Zero-Knowledge in the Applied Pi-calculus and Automated
Verification of the Direct Anonymous Attestation Protocol

Michael Backes, Matteo Maffei, and Dominique Unruh
Saarland University, Saarbrticken, Germany
{lakes md eiunruh}@smidvde

December 14, 2007

Abstract

We devise an abstraction of zero-knowledge protocols that is accessible to a fully mechanized analysis.
The abstraction is formalized within the applied pi-calculus using a novel equational theory that abstractly
characterizes the cryptographic semantics of zero-knowledge proofs. We present an encoding from the
equational theory into a convergent rewriting system that is suitable for the automated protocol verifier
ProVerif. The encoding is sound and fully automated. We successfully used ProVerif to obtain the first
mechanized analysis of the Direct Anonymous Attestation (DAA) protocol. This required us to devise
novel abstractions of sophisticated cryptographic security definitions based on interactive games. The
analysis reported a novel attack on DAA that was overlooked in its existing cryptographic security proof.
We propose a revised variant of DAA that we successfully prove secure using ProVerif.

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system aspects of
multiple interleaved protocol runs, awkward to make for humans. In fact, vulnerabilities have accompanied
the design of such protocols ever since early authentication protocols like Needham-Schraedér [11, 25], over
carefully designed de-facto standards like SSL and PKCS 29, 8], up to current widely deployed products like
Microsoft Passport[13] and Kerberds [10]. Hence work towards the automation of such proofs has started
soon after the first protocols were developed; some important examples of automated security priodfs are [24,
23,119/ 22), 26, 28 5] 6]. Language-based techniques are now widely considered a particularly salient approach
for formally analyzing security protocols, dating back to Abadi’s seminal work on secrecy by tubing [1]. The
ability to reason about security at the language level often allows for concisely clarifying why certain message
components are included in a protocol, how their entirety suffices for establishing desired security guarantees,
and for identifying ambiguities in protocol messages that could be exploited by an adversary to mount a
successful attack on the protocol.

One of the central challenges in the analysis of complex and industrial-size protocols is the expressiveness
of the formalism used in the formal analysis and its capability to model complex cryptographic operations.
While such protocols traditionally relied only on the basic cryptographic operations such as encryption and
digital signatures, modern cryptography has invented more sophisticated primitives with unique security fea-
tures that go far beyond the traditional understanding of cryptography to solely offer secrecy and authenticity
of a communication. Zero-knowledge proofs constitute the most prominent and arguably most amazing such
primitive. A zero-knowledge proof consists of a message or a sequence of messages that combines two seem-
ingly contradictory properties: First, it constitutes a proof of a stateméaty,» = "the message within this
ciphertext begins wit”) that cannot be forged, i.e., it is impossible, or at least computationally infeasible, to
produce a zero-knowledge proof of a wrong statement. On the other hand, a zero-knowledge proof does not

Dagstuhl Seminar Proceedings 07421
Formal Protocol Verification Applied
http://drops.dagstuhl.de/opus/volltexte/2008/1415

reveal any information besides the bare fact thabnstitutes a valid statement. In particular, a proof about
some ciphertext would not leak the decryption key or the plaintext. Zero-knowledge proofs were introduced
in [L/] and were proven to exist for virtually all statementis| [16]. Zero-knowledge proofs have since shown
to constitute very powerful building blocks for the construction of sophisticated cryptographic protocols to
solve demanding protocol tasks: they allow for commonly evaluating a function on distributed inputs without
revealing any inputs to the other protocol participants [15], they allow for developing encryption schemes that
are secure under very strong active attatks [12], and many more.

Early general-purpose zero-knowledge proofs were mainly invented to show the mere existence of such
proofs for the class of statements under consideration. These proofs were very inefficient and consequently
of only limited use in practical applications. The recent advent of efficient zero-knowledge proofs for special
classes of statements changed this. The unique security features that zero-knowledge proofs offer combined
with the possibility to efficiently implement some of these proofs have paved these proofs the way into modern
cryptographic protocols such as e-voting protocols and anonymity protocols. The best known representative
of these protocols is the Direct Anonymous Attestation (DAA) protdcol [9]. DAA constitutes a cryptographic
protocol that enables the remote authentication of a Trusted Platform Module (TPM) while preserving the
user’s privacy. More precisely, if the user talks to the same verifier twice, the verifier is not able to tell if he
communicates with the same user as before or with a different one. DAA achieves its anonymity properties
by heavily relying on non-interactive zero-knowledge proofs. Intuitively, these allow the TPM to authenticate
with the verifier without revealing the TPM'’s secret identifier.

1.1 Contributions

The contribution of this paper is threefold: First, we present an abstraction of non-interactive zero-knowledge
proofs within the applied pi-calculusi[4] using a novel equational theory that abstractly characterizes the cryp-
tographic semantics of these proofs. Second, we transform our abstraction into an equivalent formalization
that is accessible to ProVerifl[7], a well-established tool for the mechanized analysis of different security
properties. Third, we apply our theory to the Direct Anonymous Attestation (DAA) protocol [9], the au-
thentication scheme for Trusted Platform Modules (TPMs), yielding its first mechanized security proof. The
analysis reported a novel attack on DAA that was overlooked in its existing cryptographic security proof. We
propose a revised variant that we successfully prove secure.

We express cryptographic protocols in the applied pi-calculus, an extension of the pi-calculus with an
arbitrary equational theory for terms, that has proven to constitute a salient foundation for the analysis of
cryptographic protocols, se€ [3]1Z1[7, 2, 14]. We devise a novel equational theory that concisely and elegantly
characterizes the semantic properties of non-interactive zero-knowledge proofs, and that allows for abstractly
reasoning about such proofs. The design of the theory in particular requires to carefully address the important
principles that zero-knowledge proofs are based upon: the soundness and the completeness of the proof
verification as well as the actual zero-knowledge property, i.e., a verifier must not be able to learn any new
information from a zero-knowledge proof except for the validity of the proven statement. The only prior work
on abstracting in a general way zero-knowledge proofs aims at formalizing in modal logic the informal prose
used to describe the properties of these prdofs [20]. In contrast to our abstraction, the abstréction in [20] has
not been applied to any example protocols, and no mechanization of security proofs is considered there.

The mechanization of language-based security proofs has recently enjoyed substantial improvements that
have further strengthened the position of language-based techniques as a promising approach for the analysis
of complex and industrial-size cryptographic protocols. ProVerif [7] constitutes a well-established automated
protocol verifier based on Horn clauses resolution that allows for the verification of observational equivalence
and of different trace-based security properties such as authenticity. We present a mechanized encoding of
our equational theory into a finite specification that is suitable for ProVerif. More precisely, the equational
theory is compiled into a convergent rewriting system that ProVerif can efficiently cope with. We prove that

the encoding preserves observational equivalence andeadkass of trace-based security properties.

Finally, we exemplify the applicability of our theory to real-world protocols by analyzing the security
properties of the Direct Anonymous Attestation (DAA) protocal [9]. DAA constitutes a cryptographic proto-
col that enables the remote authentication of a hardware module called the Trusted Platform Module (TPM),
while preserving the anonymity of the user owning the module. Such TPMs are now widely included in
end-user notebooks. The DAA protocol relies heavily on zero-knowledge proofs to achieve its anonymity
guarantees. Analyzing DAA first requires to devise novel abstractions of sophisticated cryptographic secu-
rity definitions based on interactive games between honest participants and the adversary; comprehensive
anonymity properties are of this form. We formulate the intended anonymity properties in terms of obser-
vational equivalence, we formulate authenticity as a trace-based property, and we prove these properties in
the presence of external active adversaries as well as corrupted participants. The analysis confirmed a known
attack on anonymity [47] and discovered a new attack on authenticity. We propose a revised variant and prove
it secure.

The proofs are fully automated using ProVerif. We are confident that the methodology presented in this
paper is general and the principles followed in the analysis of DAA can be successfully exploited for the
verification of other cryptographic protocols based on non-interactive zero-knowledge proofs.

1.2 Ouitline of the Paper

We start by reviewing the applied pi-calculus in Secfion 2. Sedflon 3 contains the equational theory for

abstractly reasoning about non-interactive zero-knowledge proofs in the applied pi-calculus. This equational
theory is rewritten into an equivalent finite theory in terms of a convergent rewriting system in Jdction 4.

Sectiorb an@l6 elaborate on the analysis of DAA, the description of its security properties, and the use of
ProVerif for mechanizing the analysis. Sectidn 7 concludes and outlines future work.

