consider the processP1 or P2. Anonymity is then defined as the statement thatP1 andP2 are observationally
equivalent.

Although we can successfully prove this fact using our compiler and ProVerif, a closer inspection reveals
that this property is not very general. For example, it does not cover the case that the TPMT1 first signs a few
messages, and then eitherT1 or T2 sends another message (so that the adversary can try to link messages).
Further it does not take into account that the adversary might influence (i.e., choose) the messages to be
signed, or that theTi signs several messages, or that additionally pseudonymous signatures are produced. To
capture all these cases, we need a much more complex security definition which is captured by the following
game:

1. The issuer and an arbitrary number of TPMs are corrupted (i.e., their secrets leak).
2. Two non-corrupted challenge TPM idsid1, id2 are chosen. Two cnt-valuecnt1, cnt2 are chosen.
3. The TPMsid1, id2 join with respect to cnt-valuecnt1, cnt2, respectively.
4. The adversary may ask both challenge TPMs to execute the join protocol and to sign messages chosen

by the adversary anonymously or pseudonymously with respect to either the certificates obtained in
Step 3 or the certificates obtained in this step. This may happen arbitrarily often.

28



Table 8 The processesP1 andP2 in the definition of anonymity. The numbers in square brackets refer to the
steps in the description of the security property.

[1] Pi := leak | (pub(x). let id = corrupt(x) in pub〈daaseed(id)〉.pub〈sk(ek(id))〉) | (1)

[3] (let (id , cnt , och) = (id1, cnt1, int1) in tpmjoin) | (2)

[3] (let (id , cnt , och) = (id2, cnt2, int2) in tpmjoin) | (3)

[4] (let id = id1 in TPMs) | (let id = id2 in TPMs) | (4)

[3]
(
int1(cert1).int2(cert2). (5)

[5]
(
(!pub(m). let (id , cnt , cert , pub) = (id i, cnt i, cert i, pubT ) in daasigna) | (6)

[4] (!pub(m). let (id , cnt , cert) = (id1, cnt1, cert1) in daasigna) | (7)

[4] (!pub(m). let (id , cnt , cert) = (id2, cnt2, cert2) in daasigna) | (8)

[4] (!pub(m). pub(bsnV ). let (id , cnt , cert) = (id1, cnt1, cert1) in daasignp) | (9)

[4] (!pub(m). pub(bsnV ). let (id , cnt , cert) = (id2, cnt2, cert2) in daasignp)
)

(10)

5. The adversary may ask the challenge TPMid i to sign a message chosen by the adversary with respect
to the certificatecert i. Herei ∈ {1, 2} depending on whether we are running the processP1 orP2 (and
the adversary has to distinguish whetheri = 1 or i = 2). This may happen arbitrarily often.

We model this by the processesP1, P2 given in Table 8. These processes constitute a formalization of the
game depicted above. Note that although the adversary’s possibilities in lines (7–10) seem to be subsumed
by the invocations of the subprocessTPMs in line (4), there is a slight difference: The processTPMs does
not allow the attacker to sign messageswith the certificates obtained in Step 3.The constructorcorrupt in
(1) is used to generate an infinite supply of ids of corrupted TPMs. Finally, we additionally give the observer
the capability to distinguish the messages sent by the challenge TPM from the messages sent by the other
processes: this is technically achieved by letting the challenge TPM use a different public channelpubT .

The property of anonymity is then formalized as the statement thatP1 andP2 are observationally equiv-
alent, which is a statement accessible to ProVerif. When directly applying ProVerif to the output of the
compiler described in Section 4.1, however, ProVerif does not terminate. Instead, we additionally have to
rewrite the resulting theory using the technique given by Theorem 4 and Lemma 8. After this additional step,
ProVerif successfully verifies thatP1 andP2 are observationally equivalent. The running time is 117 seconds
on a Pentium 4, 3 GHz. More details can be found in Section 6.2.3. Note that in the case of anonymity, we
do not need to consider the case of rogue-listing, since neither the issuer nor the verifier appear in corrupted
form.