2 Review of the Applied Pi-calculus

The syntax of the applied pi-calculus [4] is given in Talle 1. Terms are defined by mearssgofturey:,
which consists of a set of function symbols, each with an arity. Seieof termdly; is the free algebra built
from names, variables, and function symbolssirapplied to arguments. We letrange over names and
variables. We partition each signature ippblic andprivate function symbols. The only difference is that
private symbols are not available to the adversary: For more detail on their semantics, we refer [d Table 7
in Section#. Private function symbols are supported by ProVerif and are used in the finite encoding of the
equational theory for zero-knowledge proofs and in the DAA model. In the following, functions symbols
are public unless stated otherwise. We presuppose a sort system for tNeafetames: we lets, k
(possibly with sub- and superscripts) range over names of base typéri@ger, Data, and so on)q, b over
channel names, and m over names of any sort. Terms are equipped witle@umational theory?, i.e., an
equivalence relation on terms that is closed under substitution of terms and under application of term contexts
(terms with a hole). We writé” - M = N andE I/ M = N for an equality and an inequality, respectively,
modulo E.

The grammar of processes (oliain processesis defined as follows. The null proce8sdoes nothing;
vn.P generates a fresh nameand then behaves &% if M = N then P else QQ behaves a® if E+ M =
N, and as@ otherwise;u(x).P receives a messag€ from the channek and then behaves d3{N/z};
u(N).P outputs the messag€ on the channek and then behaves &5 P |) executesP and(in parallel;
! P generates an unbounded number of copieB.of

Extended processese plain processes extended wattive substitutionsAn active substitutio M/ /z}
is a floating substitution that may apply to any process that it comes into contact with. To control the scope
of active substitutions, we can restrict the variablelntuitively, vz.(P | {M/x}) constrains the scope of

Table 1 Syntax of the applied pi-calculus

Terms
M,N,F,.Z := s,k,...,a,b,...,n,m names
T,Y, 2 vars
f(My,..., My) function
wheref € ¥ andk is the arity off.
Processes
P,Q = 0 nil
vn.P res
if M = N then P else Q cond
u(x).P input
u(N).P output
P|Q par
P repl
Extended Processes
A n= P plain
Ap | Ay par
vn.A name res
ve.A var res
{M/x} subst

the substitution{ \//x} to processP. If the variablex is not restricted, as it is the case in the process
(P | {M/zx}), then the substitution is exported by the process and the environment has immediate access to
M. As usual, the scope of names and variables is delimited by restrictions and by inputs. Wguwije
and fn(A) (resp.bv(A) andbn(A)) to denote the free (bound) variables and names in an extended process
A, respectively. We lefree(4) := fu(A) U fn(A) andbound(A) := bv(A) U bn(A). For sequences
M = My,...,My andi = z,...,z;, we let{M/Z} denote{M, /z,} | ... | {My/x;}. We always
assume that substitutions are cycle-free, that extended processes contain at most one substitution for each
variable, and that extended processes contain exactly one substitution for each restricted variable.

A contextis a process or an extended process with a hole.evatuation contexis a contextwithout
private function symbolsvhose hole is not under a replication, a conditional, an input, or an output. A
contextC[_] closesA if C[A] is closed, i.e., it does not contain free variablegraineis an extended process
built up from 0 and active substitutions by parallel composition and restriction. Wg &td+) range over
frames. The domaidom (¢) of a frameg is the set of variables thatexports, i.e., those variabledor which
¢ contains a substitutiofiA//z} not under a restriction om. Every extended proces$ can be mapped to
a frame¢(A) by replacing every plain process embeddediimvith 0. The frame¢(A) can be viewed as
an approximation ofd that accounts for the static knowledgeexposes to its environment, but not fais
dynamic behavior.

As in the pi-calculus, the semantics is defined in termstoictural equivalenc€=) andinternal re-
duction(—). Structural equivalence states which processes should be considered equivalent up to syntactic
re-arrangement.

Definition 1 (Structural Equivalence) Structural equivalence=f) is the smallest equivalence relation on
extended processes that satisfies the rules in Table 2 and that is closedndrat®ming, i.e., renaming of

Table 2 Structural Equivalence

PAR-0 A=A|0

PAR-A Ay | (A2 | Ag) = (Al | Ag) | Az

Par-C Aq | Ay = Ay | Aq

REPL 'lP=P|IP

RES-0 vn.0=0

REs-C vuvy' A= vu .vu. A

RES-PAR A | vu.As = vu.(A; | Ag) if u ¢ free(A;)

ALIAS ve{M/xz} =0
SUBST {M/z} | A={M/z} | A{M/z}
REWRITE {M/z} ={N/z} ifX-M=N

Table 3Internal reduction

ELSE
EYM=N M, N ground

if M = N then P else Q — Q

Comm THEN
a(xz).P|a(x).Q — P|Q if M = M then P else @ — P

bound names and variables, and under application of evalnatbntexts.
Internal reduction defines the semantics for extended processes.

Definition 2 (Internal Reduction) Internal reduction) is the smallest relation on extended processes
that satisfies the rules in Tadlé 3 and that is closed under structural equivalence and under application of
evaluation contexts.

We write A |} a to denote tha#l can send a message@ni.e., A —* Cla(M).P] for some evaluation context
C[_] that does not bin@. Observational equivalenceonstitutes an equivalence relation that captures the
equivalence of processes with respect to their dynamic behavior.

Definition 3 (Observational Equivalence) Observational equivalences is the largest symmetric relation
R between closed extended processes with the same domain sudiRtBaimplies:

1. ifAl a,thenB | a;
2. ifA —=* A, thenB —* B’ and A’R B’ for someB’;
3. C[AJRC|[B] for all closing evalution context§'[_].

3 An Equational Theory of Zero-Knowledge

In this section we define a signature and an equational theory for abstractly reasoning about non-
interactive zero-knowledge proofs. Our equational theory is parametric in that it augments an arbitrary base
equational theory.

3.1 An Underlying Cryptographic Base Theory

The base equational theory we consider in this paper is given in [hble 4. (Note again though that any other
base theory would work as well.) First, it consists of functions for constructing and destructing pairs, encrypt-
ing and decrypting messages by symmetric and asymmetric cryptography, signing messages and verifying

5

Table 4 A base equational theory containing basic cryptographic primitives and logical operators

pair, enCsym, deCsym, €NCasym, d€Casym,
sign, ver, msg, pk, sk, hash, blind,
unblind, blindsign, blindver, blindmsg,
A, V,eq, first, snd, true, false

Ebase

ver andblindver of arity 3, pair, encsym, decsym, €ncasym, decasym, sign, blind, unblind, blindsign, A, vV and
eq of arity 2, msg, pk, sk, hash, blindmsg, first andsnd of arity 1, true andfalse of arity 0.

Ey.se is the smallest equational theory satisfying the following equations defined overal:

ver(sign(x,sk(y)), z, pk(y)) = true
eq(z, z) = true
A(true, true) = true
V(true, z) = true
V(z, true) = true
first(pair(x,y)) =
snd(pair(x,y)) =y
decsym(encsym (z,9), y) =z
decasym(€ncCasym (7, pk(y)), sk(y)) = Z
msg(sign(z,y)) = =

blindver(unblind(blindsign(blind(z, 2),

sk(y)), z), =, pk(y)) = true
blindmsg(unblind(blindsign(blind(z, z),v),2)) = =«

signatures, modelling public and private keys, hashing,@amdtructing and verifying blind signatures. In

blind signature schemes, the content of a message is disguised before it is signed while still ensuring public
verifiability of the signature against the unmodified message. These functions have received prior investiga-
tion within the applied pi-calculus, e.g., to analyze the JFK protddol [3] and the electronic voting protocol
FOO 92 [21]. Second, the theory contains three binary functigns\, andV for modelling equality test,
conjunction, and disjunction, respectively; these functions allow for modelling monotone Boolean formu-
las. In our example theory, we do not consider additional functions for, e.g., negation or specifying explicit
inequalities. We shall often write instead ofeq and use infix notation for the functiors, A, andv.

3.2 The Equational Theory for Zero-Knowledge

Our equational theory for abstractly reasoning about non-interactive zero-knowledge proofs is given in Table
B, its components are explained in the following. A non-interactive zero-knowledge proof is represented
as a term of the forrrZKZ-J-(M,JV,F), where)M and N denote sequence¥, ..., M; and Ny, ..., N; of

terms, respectively, and whefeconstitutes a formula over those terms, see below. HEKge is a function

of arity i + 7 + 1. We shall often omit arities and write this statementZﬁ]\A]; N; F), letting semicolons
separate the respective components. The statement will keep secret theftecalied the statementwivate
componentwhile the termsV, called the statementjsublic componentwill be revealed to the verifier and

to the adversary. The formul& constitutes a constant without names and variables, which is built upon
distinguished nullary functions; andg; with i € N.

Definition 4 ((i, j)-formulas) We call a term ar(i, j)-formulaif the term contains neither names nor vari-

Table 5 Equational theory for zero-knowledge

ZK; ;. Ver; ., Public;, Formula
E — E U 1,79 Z,_]).] (2 9
zK base { a;, Bi,true | i,j € N

ZK; j of arity i + j + 1, Ver; ; of arity 2, Public; andFormula of arity 1, «;, 3; andtrue of arity 0.

Ezk is the smallest equational theory satisfying the equations,gf and the following equations defined
over all termsM , N, F':

Publlcp(ZK”(M N,F)) = N, with p € [1, j]
Formula(ZK”(M N,F)) = F
Ver; ;(F, ZK”(M N,F)) = true iff

1) Ezx+ F{M/a}{ﬁ/ﬁ} = true
2) Fisan(i,j)-formula

ables, and if for everyy, and (3; occurring therein, we have € [1,i] and! € [1, j].

The valuesy; and3; in F' constitute placeholders for the term$ and N;, respectively. For instance, the
term

ZK(ks m, encsym(ﬂ% k) ; P2 = encsym(ﬁlv 041))
denotes a zero-knowledge proof that the tena, (m, k) is an encryption ofn with k. More precisely, the
statement reads: “There exists a key such that the ciphesext,(m, k) is an encryption ofn with this

key”. As mentioned beforesncs,m(m, k) andm are revealed by the proof whileis kept secret. This is
formalized in general terms by the following infinite set of equational rules:

Public,(ZK;j(M, N, F)) = N, withpe [L,j]
Formula(ZK”(M N,F)) = F

wherePublic, andFormula constitute functions of arity. Since there is no destructor associated to the state-

ment’s private component, the terms are kept secret. This models thero-knowledg@roperty discussed
in the introduction. We define a statemd‘r(”(M N, F) to hold true if F is an (i, j)-formula and the
formula obtained by substituting all,’s and 5;’s in F' with the corresponding value®/;, and N; is valid.
Verification of a statemeriK; ; with respect to a formula is modelled as a functiés; ; of arity 2 that is
defined by the following equational rule:

Ver; ;(F, ZKz’,j(M, N,F)) = true iff
1) Ezx+ F{M/a}{N/B} = true
2) Fisan(i,j)-formula

where{J\AJ/a}{N/ﬁ} denotes the substitution of eaal with A/, and of eachs; with V;. This rule guaran-
tees in the abstract model teeundnesandcorrectnesf zero-knowledge protocols.
3.3 An lllustrating Example

We illustrate the zero-knowledge abstraction by means of the following example protocol. We keep the proto-
col simplistic in order to focus on the usage of zero-knowledge proofs; in particular, we ignore vulnerabilities

due to replay attacks and corresponding countermeasures@sumnces and timestamps.

A B Si
A, B—>
~{ABhg —
—ZK
Party B receives a signed messa@é, B} from some servet5; € {Si,...,S,}. (This signed message

might, e.g., serve as a certificate that allai#$o prove that he has been authorized to contagtWhile B
should be able to convincé that he owns a signature on this message issued by one of the passénieers,
the protocol should ensure thdtdoes not learn which servé in fact issued the signature. This prevents
B from simply forwarding the signed message4o Instead,B proves knowledge of such a signature by a
non-interactive zero-knowledge progfx .

We now carefully examine the proof of knowledgd<. We aim at formalizing the following statement:
“There existsa such thata is a sighature ofA and B, and this signature was created using one of the
signature keysg,,...,ks,”. Coming up with a formalization of this statement first requires us to tell the
secret terms from the terms leaked to the verifier. The identifier4 ahd B clearly have to be revealed
since the proof intends to allow to prove that he has been authorized to contacthe signature itself and
the corresponding verification keyk(ksg,), however, have to be kept secret to preserve the anonymiy. of
These requirements are cast in our zero-knowledge notation as follows:

sign(pair(A, B)7 Sk(ksi))v pk(kSz)v
ZK (sign(pair(A, B), sk(ks,))) = ZKopni1 pk(ks,), ..., pk(ks,), pair(4, B);
V = ﬂi) Aver(a, Bny1,02))
i=1n
This statement captures that the signatsigm(pair(A, B),sk(ks,)) and the public keypk(ks,) used in
the verification are kept secret (i.e., the identity%fis not revealed) while the proof reveals the public
keys of all servers (this includgsk(kg,) but does not tell it from the remaining public keys) as well as
the identifiers ofA and B. The formula states that the verification key of the signature belongs to the set
{pk(ks,),--.,pk(ks,)}, and that the signed message consists of a pair composed of the identifieesdf
B. We obtain the following description of a single protocol run:

A 2 a(y).if Testthen b{ok) else b(bad)
B 2 a(a)if (ver(z, pair(4, B), pk(ks,))
thena(ZK (x)) elseb(badp)

S 2 alsign(pair(A, B), sk(ks,)))
Prot £ vka.vkp.vks,.....vks,.

a(pk(ks,)). ... a(pk(ks,)).(A | B | S;)
whereTestconstitutes the following condition:

Ver2,n+1 << v g = ﬂz) AN ver(al, /BnJrl’ 042)’ y) = true

i=1n

/\ Public;(y) = pk(ks,) A Public,+1(y) = pair(A4, B)

i=1n

We wroteTestusing conjunctions only to increase readabilifgstcan be straightforwardly encoded in the
syntax of the calculus by a sequence of conditionals.

4 Towards a Mechanized Analysis of Zero-Knowledge

The equational theorYzk defined in the previous section is not suitable for existing tools for mechanized
security protocol analysis. The reason is that the signaigge and consequently the number of equations

in the specification, is infinite. In this section, we specify an equivalent equational theory in terms of a
convergent rewriting system. This theory turns out to be suitable for ProWerif [7], a well-established tool for
mechanized verification of different security properties of cryptographic protocols specified in a variant of
the applied pi-calculus.

4.1 A Finite Specification of Zero-Knowledge

The central idea of our equivalent finite theory is to focus on the zero-knowledge proofs used within the
process specification and to abstract away from the additional ones that are possibly generated by the environ-
ment. This makes finite both the signature and the specification of the equational theory.

Pinning down this conceptually elegant and appealing idea requires to formally characterize the zero-
knowledge proofs generated, verified, and read in the process specification. First, we track the zero-
knowledge proofs generated or verified in the process specification byFacfdtiples of the form(i, j, F'),
wherei is the arity of the private componentthe arity of the public component, arddthe formula. Second,
we record the arityh (resp.!) of the largest private component (resp. public component) of zero-knowledge
proofs used in the process specification. For teivh&nd processe®, we lettermg M) denote the set
of subterms of\/ andtermg P) denote the set of terms iR. We can now formally define the notion of
(F, h,1)-validity of terms and processes.

Definition 5 (Process Validity) A termZ is (F, h,[)-valid if and only if the following conditions hold:
1. for everyZKi7j(M,JV,F) € termgZ) andVer; ;(F, M) € termgZ),

(@) Fisan(i,j)-formula and(i, j, F) € F,

(b) F = TZbaseU{O‘k’vﬂl |k‘€[1,i},l€[1,j]}’
(c) and for every(s, j, F') € F such thatEzx - F = F’, we haveF = F’.

2. Foreveryk € N, oy, and 3, occur inZ only inside of the last argument of so; ; or Ver; ; function.
3. forevery(i, j, F') € F, we have € [0,h] andj € [0,1].
4. for everyPublic,(M) € termgZ), we havep € [1,1].

A processP is (F, h,l)-valid if and only if M is (F, h,[)-valid for everyM € termgP).

We check that each zero-knowledge proof generation and verification is tracke¢condition[Th). For the
sake of simplicity, we prevent the occurrence of zero-knowledge operators within formulas in the process
specification (conditiofi—1b). Without loss of generality, we also require that equivalent formulas occurring
in zero-knowledge proofs of the same arity are syntactically equal (confliflon 1c) and thatstlaad 3;'s
only occur within formulas (conditionl 2). Finally, we check that the arity of private and public components of
zero-knowledge proofs used in the process specification is less or equaldha, respectively (conditions
B and?3).

Given an(F, h,1)-valid process, we can easily define a finite equational thE@Z’l for (F, h,1)-valid

. L, . . . F,h,l .
terms by a convergent rewriting system. For &y, F') € F, we include in the signaturgg,/ thgjunctlon

symboIsZKfj and Verfj of arity ¢ + j and 1, respectively. We then replace every teZiKi,j(M,N,F)
andVer; ;(F, M) in the process specification ij(ﬂ,ﬁ) andVerfj(M), respectively. Since formulas

Table 6 Finite equational theory for zero-knowledge with respect t@&nh, 1)-valid process.