5.4.4 Pseudonymity

Modeling the pseudonymity requirements is similar to anonymity; however, there are a few additional
subtleties to be considered. A naive approach of modeling the security of the pseudonymous signatures
would be to take the process described in Table 8, but replacedaasigna by daasignp in line (6) and let the
adversary choose the value ofbsnV in that line. This denotes the fact that the adversary can now ask the
challenge TPMid i to perform a pseudonymous signature. The resulting security property, however, cannot
be expected to hold since the adversary could request a pseudonymous DAA-signature from the challenge
TPM id i via line (6) and a pseudonymous from the TPMid1 via line (9). Then the adversary could compare
whether both signatures carry the same pseudonymN , if so we havei = 1, otherwise we havei = 2. Instead,
we must require that the signatures produced in lines (9,10) to use a different basenames than those in line (6).
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Table 9The processesP1 andP2 in the definition of pseudonymity. Compare also with Table 8.

Pi := leak | (pub(x). let id = corrupt(x) in pub〈daaseed(id)〉.pub〈sk(ek(id))〉) | (11)

(let (id , cnt , och) = (id1, cnt1, int1) in tpmjoin) | (12)

(let (id , cnt , och) = (id2, cnt2, int2) in tpmjoin) | (13)

(let id = id1 in T̃PMs) | (let id = id2 in T̃PMs) | (14)(
int1(cert1).int2(cert2). (15)(
(!pub(m). let (id , cnt , cert) = (id i, cnt i, cert i) in daasigna) | (16)(
(!pub(m).pub(x). let (id , cnt , cert , bsnV ) =

(id i, cnt i, cert i, bsnVch(x)) in daasignp) | (17)

(!pub(m). let (id , cnt , cert) = (id1, cnt1, cert1) in daasigna) | (18)

(!pub(m). let (id , cnt , cert) = (id2, cnt2, cert2) in daasigna) | (19)

(!pub(m).pub(x). let (id , cnt , cert , bsnV ) =

(id1, cnt1, cert1, bsnVoth(x)) in daasignp) | (20)

(!pub(m).pub(x). let (id , cnt , cert , bsnV ) =

(id2, cnt2, cert2, bsnVoth(x)) in daasignp)
)

(21)

with

TPMs :=!pub(cnt).νoch.(tpmjoin|(och(cert).!pub(m).

(daasigna|pub(x).let bsnV = bsnVoth(x) in daasignp))).

We do this using two different sets of basenames. The basenames allowed for requesting a signature from
the challenge TPMid i are of the formbsnVch(x) and those allowed for all other DAA-sign requests are of
the formbsnVoth(x) wherebsnVch andbsnVoth are constructors of arity1. The resulting processesP1, P2

are depicted in Table 9. Note that we allow the adversary to request both anonymous and pseudonymous
DAA-signatures from the challenge TPMid i.

Using our compiler and ProVerif, we can show thatP1 andP2 are observationally equivalent.4 The
verification of this fact takes 44 seconds on a Pentium 4, 3 GHz.

Our modelling in Table 9 implicitly assumes that it is guaranteed that the basenamebsnI of the issuer
does not equal any of the basenames of the verifiers. (The basenamebsnI of the issuer is modelled as a free
name.) It is known that if the basename of the issuer may coincide with one of the verifiers basenames there is
an attack on the pseudonymity of the system [27]: IfbsnI = bsnV , the valuesζ computed by thetpmjoin and
thedaasignp processes are equal. If further both processes use the same f-valuef , the resulting pseudonym
N = exp(ζ, f) will also be equal. This allows to link signatures and joins. To model this, we modelbsnI as
a term of the formbsnVch(x). More exactly, we set

P̃i := let bsnI := bsnVch(n0) in Pi

and ask whether̃P1 andP̃2 are observationally equivalent. As expected, the combination of our compiler and
ProVerif successfully detects the attack and outputs thatP̃1 andP̃2 are not observationally equivalent. The
verification takes 26 seconds on a Pentium 4, 3 GHz.

4As with the proof of anonymity, we have to apply Theorem 4 and Lemma 8 to ensure termination.
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In [27] it is proposed to fix the protocol by using different integers in the computation ofζ in the pro-
cessestpmjoin anddaasignp. We do this by definingnV := n0 instead ofnV := n1 in the definition of
daasignp. Using this change, our compiler together with ProVerif successfully determines thatP̃1 andP̃2 are
observationally equivalent. The verification takes 73 seconds on a Pentium 4, 3 GHz.

6 Mechanized Security Proofs for DAA

In this section, we will examine the practical applicability of the results of the previous sections to mechanized
security proofs. Instead of designing a new tool from scratch, we implemented a compiler that generates input
for the automated prover ProVerif [7] according to the description given in Section 4.1. This compiler together
with example inputs can be found at [18]. To show how our theory is applied, we analyze two protocols,
namely the simple example protocol from Section 3.3 and the DAA protocol [9]. We will describe how to
prove different security properties of these protocols and also what pitfalls occurred in our investigation and
how to avoid these.

6.1 Example Protocol

We first examine the example protocol from 3.3. Many of the techniques described here will also be used
in the more complex example of DAA below. We model the example protocol as follows (omitting the
specification of the base theory here):5

free pub,A,B.
private free priv,s1,s2,s3.

define zkproof =
land(
or(or(eq(alpha2,beta1),eq(alpha2,beta2)),eq(alpha2,beta3)),
sigver(alpha1,beta4,alpha2)).

let server = event GAVEAUTHFOR(s,A,B); out(priv,sign(pair(A,B),sk(s))).
let B = in(priv,sig); if sigver(sig,pair(A,B),pk(s))=true then

out(pub,zk(sig,pk(s);pk(s1),pk(s2),pk(s3),pair(A,B);zkproof)).
let A = in(pub,zkp); if zkver(2;4;zkproof;zkp)=true then

if public1(zkp)=pk(s1) then
if public2(zkp)=pk(s2) then
if public3(zkp)=pk(s3) then
if fst(public4(zkp))=A then
event GOTAUTHFOR(snd(public4(zkp))).

let leakpublic = out(pub,pk(s1)) | out(pub,pk(s2)) | out(pub,pk(s3)).

The syntax of this protocol should be mostly self-explanatory. It is the syntax of ProVerif with a few additions
particular to our tool. Thedefine statement defines an abbreviationzkproof for the formula we use in
all ZK proofs and verifications (we useland instead ofand sinceand is a reserved keyword in proVerif).
The processserver produces a signature onpair(A,B) using the secret keysk(s) and sends it toB over
a secret channel. All server processesSi are modelled using this single processserver by instantiatings
with different identities.

The processB then waits for a message from a server, checks whether this message constitutes a valid
signature ofpair(A,B) and then sends a ZK proof toA that it knows a signaturesig that is valid with

5[18], filesimple.pvi.
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respect to one of the keyspk(s1), pk(s2), pk(s3) (without revealing which one). Note the syntax of the ZK
constructor: It takes arguments(α1, . . . , αi;β1, . . . , βj ;F ); the placement of the semicolons indicate which
arguments are private (αµ), which are public (βµ) and which is the formula to be proven (F ).

The processA waits for the proof sent byB and assigns it to the variablezkp. It first verifies whether
zkp is actually a valid proof of the correct arity (2;4) for the right formulazkproof. Further it verifies that
the public keys given in the ZK proof are the right ones and that the messagem of whichB claims to know
a signature is indeed a pair havingA as its first component. If so,A claims to have received authorization to
communicate with the process whose identity is given in the second component ofm.

Finally, we need to model a fourth process. This is due to the fact that we had to declare the
server idss1, s2, s3 as private free names since otherwise the adversary would know the secret keys
sk(s1), sk(s2), sk(s3). Since the adversary should however knowpk(s1), pk(s2), pk(s3), we define a pro-
cessleakpublic that outputs these values on a public channel.

So far these processes stand by themselves and are not executed in a common context. How these pro-
cesses are actually executed depends on the property we want to prove.

We will now model the first security property. We require thatA will not accept to communicate
with B unless some server has signed an authorization. Or in the parlance of the events defined in
the protocol description above, we want that if the eventGOTAUTHFOR(sender ) occurs, then the event
GAVEAUTHFOR(server , recipient , sender ) occurred earlier with the same value ofsender . This is modelled
by the following code fragment:6

compiler ZK.
passthrough query ev:GOTAUTHFOR(sender)

==> ev:GAVEAUTHFOR(server,A,sender).

process
leakpublic |
(let s=s1 in server) |
(let s=s2 in server) |
(let s=s3 in server) |
(let s=s1 in B) |
A

Here we see how we instantiate the values to different server ids, so that we can use the single definition
of server for all occurrences of the server: We runs several instances ofserver, and in each of them we
substitutes with a different server id using thelet statement. Similarly, we instantiate the processB so that
it expects a message from servers1. The first line of the code fragment indicates which property we would
like to prove. The keywordpassthrough simply indicates that this command should be passed through
directly to ProVerif and not be parsed by our compiler.