ZK{;,PZK];, Ver}; FakeZKj, Public,,

Fohil 7 AP :
Y7k = Ybase U ¢ Formula, FakeCollect, FakePublic, FakeVer, ay, 3,

| (i,5,F) € F,g € [L,h], ke[0,l],pe[L,]]

PZKF of arity i + j 4+ 1, ZKF" ; of arity i + j, FakeZKy, of arity k + 2, FakeVer of arity 4, FakePublic and

FakeCoIIect of arity 2, Ver?’ ot Publlc andFormula of arity 1, a; and3,, of arity 0. PZK ; s private.

E,fzﬁl is the smallest equational theory satisfying the equationg,gf. and the following equations, for

every(i,j, F) € F:

ZK%(UC 0 = PZK{;(@. 5, F{z/a}{y/5})
(PZKF (Z,y,true)) = true

PUb|IC (PZKF (Z,9,2)) = Y p € [l,]]

Formula(PZKw(ac v,z)) = F

Public,(FakeZKy(z,9,2)) = wp p e[l k],kel0,]]

Formula(FakeZKy(z,y,2)) = =z ke [0,1]

are uniquely determined by trZer ; function symbol, they can be omitted from the protocol specification.
Furthermore, we need in the equational theory only those functipasid 3; that satisfy; € [1,] andj €

[1,]; the remaining ones can be safely omitted since they do not offer the adversary any additional capabilities.
For finitely modelling the verification of zero-knowledge proofs, we includE@“ the function symbols

PZKF of arity i + j + 1. A termzKF (M N) is equivalent tPZKY (M N,F{M/a}{N/3}). This can

be captured using a finite descrlptlon since the number of formulas in the process specification is finite:

ZKI(%,7) = PZKE(@, 5, F{z/aH{y/s})

For verifying a zero-knowledge proof, it thus suffices to check whether the last argumenPdelﬁo istrue
or not:
Ver (PZK ;(Z,y,true)) = true

The rule for extracting the publlc component is defined in the expected manner. Extracting the formula
from a zero-knowledge prochZK (M N F{M/a}{N/ﬁ}) requires an additional thought: for preserv-

ing the secrecy of private components the funcfioermula yields the formulaF’ (without the substitution
{M/a}{N/3}) in order to prevent the adversary from deriving the formula instantiated with private terms.

Public,(PZK!.(7,7,2)) = v, pe|[L,]]
Formula(PZKw(x y,2)) = F

We obtain a finite set of rules since the numbeZKfF and Ver ; constructors corresponds to the (finite)
number of formulas occurring in the process specmcatlon FP'EKF functions are private; hence they
cannot be used by the adversary to derive terms of the WKfj(M , N, true), which would be successfully
verified by trusted participants regardless of the valug' ¥/ /a}{ N /3}. The possibility to construct such
terms would break the soundness property of zero-knowledge proofs.

It now remains to encode the zero-knowledge proofs generated by the environment. These proofs possibly
contain formulas or have arities different from the ones specified in the process. We inciiigra finite

set of symbolsFakeZK}, of arity & + 2, wherek € [0,{]. The termFakeZK (M, N, F) never occurs in

10

process specifications and represents zero-knowledgenstatie forged by the adversary; héreconstitutes

a distinguished term that uniquely refers to the zero-knowledge proof and that plays a role only in the proof
of soundness)N denotes the first elements of the public component, afAds the formula. The equational

rules for extracting the public components and the formula ffrakeZK, terms are specified as follows:

Public,(FakeZKy(z,9,2)) = usk

Formula(FakeZKy(z,y,2)) = =z
for anyp € [1,k] andk € [0,1]. We additionally include i7" functionsFakeCollect, FakePublic, and
FakeVer. These functions are only used for proving the finite theory equivalent to the infinite one in the next
section; the functions are free in that they do not occur in any equations.

4.2 Compilation into Finite Form
We now define the static compilation of terms and processes.

Definition 6 (Static Compilation) The(F, h,l)-static compilatioris the partial functiorv : Tx.,, — To7.n.
FZK
recursively defined as follows:

ZK;;(M,N,F)o = ZKI(Mo,No) V(i,j,F)eF

Ver;;j(F,M)o = Ver/;(Mo) v(i,j,F) € F
Public,(M)o = Public,(Mo) Vp € [1,1]
Formula(M)o = Formula(Mo)

f(My,...,M;)0c = f(Mjo,...,M;o) Yf € Ypase
xo =z Vx

no = n vn

The (F, h,1)- static compilation constitutes a total function when restrictedAoh,)-valid terms. The
first equations deal with the compilation of zero-knowledge proofs and operators acting on them. The static
compilation acts component-wise on the remaining terms and behaves as the identity function on names and
variables. The compilation of a proceBs written Po, is defined by the compilation of the terms occurring
therein.

The following theorem finally states that observational equivalence is preserved under static compilation
and hence asserts the soundness of the encoding from the infinite specification into the finite specification.

Theorem 1 (Preservation of Observational Equivalence)Let P and @ be (F, h,)-valid processes and
be the(F, h, [)-static compilation. IfPo ~ 7 »: Qo, thenP =g, Q.

FZK

We additionally prove that a comprehensive class of trace-based properties is preserved under static com-
pilation. We first define the notion of an execution trace. This requires to revielalleded operational
semantics that extends the semantics given in Tdble 3 by allowing us to reason about processes that interact
with their environment. The labelled transition system is given in Tadble 7.

Definition 7 (Execution Traces) The set of execution traces of an extended prodesgritten trace$A), is
defined as follows:

traces A) = {jnd(A1), -, pnd(An) | A~ Ay =5 4,

11

Table 7 Labelled transition system

IN OPEN-ATOM
M € Ty ouT-ATom, A A wza
a(M) E<U>P — P vu.a{u)
a(x).P =’ P{M/x} vu A=A
SCOPE PAR
AL A" wdoes not occur in AL A" bound(u)Nfree(B) =0
vu. AL vu A A|BEL A B
STRUCT
A=B B4 B B =4
AL A

Notation: ¥ contains the public function symbols ¥. In OuT-ATOM, u is either a channel name or a
variable.

In the following, we lets range over execution traces. We now introduce the notion of trace-based security
property. We assume the existence of a special chantieht is never restricted by the process. In the
following, we let B(My, ..., M,) denote a boolean formula over the terts, ..., M,: such terms are

meant to express trace-based security properties. For instance, the notion of authenticity can be formalized
aspair(end, x) = pair(begin, z), whereend andbegin are special nullary functions.

Definition 8 (Trace-based Security Property) A trace s satisfies the event/ with substitutions, written
s k¢ M if and only if there existy, s, N, £ such thats - s; :: ¢(N) = sp and Ezx = N = M.

A traces satisfies the propertys (M, . .., M,) with substitutiort, written s ¢ B(My, ..., M,), if and
onIy IfB(S I—g Mi,...,s I—g Mn)

A process satisfies the prope®(M, ..., M,), written P ¢ B(My, ..., M,), if and only if for every
trace s € trace§ P), there existg such thats ¢ B(M;, ..., M,)

Finally, we can state the theorem of preservation for trace-based security properties.

Theorem 2 (Trace-based Security Property Preservation)Let P be a(F, h,l)-valid process,c be the
(F, h,l)-static compilation, and\/y, ..., M,, be (F,h,l)-valid terms. IfPc + B(Mo,..., M,c), then
Pt B(M,...,M,).

4.3 Preservation of Observational Equivalence and Trace-based Security Properties

Instead of proving that observational equivalence is preserved under static compilation, we show preservation
of an equivalent formulation of observational equivalence based on static equivalence and labelled bisimilarity.
We first review these notions.

Definition 9 (Term Equality in Frames) Two termsM and N are equal in a framep, written (M = N)¢,
if and only ifp = vn.o, Mo = No, and{n} N (fn(M) U fn(N)) = () for some names and substitution
g.

Definition 10 (Static Equivalence) Two closed frames and « are statically equivalent, writtep ~*
if and only if dom(¢) = dom(y) and for all termsM and N, it holds that(M = N)¢ if and only if
(M = N)y.

12

We say that two closed extended processes are staticallyadegni, writtenA ~* B if and only if their
frames are statically equivalent.

We now define the notion dabelled bisimilarity which constitutes an equivalent notion of observational
equivalence. Labelled bisimilarity does not rely on the universal quantification over evalution contexts used
in the definition of observational equivalence.

Definition 11 (Labelled Bisimilarity) Labelled bisimilarity &') is the largest symmetric relatio®R on
closed extended processes such th&tB implies:

1. A~% B;
2. ifA— A’ thenB —* B’ and A’R B’ for someB’;

3. if AL A and fo(u) C dom(A) andbn(u) N fn(B) = 0, thenB —*£—* B’ and A'R B’ for some
B

We finally state the well-known equivalence between observational equivalence and labelled bisimilarity [4].

Theorem 3 (Observational Equivalence and Labelled Bisimilarity) Observational equivalence coincides
with labelled bisimilarity: ~=~.

It hence remains to be shown that labelled bisimilarity is preserved under static compilation. In the following,
we write P =g () to emphasize thalP and(@ are structurally equivalent with respect to an equational theory

E. Furthermore, we writéd/ ¢ for the ground term obtained by repeated application of the substitutigioin

M, where we assume thib (M) C fu(¢). This notation is well-defined since frames do not contain substi-
tutions with cyclic dependencies. The next definition introduces a normal form for terms. Intuitively, a term
isin (F, h,l)-normal form if the subterms generated by the environment cannot be further simplified (condi-
tions[1 and®) and, in the case of zero-knowledge proofs, they either comply with the process specification or
belong to a different equivalence class (condifibn 3).

Definition 12 (Normal Form) AtermM € Ty, isin (F, h,l)-normal form with respect to a frameif and
only if the following conditions hold:

1. for everyPublic;(Z) € termgM), i, 5/, M, N, F such thatj > [and Ezx + Z¢ = ZK, ;(M, N, F),
we havej’ < j.

2. for everyVer; ;(F,Z) € termgM), M, N such thatEzx F Z¢ = ZKM(M,N,F), we have that
(i,4,F) € F.

3. for everyZKM(]\Ai,N,F) € termg M), F’ such that(i, j, F') € F andXzx - F = F’, we have
F=F.

For any term there exists an equivalent term in normal form.

Proposition 1 (Normal Form) For any termM < Ty, and frameg, there exists a ternV € Ty, in
(F, h,l)-normal form with respect tg such thatEzx - (M = N)¢.

Proof. By an inspection of the equational rules in Tdlle 5 and Definffion 12. O

We now characterize the notion of validity of extended preessIntuitively, an extended process$is h, 1)-

valid if it can be separated into &, h,[)-valid process and a frame where free variables, referring to
output messages, are associatedfoh, 1)-valid terms, and bound variables, referring to input messages, are
associated to terms {iF, i, [)-normal form that only contain free names and free variables.

13

Definition 13 (Extended Process Validity) A frame¢ is (F, h, [)-valid if and only if there exisk, v, {Z/E},
with y C z, such that the following conditions hold:

1. ¢ = vy {Z/7}.
2. for everyzy, € fu(¢), we have thatZy is (F, h,[)-valid.

3. for everyz;, € bu(¢), we have thatZ, is in (F, h,l)-normal form with respect t@ and free(Z;) N
bound(¢) = 0.

An extended process is (F, h,l)-valid if and only if there exish, v, {1\7/%}, with y C z, such that the
following conditions hold:

1. A=viwy.({Z)3}|P).
2. vy {Z %} is (F, h,1)-valid.
3. Pis(F,h,l)-valid.

In the following, we useFakeCollect(M) for M = M,...,M, as an abbreviation for the term
FakeCollect(M;, FakeCollect(Ma, . . ., FakeCollect(M,,_1, M,,))). We further consider a countable set of
names that are meant to represent natural numbers, deingteohd nullary functionsy; and3; with @ > h
andj > [, denotedf, and fﬁj, respectively. Without loss of generality, we disciplim@enaming to guaran-
tee that such names are never restricted in the process.

We now introduce the dynamic compilation of terms at run-time.

Definition 14 (Dynamic Compilation) The (F, h,l)-dynamic compilationis the functionp : 7%, —
T, recursively defined as follows:

EFZK
Public;(M)p = Public;(Mp) if j € [1,1]
FakePublic(j, M p) otherwise
ZK;i j(M, N, F)p = ZK[;(Mp, Np) if (i,j,F) € F
FakeZKy(g, Nkp, Fp) otherwise
(k = min(j, 1),
g = FakeCollect(i, j, Mp, Np))
Formula(M)p = Formula(Mp)
a;p = q if i € [1,h]
feo, otherwise
Bip = B; if j € [1,1]
fﬁj otherwise
Ver; j(F,M)p = Verfj(Fp, Mp) if (¢,5,F) € F
FakeVer (i, j, Fp, Mp) otherwise
f(My,...,M)p = f(Mip,...,Mip) ¥ € Spaee
xp =z Vx
np =n Vn

The next proposition states thats closed under variable substitution.

Proposition 2 (Closure of Dynamic Compilation) Let p be the(F, h,l)-dynamic compilation. For every
frame¢ and every term in (F, h,1)-normal form with respect te, we haveg Mp)pp = (M)p

14

Proof. By an inspection of DefinitiohZ14 and Definiti@nl12. O
We next lemma states that term equality is preserved by dyneomipilation.

Lemma 1 (Preservation of Term Equality) Let¢ be an(F, h,[)-valid frame and be the(F, h, [)-dynamic

compilation. Then for any ground termig;, Ms € T, in (F, h,l)-normal form with respect tg, we have

Ezx F My = My & ELW - Myp = Myp.

Proof. We prove the=- implication by induction on the length of the derivation ;. We first discuss the
interesting base cases:

M, = Publicy(ZK; ;(M, N, F)), My = N;, We have two cases:

1. (i,4, F) € F: By definition of p (cf. Definition[I3), we gef\/;p = Publick(ZKfj(Mp, Np)). By
definition of 77" (cf. Tablel®), we geEZ" - Publicy(ZKF;(Mp, Np)) = Nyp, as desired.
2. (4,5, F) ¢ F: By definiton of p, we can derive that M;p =
Publicy,(FakeZKpin(;. 1) (FakeCollect (i, j, M p, N p), Nymin(j Fp). By definition of EL,

ELM - Myp = Nyp, as desired.

M, = Formula(ZK, ;(M, N, F)), My = F We have two cases:

1. (i,5,F) € F: By definition of p, we getM;p = Formula(ZKfj(]\A/fp, Np)). By definition of
ELY, we getEL ! - Formula(ZKE,(Mp, Np)) = F and, sinceM; is in (F, h,1)-normal
form with respect t@p, by definition ofp we have that'p = F', as desired.

2. (i,5,F) ¢ F: By Definiton [14, we obtain M;p = Formula(
FakeZKin(j,1) (FakeCollect(i, j, M p, N p), Nimin¢;), F'p). By an inspection of Tablél6, we

haveEL;b' - Myp = Fp, as desired.

M, = Ver(F, ZKZ-J-(M,JV,F)) and M, = true It must be the case thét, j, F) € F, otherwiselM; is not
in (F, h,1)-normal form with respect tg. By definition ofp, M p = Ver!;(ZKf;(Mp, Np)). By the
equational theory of Tabld (E,fzﬁl F Myp = true, as desired.

We prove the induction step by cases:

Symmetry We have thatzx - M; = M, is proved by symmetry fronf'zx - Ms = M;. By induction

hypothesis ELiv' - Map = M, p. The result follows by symmetry dt1".

Transitivity The result follows directly from the induction hypothesis.

The proof of the«< implication is similar and relies on the fact thais injective when applied to terms in
(F, h,1)-normal form with respect tg. O

Exploiting that term equality is preserved under dynamic gitaetion, we proceed by showing the preser-
vation of process reduction. The following lemma also proves that the validity of extended processes is
preserved by internal reduction and labelled transition, up to structural equivalence. In addition, THeorem 2
constitutes a direct consequence of this lemma.

Lemma 2 (Preservation of Process Reductionjet A be an extended process such that =g,
vn.vy.({M /z}|P), for someF, h,l)-valid extended process:.vy.({M /z}|P), leto be the(F, h, 1) static
compilation, and lep be the(F, h, l)-dynamic compilation. Then the following statements hold:

15

1. For every B, A —p, B if and only if there exists an(F,h,l)-valid extended process
vn.vy.({M'/2'}|P') =g, B such thavn.vy.({M/T}p|Po) — prni vivy.({M/T}p|P'o).
FZK

2. For everyu containing only terms ii.F, h, [)-normal form with respect toﬁ.yg.{]\A/f/E} and everyB,
A L Bifand only if there exists atF, h,[)-valid extended process v .({M' /z'}| P') =g,
B such thatn.vy.({M/Z}p| Po) *5 rni v’ vy ({M' /2" }p| P'c) where
FZK

o if u=a(M), thenii = n/,y = 7,z, for somer ¢ {z}, and{M'/2'} = {M)z} | {M/z}.
o if n=a(b), thenii = n/,y = 7, and{M’/2'} = {M/Z}.
o if 1 = vb.a(b),thenii = (n',b),y = g, and{M’/z'} = {M /Z}.

o if u=vaxa(z), thenii =n',y =7, and{M’/2'} = {M/Z} | {M/z}, for some(F, h,1)-valid
M.