Finally, we have to tell our compiler what to do with our code. This is done by the statementcompiler
ZK which instructs our tool to implement the compiler as described in Section 4.1.

If we compile and execute this code (see theREADME file in [18] for instructions) ProVerif successfully
determines that the required property is indeed fulfilled (the running time is less than one second on a Pentium
4, 3 GHz). This property intuitively depends both on the soundness of the ZK proof (i.e., we cannot prove a
wrong statement) and on the unforgeability of the signatures.

We will now investigate a more complex property: We require that given the public communication
betweenA andB, we cannot determine which server authorized the communication. In other words, we want

6[18], filesimple-auth.pvz.
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observational equivalence between a process where servers1 authorizesB and a process where servers2
authorizesB. This can be modelled as follows:7

process
leakpublic |
(let s=choice[s1,s2] in server) |
(let s=choice[s1,s2] in B) |
A

In the language of ProVerif, thechoice operator is used to check for observational equivalence. The code
given here specifies two processesP1, P2, wherePi results from replacing every occurrence ofchoice[t1, t2]
by ti, and ProVerif tries to prove thatP1 andP2 are observationally equivalent. In the present case, ProVerif
tries to prove observational equivalence between processesP1 andP2 whereP1 is an execution of our example
protocol whereB gets its authorization from servers1, andP2 is an execution whereB gets its authorization
from servers2. Unfortunately, however, on the input described above, ProVerif does not seem to terminate.
Experiments show that we need to get rid of the constructorsland andor to allow for termination. Unfor-
tunately, we cannot just remove them from our equational theory, since our protocol actually uses them (in
zkproof). Even after applying our compiler, which removes all occurrences of the formulaF := zkproof
from the process itself,land andor are still contained in the equational theory generated by the compiler
since this theory contains the following rule:

ZKF
2,4(x1, x2, y1, y2, y3, y4) = PZKF

2,4(x1, x2, y1, y2, y3, y4,

land(or(or(eq(x2, y1), eq(x2, y2)), eq(x2, y3)), sigver(x1, y4, x2))). (22)

Theorem 4 allows us to remove this rule. It is easy to see that in our equational theory Theorem 4 applies
with n2,4,F = 3 and

τ̃1
2,4,F = (sign(x,sk(y)),pk(y),pk(y), p2, p3, x),

τ̃2
2,4,F = (sign(x,sk(y)),pk(y), p1,pk(y), p3, x),

τ̃3
2,4,F = (sign(x,sk(y)),pk(y), p1, p2,pk(y), x).

Application of Lemma 8 then removes the rule (22). Instead, the rules

VerF2,4(ZKF
2,4(sign(x,sk(y)),pk(y),pk(y), p2, p3, x) = true,

VerF2,4(ZKF
2,4(sign(x,sk(y)),pk(y), p1,pk(y), p3, x) = true,

VerF2,4(ZKF
2,4(sign(x,sk(y)),pk(y), p1, p2,pk(y), x) = true

are introduced (besides the obvious rules concerning thepublicp constructor). Since now neither the process
nor the equational theory containsland or or, by Lemma 8 we can remove the corresponding equational
rules.

These additional transformations can also be performed using our tool. For this, we have to add the
following additional commands to the input file:8

compiler AlternativeZKVer(
zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);pk(y),p2,p3,x;zkproof)),
zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);p1,pk(y),p3,x;zkproof)),
zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);p1,p2,pk(y),x;zkproof))).

7[18], filesimple-obseq-nonterm.pvz.
8[18], file simple-obseq.pvz.

33



compiler RemoveEquations(or).
compiler RemoveEquations(land).

(after thecompiler ZK command). The first command corresponds to an application of Theorem 4.
The tuplest1, . . . , tn are implicitly given by supplying terms of the formVeri,j(F,ZKi,j(ti, F )). Finally,
compiler RemoveEquations(c) for a constructorc removes all equations of the formc(. . . ) = . . .

Using the resulting modified but equivalent (see Theorem 4 and Lemma 8) equational theory, ProVerif
terminates and successfully proves observational equivalence, i.e., the adversary cannot distinguish which
server authorizesB to communicate withA. The verification takes 16 seconds on a Pentium 4, 3 GHz.

6.2 Direct Anonymous Attestation

We will now describe the mechanized analysis of the DAA protocol [9] described in Section 5.

6.2.1 Join

First, we describe the basic definition of the various components of the DAA protocol (join and DAA-sign).
The join protocol is described by the following two processestpmjoin andissuer.9

define joinproof = land(eq(beta1,blind(alpha1,alpha2)),
eq(beta2,exp(beta3,alpha1))).

let tpmjoin =
let f = hash(pair(daaseed(id),cnt)) in
new v;
let U = blind(f,v) in
let zetaI = hash(pair(n1,bsnI)) in
let NI = exp(zetaI,f) in
let zkp = zk(f,v;U,NI,zetaI;joinproof) in
event STARTJOIN(id,NI);
out(comm,pair(id,zkp));
in(comm2,encnonce);
let nonce=dec(encnonce,sk(ek(id))) in
out(comm,hash((U,nonce)));
in(comm,A);
let cert = unblind(A,v) in
if blindver(cert,f,pk(issuerK))=true then
event JOINED(id,cnt,cert);
out(och,cert).

let issuer =
! in(comm,msg);
let zkp = snd(msg) in
if zkver(2;3;joinproof;zkp)=true then
let id = fst(msg) in
let U = public1(zkp) in
new nonce;

9[18], filedaa.pvi.
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out(comm2,enc(nonce,pk(ek(id))));
in(comm,hashednonce);
if hashednonce=hash((U,nonce)) then
let N = public2(zkp) in
let zeta = public3(zkp) in
if rogue=true then event ROGUEI(id) else
if rogueid=true then event ROGUEID(id) else
if zeta=hash(pair(n1,bsnI)) then
let cert = blindsign(U,sk(issuerK)) in
event CERTIFIED(id,N);
out(comm,cert).

These processes are ProVerif implementations of the corresponding processes in Section 5.1. We added the
additional eventsSTARTJOIN, JOINED andCERTIFIED to have to possibility of formulating additional
properties. In contrast to Section 5.1, the communication channel is represented by the variablecomm, which
we then instantiate with the public channelpub or a private channel, depending on the property we model.
The predicatesrogue androgueid can be defined usingdefine rogue = ... anddefine rogue
= ... depending on the situation. In most cases we will setrogue = rogueid = false to model that
no rogue checking occurs. The termjoinproof corresponds toFjoin in Section 5.1. We also implemented
a variant of the DAA protocol where we use signatures instead of encrypted nonces for authentication. This
variant enjoys greater simplicity and may be preferred for first experiments.10

For the analysis of protocols with rogue TPMs we will need an additional process. The processissuer
will never issue a certificate to a TPM that is detected to be rogue, but we might want to model the case
that some TPMs have already received a certificate before they were marked rogue. In order to be able to
model this situation, we introduce the following processrogueissuer that issues a certificate for a given
f-value.11

let rogueissuer =
! in(pub,v); out(pub,unblind(blindsign(blind(f,v),sk(issuerK)),v)).

The variablef will be assigned the correct value in our security properties using alet directive. The nonce
v used for blinding the signature is chosen by the adversary to model that a rogue TPM is assumed to be
completely under the control of the adversary.

Finally, we also need to model the fact that the issuer is corrupted. This is achieved by giving all the
issuer’s knowledge to the adversary:12

let leakissuer =
(!in(pub,id); out(pub,pk(ek(id)))) |
out(pub,pk(issuerK)) | out(pub,sk(issuerK)).

Similarly, we model that a given TPM is corrupted:13

let leaktpm =
out(pub,daaseed(id)) | out(pub,sk(ek(id))) | out(pub,pk(ek(id))).

Finally, besides leaking private information of corrupted principals, the adversary should get all public
information:

let leakpublic = out(pub,pk(issuerK)) | !in(pub,id); out(pub,pk(ek(id))).