Proof. We prove statemeril 1 by cases on the internal reduction rule. Let us first deal with the “only if”
implication.

CommMm By an inspection of Tabl€l2, there exist,z,Q, P, P> such thatuﬁ.u@.({ﬂ/’f} | P) =g,
viLvg.({M /Z}| Q| a(M).Py | a(z).P;) andQ | a(M).P; | a(z).Py is (F, h, 1)-valid. By a-renaming,
we can assume that¢ fv(P;). We also have thaB =g, v ({M 3} Q | Pi| Py{M/z}).
By ALIAS, REs-PAR, and SBST, we getvivj.({M/i} | P) =g, viavjve.({M/i} |
{M/z} | Q | a(x).Pi| a(x).P,). Sinceoc behaves as the identity function on variables and names
and it is defined or(F, h,)-valid terms and processes, we gét.vy.({M/Z} p | Po) =gz

Vﬁl/gjl/:c({ﬂ/f} p | {Mao/x} | Qo | a{x).Pio| a(x).Pyo). By COMM, SUBST, RES-PAR, and
ALIAS, we have that7i.vg.vz.({M/Z} p| {Mo/z} | Qo | a(z).Pio| a(z).Pyo) — vitwy.({M)z} |

Pio | P,{M/z}0), as desired. Notice that internal reduction is closed by structural equivalence. Itis
easy to see tha®{M/x} is (F, h,l)-valid sinceM occurs in theF, h,1)-valid process(M).P; and

it is thus(F, h,1)-valid as well.

THEN By an inspection of Tabl&l 2, there exi8t, N, Q, P, P, such thatun.ug.({ﬂ/%} | P) =g,
vnv.({M/Z} | Q | if (M = N)thenP, elseP,, for someM, N, P, P;,Q such that the pro-
cessQ | if M = N then Py else Py is (F,h,1)-valid andSzx + M{M/z} = N{M/i}. We
also have thatB =g, FP». Similarly, by applying $BST, we get yn.uﬂ.({ﬁ/f}p | Po)
=g, vnvy.({M/T}p | Q{M/Z}p | (if (M = N)thenP, elseP,)o{M/%}p). SinceM is in
(F, h,l)-normal form with respect t(zyn.yg.{]\A/f/i} and M is (F, h,l)-valid, it is easy to see that
Efzﬁl F (MJ){M/%};) = (M{M/%})p and(M{M/%})p is in (F, h,l)-normal form with respect
to un.y@.{ﬁ/f}. The reasoning is the same faf. By Lemmall, we geEFfZ’ﬁ’l - M{M/'f}p =
N{M /Z}p. The result follows from REN and structural equivalence.

ELSE The reasoning is similar to the one in the previous item.

Notice that the previous cases cover both the application of evaluation contexts and the closure by structural
equivalence. The proof for the “if” implication is similar and relies on the fact thiatnjective when applied

to terms in(F, h,)-normal form.
We now prove that process reduction, as defined by the labelled transition systems, is preserved as well.

We proceed by cases on the lapel

16

uw=a(M) By an inspection of Tablg]7, there exist P/, such thatyﬁ.yg.({]\A/f/E} | P) =g,
viw.({M)z} | a(z).P' | Q) and B =g, viwy.({M/z} | P{M/z} | Q). Similarly, we have
thatvi.vy.({M/Z}p | Po) = viviy.({M/Z}p | a(z).P'o | Qo). By a-renaming, we can assume
x ¢ ¥ and, by 0OPE we derivefree(M) N {n,y} = 0. By IN, ALIAS, SUBST, and Res-PAR, we get
viwy.({M/%}p | a(z).P'o | Qo) & vivjve.({M/z}p | {M/Z}p| P'o | Qo).

w=ua(b) The output term is a free channel. We have thai.vy. ({]\A/_f/i} | P) =gy
viLvg.({M/Z} | a(b).P' | Q) and B =g, vi.vy.({M/Z} | P' | Q). By SCOPE a ¢ 7, and
b ¢ 7. Similarly, we have that7.v3.({M /Z}p | Po) =g, vi.vy.({M/Z}p|a(b).P'o | Qo). The
result follows from QuT-ATOM and SSOPE

i =vba(b) The output term is a private channel. We have thatb.j.({M/Z} | P) =g,
v, b ({M/Z} | a(b).P' | Q) and B =g, viwg.({M/Z} | P' | Q). Similarly, v, b.vy.
({M/Z}p | Po) =g, vi,bvi.({M/Z}p | a(b).P'c | Qo). The result follows from ©T-ATOM
and CPEN-ATOM.

1= va.a(z) We have thavi.vy.({M/z} | P) =g, vivy. ({M/z} | a(M).P' | Q), and, by AlAS,
RES-PAR, OUT-ATOM, and QPEN-ATOM, B =g, vnvy.({M/xz} | {M/z} | P' | Q), for some

z ¢ ¥ and with fo(M) C Z. Similarly, we have thati.vj.({M /Z}p | Po) =g, vivg.({M/Z}p |
a(M).P'o | Qo). The result follows from AIAS, RES-PAR, OUT-ATOM, and CPEN-ATOM.

In all cases, it is easy to see that the resulting extended proc¢$s Asl)-valid. The proof for the “if”
implication is similar and relies on the fact thats injective when applied to terms {iF, i, [)-normal form.
O

We are finally ready to prove that the dynamic compilation @mness static equivalence. We first characterize

a notion of similarity for frames. The crucial ingredient of this definition is that the two frames coincide

when restricted to bound variables, i.e., if the terms received as input by the corresponding extended processes

coincide. This property is naturally fulfilled by the frames associated to labelled bisimilar extended processes.
The next lemma says that a test succeeds if and only if its compilation does.

Lemma 3 (Test Preservation) Let ¢ be an(F, h,)-valid frame andp be the(F, h,[)-dynamic compilation.
For everyM, N in (F, h,l)-normal form with respect tg such that(free(M) U free(IN)) N bound(¢) = 0,
we have thatM = N)¢ < (Mp = Np)op.

Proof. The proof follows from LemmBl1 and Propositioh 2. O
The next definition introduces the notion of similarity foafnes.

Definition 15 (Frame Similarity) Two framesp and+) are similar, writteng ~ 1, if and only if the following
conditions hold:

1. There existF, h, and! such thatp and+ are (F, h,[)-valid frames.
2. ¢ = vy {M/z} andy = vin.vg.{N /Z}.
3. For everyz; € bu(¢), we havel; = N;.

The next lemma says that for testing similar frames, it suffices to only consider terf##$ inl)-normal
form.

17

Lemma 4 (Valid Tests) Let ¢ and v be two(F, h,!)-valid and similar frames. For every/, N such that
(M = N)¢ holds and(M = N) does not hold, there exidtl’, N’ in (F, h,l)-normal form with respect to
¢ and such that M’ = N’)¢ holds and(M’ = N') does not hold.

Proof. We first show that it is possible to repladé by a termM/’ such that every subterm of the form
Public;(Z) isin (F, h,l)-normal form with respect tg.

M = T[Public;(Z)] and Ezx - Z¢ = ZKi,j’(M,JV,F), with 5/ > j > [. By an inspection of the
equational theory, we have two cases:

e There existsZ’ = ZKi, j/(M', N', F') € termgZ) such thatEzx - Z'¢ = ZKi,j (M, N, F).
Therefore,Ezx = Publicj(Z)¢ = Nj¢. If Ezx = Public;(Z)y = Njy, then we can replace
Public;(Z) by N;. Otherwise, we have thaZ = Z’)¢ holds and(Z = Z'):> does not hold, as
desired.

e There exists a variable € termgZ) such thatZKi, j (M’ N/ ,F') € termgz¢) and
Ezx b ZKi,j/(M',N',F') = ZKi,j'(M,N,F). By definition[IB and definitiofi15, there
exists a variabley € bound(¢) N bound()) and a termZ bound toy in ¢ and¢ such that
ZKi, j/(M",N", F") € termgZ), free(Z) N bound(¢) = 0, andN/¢ = N;. If Ezx F
Public;(Z)y = N{, then we can repladéublic]() by N7. Otherwise(Z = ZKi 5 (M",N",

F"))¢ holds and(Z = ZKi, j '(M",N",F")) does not hold, as desired. By Definitibal 13,
ZKi, j/(M", N", F") and N are in normal form with respect tpandy.