10This variant can be enabled by setting#unsetflag nonceauthentication in [18], file daa-config.pvi.
11[18], file daa.pvi.
12[18], file daa.pvi.
13[18], file daa.pvi.
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6.2.2 DAA-Sign

We will now describe the modelling of the second part of the DAA protocol, namely the DAA-sign protocol.
The processes for performing an anonymous DAA-sign are defined as follows:14

define signproof = land(eq(beta1,exp(beta2,alpha1)),
blindver(alpha2,alpha1,beta3)).

let daasigna =
new zeta;
let f = hash(pair(daaseed(id),cnt)) in
let N = exp(zeta,f) in
let zkproof = zk(f,cert;N,zeta,pk(issuerK),m;signproof) in
event DAASIGNEDA(id,cnt,m);
out(comm,zkproof).

let daavera =
in(comm,zkproof);
if zkver(2;4;signproof;zkproof)=true then
let N = public1(zkproof) in
let zeta = public2(zkproof) in
if public3(zkproof)=pk(issuerK) then
let m = public4(zkproof) in
if rogue=true then event ROGUEAV(m) else
event DAAVERIFIEDA(m).

These are again direct encodings of the corresponding processes presented in Section 5.2, except that we
have added a few more events and usecomm for communication. The termsignproof corresponds toFsign

in Section 5.2.
Similarly, we define the pseudonymous DAA-sign protocol:

define numberZetaV = n1.

let daasignp =
let zeta = hash(pair(numberZetaV,bsnV)) in
let f = hash(pair(daaseed(id),cnt)) in
let N = exp(zeta,f) in
let zkproof = zk(f,cert;N,zeta,pk(issuerK),m;signproof) in
event DAASIGNEDP(id,cnt,bsnV,m);
out(comm,zkproof).

let daaverp =
in(comm,zkproof);
if zkver(2;4;signproof;zkproof)=true then
let N = public1(zkproof) in
let zeta = public2(zkproof) in
if zeta=hash(pair(numberZetaV,bsnV)) then
if public3(zkproof)=pk(issuerK) then

14[18], filedaa.pvi.
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let m = public4(zkproof) in
if rogue=true then event ROGUEPV(m,bsnV,N) else
event DAAVERIFIEDP(m,bsnV,N).

This formalizes the corresponding processes from Section 5.2 with the addition of events and the change of
the communication channel.

For convenience, we further implement the following processes:

let daaverifier = (! daavera) | (! daaverp).

This process represents a verification server that waits for anonymous and pseudonymous signatures, checks
them, and outputs the corresponding events.

let tpmcontrolled =
let comm=pub in ! in(pub,cnt); new och; (tpmjoin | (in(och,cert);
! in(pub,m); (daasigna | in(pub,bsnV); daasignp))).

let tpmcontrolledall = ! in(pub,id); tpmcontrolled.

The processtpmcontrolled corresponds to the processTPMs introduced on page 26 and models a TPM
that is under the control of the adversary without revealing any of its secrets, i.e., the TPM joins and signs at
the adversary’s discretion. The processtpmcontrolledall represents the fact thatall TPMs are under
the control of the adversary.

6.2.3 Security Properties

Authenticity. The authenticity property from Section 5.4.1 is encoded as follows:15

passthrough query ev:DAAVERIFIEDP(xm,xbsn,xN)
==> ev:DAASIGNEDP(xid,xcnt,xbsn,xm).

passthrough query ev:DAAVERIFIEDA(xm)
==> (ev:DAASIGNEDA(xid,xcnt,xm) | ev:DAASIGNEDP(xid,xcnt,xbsn,xm)).

process
(let comm=pub in issuer) | leakpublic |
tpmcontrolledall |
(let comm=pub in daaverifier).

The passthrough directive is only necessary since our compiler is not able to parse the full syntax of
query. It does not have any semantic meaning. Applying the compiler and ProVerif, the result is that the
queried properties hold. The running time is 3 seconds on a Pentium 4, 3 GHz.

To implement this security property in the presence of rogue TPMs, we have to choose some rogue
f-value and rogue TPM ids and define the predicatesrogue and rogueid to returns true if a
rogue f-value or id is being used. We choose to implement a test with a fixed number of rogue ids
rogueid1,rogueid2,rogueid3 and three fixed f-valuesrogueF1,rogueF2,rogueF3. These are
defined using the following code:16

free rogueid1,rogueid2,rogueid3.

15[18], filedaa-verify-tpmcontrolled.pvz.
16[18], file daa-verify-tpmcontrolled-rogue3.pvz.
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define rogueF1 = hash(pair(daaseed(rogueid1),n1)).
define rogueF2 = hash(pair(daaseed(rogueid2),n1)).
define rogueF3 = hash(pair(daaseed(rogueid2),n2)).

fun roguetest/5.
equation roguetest(zeta,exp(zeta,x),x,y,z) = true.
equation roguetest(zeta,exp(zeta,y),x,y,z) = true.
equation roguetest(zeta,exp(zeta,z),x,y,z) = true.

define rogue = roguetest(zeta,N,rogueF1,rogueF2,rogueF3).
define rogueid = or(or(eq(id,rogueid1),eq(id,rogueid2)),eq(id,rogueid3)).

Note that we did not use the somewhat more natural definition

define rogue = or(or(eq(exp(zeta,rogueF1)),eq(exp(zeta,rogueF2))),
eq(exp(zeta,rogueF3))).

but instead used a definition using a special constructorroguetest. Using the more natural definition
ProVerif fails to prove security; it seems that the rogue test is simply ignored. A minimal ProVerif example
that reproduces this behaviour is given in [18, fileartifacts/or.pv].

Furthermore, we have to model the fact that the rogue TPMs may already have joined before they were
rogue-listed, and that the adversary may know the secret information of the rogue TPMs. This is done
by adding the following processes (additionally to those given in the authenticity property without rogue
listing):17

(let id=rogueid1 in leaktpm) |
(let id=rogueid2 in leaktpm) |
(let id=rogueid3 in leaktpm) |
(let f=rogueF1 in rogueissuer) |
(let f=rogueF2 in rogueissuer) |
(let f=rogueF3 in rogueissuer)

The authenticity property in this setting is proven in 5 seconds on a Pentium 4, 3 GHz.

Authenticity of the Join Protocol. The authenticity property of the join protocol (Section 5.4.2) is given
by the following code:18

passthrough query ev:JOINED(x,y,z) ==> ev:CERTIFIED(x,w).
passthrough query ev:CERTIFIED(id,exp(z,hash(pair(daaseed(id2),cnt))))

==> ((ev:STARTJOIN(id,exp(z,hash(pair(daaseed(id),cnt)))) & id=id2)
| ( ev:LEAKTPM(id) & ev:LEAKTPM(id2) )).

passthrough query ev:DAAVERIFIEDA(m,exp(z,hash(pair(daaseed(id),cnt))))
==> (ev:CERTIFIED(id,N) | ev:LEAKTPM(id)).

passthrough query ev:DAAVERIFIEDP(m,bsn,exp(z,hash(pair(daaseed(id),cnt))))
==> (ev:CERTIFIED(id,N) | ev:LEAKTPM(id)).

let leaktpm =
event LEAKTPM(id);
out(pub,daaseed(id)) |

17[18], filedaa-verify-tpmcontrolled-rogue3.pvz.
18[18], file daa-join-auth.pvz.
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out(pub,sk(ek(id))) |
out(pub,pk(ek(id))).

free bsnV,comm,comm2.
process
(! in(pub,id); leaktpm) |
leakpublic |
issuer |
tpmcontrolledall |
daaverifier.

With the original modelling of DAA (as presented above), all queries fail. To solve this problem, we change
the DAA protocol as follows. In the definition oftpmjoin, we replace

let zkp = zk(f,v;U,NI,zetaI;joinproof) in

by

let zkp = zk(f,v;U,NI,zetaI,id;joinproof) in

and in the definition ofissuer, we replace

if zkver(2;3;joinproof;zkp)=true then
let id = fst(msg) in

by

if zkver(2;4;joinproof;zkp)=true then
let id = public4(zkp) in

Then the above queries succeed. To activate this modified version of DAA, change#unsetflag
idinproof to #setflag idinproof in file daa-config.pvi. Note that this change affects all
source files contributed in [18].