We can similarly prove that it is possible to remove every subterm of the Y@, (F, Z) that is not in
(F, h,1)-normal form. At the end of such a process, possibly appliel tove get two terms\/’ and N’ in
(F, h,1)-normal form with respect tg and> such that M’ = N’)¢ holds and M’ = N’)i does not hold,
as desired. O

We can now formulate the theorem stating that verifying stagjuivalence on frames obtained by the encod-
ing suffices to prove static equivalence on the original frames.

Lemma 5 (Preservation of Static Equivalence)Letgb andq,z) be similar and(F, h, 1)-valid frames. Lep be
the (F, h, l)-dynamic compilation. I&p ~* Ena VP theng ~
FZK

Proof. By Definition[I0, we have to prove thdi;x - (M = N)¢ < Ezx b (M = N)y, for every
M,N € Ts,, only it B = (M = N')ép & ELR'F (M = N')yp, for everyM',N" € Tyrn..

FZK
Suppose that there exidf, N such that M = N)¢ holds and M = N)« does not hold. By Lemnid 4, we
can assume that/ andN are in(F, h,[)-normal form with respect t¢ and«. By LemmdB,Mp = Np)pp
holds and(Mp = Np)ip does not hold. Thereforep andip are not statically equivalent, yielding a
contradiction.

]

The following lemma asserts that the equivalence of the teauosrring in input labels does not affect labelled
bisimilarity.

Lemma 6 (Equivalent Labels) Let A and B be extended processes such tHat) A’ (20 B’, and
¢(A) ~f,, ¢(B). Then for everyV such thatEzx = M@(A) = N¢(A) and 4 "%
B Y p.

A’, we have that

18

Proof. Since the frames of the two extended processes are statically equivalent, we haveythat
M¢(B) = N¢(B) anddom¢(A)) = dom(¢(B)). Possibly after applying--renaming on bound names,
we get the result by applyingvl ScCoPg and SRUCT. O

We can finally show that verifying labelled bisimilarity onterded processes obtained by the compilation
suffices to prove labelled bisimilarity on the original extended processes. With ThEbrem 3, this proves Theo-
rem[l as desired. In the following, for evei¥, h,)-valid A = vn.vy.({M /z}|P), we write Apo to denote
vn.vy.({M /z}p|Po).

Lemma 7 (Preservatlon of Labelled Bisimilarity) Let A, B be extended processes such thht =
vn.vy. ({M/:c}|P) = vit' vi.({M'/T}| P'), for some(F, h,1)-valid P and P’ and vii.vj.{M |z} ~
vn'.vy. {M’/x} Leto be the(}‘, h,l) static compilation ang be the(F, h,[)-dynamic compilation. If
Apo =~ NE]:hl Bpo, thenA ~ EZK B.

FZK
Proof. SinceApo MEMJ Bpo, we can consider the smallest symmetric reIaﬂR:frgziEf,h’l satisfying the

FZK FZK
conditionddL[R, andl 3 of Definitidndl1 and such tHaic R’ Bpo. Givenp ando, let us define the relatioR
as the smallest symmetric relation satisfying the following conditions:

1. for every(F, h,l)-valid A, B such thatdpoR' Bpo and¢(Apc) ~ ¢(Bpo), we have thadR B.
2. foreveryA, B, A', B’ such thatdR B, A =g, A’ andB =g, B’, we have that’RB’.

We want to prove thak satisfies the conditioris [, 2, aidd 3 of Definitian 11.

Condition[l We want to prove that for every B such thatAR B, we have thap(A) =3, ¢(B). If ARB,
then there existF, h,1)-valid A’ and B’ such thatd =g, A’, B =g, B, andA’'poR'B'po. By
definition of R, ¢(A’po) ~ ¢(B'po) andp(A po) Py ¢(B'po). Itis easy to see that(A’) ~
ZK
¢(B'). By Lemmalb,¢(A") ~5, ¢(B’). Since strucﬁ[ural equivalence preserves static equivalence,
¢(A) =5, ¢(B), as desired.

Condition2 We want to prove that for evedy B such thatAR B, we have that (ifA — A, thenB —* B;
and A; R B, for someB’). If ARB, then there existF, h,l)-valid A’ and B’ such thatd =g, A’,
B =g, B, andA'poR’'B’'po. By Lemmd2, for everyd; such thatd — A, there exists &F, h, [)-
valid A} such thatd’ — A/, A} =g, A1, andA’poc — A po; we can find similarB; and B for B
and B’, respectively. By LemmEl 2 and Definitienl15, it is easy to seedidt po) ~ ¢(Bjpo). By
definition of R, A} R B} and, sincep is closed by structural equivalencé; R B;, as desired.

Condition[3 We want to prove that for every, B such thatAR B, we have that (ifA & 4; and fo(p) C
dom(A4) andbn(u) N fn(B) = 0, thenB —*£—* B; and A;RB; for someB;). If ARB, then
there exist(F, h,1)-valid A’ and B’ such thatd =g, A, B =g, B’, andA'pcR'B’po. By Lemma
2 and Lemm&l6, for everyl; such that4d £ A4, there exists &F, h,l)-valid A} such thatd’ A Al
Al =g, A1, andA'pc — Alpo; we can find similarB; and B} for B and B, respectively. By
Lemmal2 and Definitiol15, it is easy to see thatl| po) ~ ¢(B]pc). By definition of R, A|R B
and, sincep is closed by structural equivalencé; R By, as desired.

ThereforeA ~4, B, as desired.
ZK

19

then follows directly from Lemriih 7 siregand ~ coincide in the applied pi-calculus.

In some cases, the analysis of observational equivalence using the tool PidVerif [7] does not terminate due
to the presence of the constructerand Vv and their equations. In these cases, it is useful to remoard
v from the equational theory if they are not used in the protocol. Protocols often contain these constructors
only in the formulas of zero-knowledge proofs. Then, after compilation, the protocol does not comtaih
Vv any more, but the equational theory produced by the compiler does. In these cases, the following theorem
often allows to modify the equational theory produced by the compiler in such a way tad vV do not
occur any more:

Theorem 4 (Unfolding) GivenF, h, 1, let E,fzﬁl be the equational theory defined in Table 6. Z&tC F

and7}; p,..., 7/ p be tuples of/avrityi + j associated to eacly, j, F') € F', wheren = n; ; p. Asiume

that for every(i, j, F') and tuplesM = M, ..., M;; of arity i 4 j, we have that @k, o such that\/ =
k 5O = EF}—Zﬁl H F{M1 Z/041 Z}{MZJrl ZJFJ/ﬁLJ} = true) where M; i = = My,...,M; and M/L'+17Z'Jrj =

Mz+1, ..., M;, ;. LetE be obtained by replacing all the rules containiRgK? , for every(i, j, F) € F', by
the foIIowmg set of rules:

Ver!;(ZK} (7 (jljF)) = true, ..., Ver[;(ZK[; (77, p)) = true
Pubhck(ZK (Z,9)) = yk
FormuIa(ZKw(:c,g“/)) =

Z_]’

ThenELN\ {(M, N) | PZK; occursinM or N A (i,§,F) € F'} = E

Note thatEFfZﬁl\{(M N) | PZKE ;joceursinM or NA(i, j, F') € F'} = Etrivially implies the preservation

of observational equivalence, smEeZKF is a private constructor not used in the protocol and thus never
appears in terms produced by the protocol or the adversary.

Proof. All the equations definin@,jfz’ﬁl and depending oRZK?’ ; have a direct counterpart in the definition

of E. The only subtlety concerns the equations for the verlflcatlon of zero-knowledge proofs: for every
(i,5,F) € F', M, N such thatF{M; [N Z+1,]/ﬁ1j} = true, ELy' F Ver!,(PZKE, (M, N V, true)) =

true can be exploited to proVéer (ZKF (M, N)) = true. However, for ever>(z j,F) € 7', M, N there
eXIStTZ]F,U such thatM, N = 7%q if and only if EL;le' = F{M; /s, Miy1/Br;} = true. Therefore
E,fzﬁl - Verl (ZKF (M N)) = true if and only if E + Ver’’ (ZKF (M N)) = true. O

Additionally, after having removed all occurrencesroénd \V, we need to be able to remove their equational
rules. The soundness of this transformation is shown by the following simple lemma:

Lemma 8 (Removal of A and V) Let Ey be an equational theory with signatubg, and A,V ¢ %, and
true € Xy. LetX; := Xg U {A, V} and letE; be the smallest equational theory over containing £, and
the equationg A(true, true) = true, V(true, x) = true, V(z, true) = true}. Let3, := ¥, and letE; be the
smallest equational theory ovek, containingEy. Then for all processeB and () not containing/ or V, we
have thatP ~g, Q ifand only if P ~p, Q.