Anonymity. The anonymity property from Section 5.4.3 is given by the following code (cf. Table 8):19

free challengeid1,challengeid2.
free challengecnt1,challengecnt2.
define challengecnt = choice[challengecnt1,challengecnt2].
define challengeid = choice[challengeid1,challengeid2].
define challengecert = choice[challengecert1,challengecert2].
private free int1,int2.

fun corruptid/1.

process
leakpublic |

leakissuer |

19[18], filedaa-obseq-anonymity4.pvz.
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(in(pub,x); let id=corruptid(x) in leaktpm) |

(let (id,cnt,comm,och) = (challengeid1,challengecnt1,pub,int1)
in tpmjoin) |

(let (id,cnt,comm,och) = (challengeid2,challengecnt2,pub,int2)
in tpmjoin) |

(let id=challengeid1 in tpmcontrolled) |
(let id=challengeid2 in tpmcontrolled) |

(in(int1,challengecert1); in(int2,challengecert2);
((!in(pub,m); let (id,cnt,comm,cert) =

(challengeid,challengecnt,pubT,challengecert) in daasigna) |
(!in(pub,m); let (id,cnt,comm,cert) =

(challengeid1,challengecnt1,pub,challengecert1) in daasigna) |
(!in(pub,m); let (id,cnt,comm,cert) =

(challengeid2,challengecnt2,pub,challengecert2) in daasigna) |
(!in(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =

(challengeid1,challengecnt1,pub,challengecert1) in daasignp)
(!in(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =

(challengeid2,challengecnt2,pub,challengecert2) in daasignp)
)

)

The two processes to compare are implicitly given by thechoice operator. The semantics is that the pro-
cessP1 is the one resulting from replacingchoice[x,y] by x, andP2 is the one resulting from replacing
choice[x,y] by y. Running our compiler and ProVerif one this process directly does not lead to termi-
nation. The technique for removing theland andor constructors that was already described in Section 6.1
helps to ensure termination. In the case of DAA we apply Theorem 4 withn2,3,Fjoin

= n2,4,Fsign
= 1 and

τ̃1
2,3,Fjoin

= (f, v; blind(f, v), exp(zeta, f), zeta)

τ̃1
2,4,Fsign

= (unblind(blindsign(blind(x, z), sk(y)), z); exp(ζ, f), ζ, pk(y),m)

Then we can remove the equations forland andor (by Lemma 8). These modification of the equational
theory are encoded as follows:20

compiler AlternativeZKVer(zkver(2;3;joinproof;
zk(f,v;blind(f,v),exp(zeta,f),zeta; joinproof))).

compiler AlternativeZKVer(zkver(2;4;signproof;
zk(x,unblind(blindsign(blind(x,z),sk(y)),z);exp(zeta,f),zeta,pk(y),m;

signproof))).

compiler RemoveEquations(land).
compiler RemoveEquations(or).

After these changes, the proof terminates and we get the result that the two processes are observationally
equivalent, i.e., that we have anonymity, after 117 seconds on a Pentium 4, 3 GHz.

20[18], filealternative-zk.pvi.
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The remaining property is that of pseudonymity. Since the encoding of the processes given
in Section 5.4.4 for modeling this property does not give any new insights, we refer the reader
to the files daa-obseq-pseudonymity6.pvz (for the processesP1, P2 given in Table 9),
daa-obseq-pseudonymity-attack.pvz (for the processes̃P1, P̃2 capturing the attack of [27]) and
daa-obseq-pseudonymity-fix.pvz (modeling P̃1, P̃2 in the fixed version of the protocol with
nV := n0) in [18].

7 Conclusion and Future Work

We have designed an abstraction of non-interactive zero-knowledge protocols in the applied-pi calculus. A
novel equational theory for terms characterizes the semantic properties of non-interactive zero-knowledge
proofs. Additionally, we propose an encoding into a finite specification in terms of a convergent rewriting
system that is accessible to a fully mechanized analysis. The encoding is sound and fully automated. We suc-
cessfully used the automated protocol verifier ProVerif to obtain the first mechanized analysis of the Direct
Anonymous Attestation (DAA) protocol. The analysis in particular required us to come up with suitable ab-
stractions of sophisticated cryptographic security definitions that are based on interactive games; we consider
these definitions of independent interest.

Future work on this topic comprises the investigation of computational soundness results, the analysis
of other commonly employed protocols based on zero-knowledge, as well as the investigation of interactive
zero-knowledge proofs which have additional properties like the impossibility to reproduce a proof after
the protocols ends. Furthermore, other more direct techniques for mechanizing the analysis directly in the
original, infinite equational theory might be worth investigating.
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