Proof. The proof has the same structure as the proof of TheBrem 1. We first define a notion of normal form for
Tx,, terms with respect t@, requiring that for any term of the form(M;, Ms) (resp.V(M;, Ms)) occurring
therein,Ezx ¥ Mi¢ = true or Ezx ¥ Mg = true (resp. Ezk ¥ Mi¢ = true and Ezk ¥ Ms¢ = true).

We then define a notion of validity for terms and plain processes, which requires #rat\ do not occur
therein. The definition of validity for frames and extended processes is similar to Deflalion 13, where the
new definition of normal form and validity for terms and plain processes is taken into account. Finally, the
compilation fromTxy;, to Ty, is simply defined as the identity function. It is easy to see that Propo&ition 1,
Propositiorf2, and Lemnfia 1 still hold. Since the identity function is bijective, we have the double implication
in Lemmé&® and Lemmid 7, as desired. O

20

The previous proof shows that the framework proposed in #tian provides a methodology for proving the
soundness of any transformation of equational theories for which Propddition 1, Proddsition 2, andllemma 1
hold.

5 Case Study: Direct Anonymous Attestation

To exemplify the applicability of our theory to real-world protocols, we analyze the security properties of the
Direct Anonymous Attestation (DAA) scherig [9]. DAA constitutes a cryptographic protocol that enables the
remote authentication of a hardware module called the Trusted Platform Module (TPM), while preserving the
privacy of the user owning the module. Such TPMs are now widely included in end-user notebooks.

The goal of the DAA protocol is to enable the TPM to sign arbitrary messages and to send them to an
entity called the verifier in such a way that the verifier will only learn that a valid TPM signed that message,
but without revealing the TPM'’s identity. The DAA protocol relies heavily on zero-knowledge proofs to
achieve anonymity.

The DAA protocol is composed of two subprotocols: jbm protocol and theDAA-sign protocal The
join protocol allows a TPM to obtain a certificate from an entity called the issuer. The protocol ensures that
even the issuer cannot link the TPM to its subsequently produced signatures. The DAA-sign protocol enables
a TPMto sign a message. This signed message is then verified by the verifier. The DAA protocol includes also
a rogue-tagging procedure preventing corrupted TPMs from getting certificates and authenticating messages.

Every TPM has a unique id as well as a key-pair cattedorsement kefEK). The issuer is assumed to
know the public component of each EK. We assume further a publicly known $tringcalled the basename
of the issuer, as well as a publicly known unique string,, for each verified/. Every TPM has a secret seed
daaseediy that allows for deriving secret valugs,; := H (daaseed ;4, cnt) whereH is some hash function.

We will call f.,; the f-value for counternt. Each such f-value represents a virtual identity with respect to
which the TPM can execute the join and the DAA-sign protocol.

5.1 Join protocol

In the join protocol, the TPM can receive a certificate for one of its f-valfigsom the issuer. Such a
certificate is basically just a signature ¢rof the TPM. However, since we do not want the issuer to learn

f, we have to use blind signatures, i.e., the request from the TPM to the issuer cotitai(s, v), for some
randomo, instead of justf. Furthermore, for reasons that will become clear in the description of rogue-
tagging below, the TPM is required to also send the hash Véjue- exp((z, f) along with its request where

(7 is a value derived from the issuer’'s basename;. The functionexp constitutes an exponentation in

the original specification of DAA; we model it as a hash function with two arguments. Since we do not want
the TPM to use different f-values in the computation\gf and ofblind(f, v), we have to attach a ZK proof

that the same f-value has been used in both cases. After checking the proof, the issuer signs the blinded
f-value blind(f,v) and returns this signatute := blindsign(blind(f,v), skr). Thencert := unblind(z,v)

is a valid blind signature orfi. This certificatecert will be used for the DAA-sign protocol. Since we want

to guarantee that only valid TPMs can receive certificates, the TPM authenticates all its communication by a
challenge-response nonce handshake: the issuer outputs a nonce encrypted by the TPM’s public endorsement
key, and the TPM proves its identity by hashing the nonce together with the blinded folialdef, v). The

21

join protocol has the following overall shape:

TPM Issuer

id, ZK(f,v;blind(f,v), N1 13 Fjoin)—————>

NCasym (nonce,pk;q)

hash(blind(f,v),nonce)
blindsign(blind (f,v),skr)

with Fjin := (81 = blind(a1,a2) A B2 = exp(fs,a1)). Inour calculus, we can model the behavior of
the TPM in the join protocol as follows:

tpmjoin := let f = hash(pair(daaseed(id), cnt)) in

V.
let U = blind(f,v) in
let (1 = hash(pair(ny, bsny)) in

let Nt = exp(Cr, f) in

let zkp = ZK(f,v; U, N1,(1; Fioin) in
pub(pair(id, zkp)).

pub(encn).

let nonce = deceym (encn, sk(ek(id))) in
pub({hash((U, nonce)))

pub(x).

let cert = unblind(z,v) in

if blindver(cert, f, pk(issuerK)) = true then
event JOINED(id, cnt, cert).

och(cert)

Here we usdet x = M in P as syntactic sugar faP{)//xz}. The occurence of an eveif is modeled
asc¢(M) wherec is a distinguished channel used only for events. Given the explanations above, most steps
in this process should be self-explanatory, however, a few points merit further explanation: The secret seed
daaseegq; is modelled by the private constructdsaseed taking as inpuid. In the computation of; :=
hash(pair(ni,bsny)), ny is a free name. In the original DAA protocall [9], the intedeis used here. For
communication with the issuer, we use the channél. The public keyspk;; and pk; are modeled as
pk(ek(id)) andpk(issuerK) whereek andissuerK are private constructors. That is, bk(id) we model a
secret function mapping a TPM'’s identity to the endorsement key pair. We then use the opgratapk
to access the secret and the public key. The fundtiarerK is nullary since, for the sake of simplicity, we
model a single issuer. The private channél will later be modeled as a secret channel to pass the received
certificate to the DAA-sign process.

22

Accordingly, we model the issuer’s part in the join protocefallows:

issuer := ! pub(msg).
let id = first(msg) in
let zkp = snd(msg) in
if Verg 3(Fjoin; 2kp) = true then
let U = Publicy (zkp) in
vnonce.
pub(encasym(nonce, pk(ek(id)))).
pub(hashn).
if hashn = hash((U, nonce)) then
let N = Publica(zkp) in
let ¢ = Publicg(zkp) in
if rogue = true then 0 else
if rogueid = true then 0 else
if ¢ = hash(pair(ny, bsny)) then
let cert = blindsign(U, sk(issuerK)) in
event CERTIFIED(id)
pub{cert)

In this processyogue and rogueid represent predicates depending®n¢ andid. These are used for the
detection of rogue TPMs. We will specifypgue and rogueid in more detail below when we discuss rogue
detection.

5.2 DAA-sign protocol

After successfully executing the join protocol, the TPM has a valid certificatefor its f-value f signed

by the issuer. Since we only want valid TPMs to be able to DAA-sign a messagiee TPM will have to
convince a verifiel that it possesses a valid certificate't. Of course, the TPM cannot directly sea-t

to the verifierV/, since this would reveaf. Instead, the TPM produces a zero-knowledge prdpfthat it

knows a valid certificate. If the TPM, however, would just sérich, m) to the verifier, the protocol would be
subject to a trivial message substitution attack. We instead combivéh the proof such that one can only
replacem if one redoes the proof (and this again can only be done by knowing a valid certificate). Fortunately,
this can easily be done in our formalism by includingn the public parameters of the zero-knowledge proof

zkp (there is no condition that a parameter included in the proof actually has to be used by the formula). In
this fashion we produce a kind of zero-knowledge signature that can only be forged if the attacker is able to
produce a valid proof. Furthermore, we again include a vaiue- exp((, f) whose importance will become

clear below. The overall shape of the DAA-sign protocol is hence as follows:

TPM Verifier

ZK(f7cert§N7<:ka7m§Fsign) ——

with Fggn = (1 = exp(f2,a1) A blindver(as, a1, 33). An interesting point here is the choice Of

By prescribing different derivations af, we get different modes of DAA-signing: an anonymous and a
pseudonymous one. In case of anonymous DAA-signjrig,a fresh name chosen by the host. In this case,
two signatures by the same TPM will contain valiés= exp((, f) andN’ = exp(¢’, f) for different(, (’, so

the attacker will not be able to link these signatures. In the case of pseudonymous DAA-signatures, however,
we derive(in a deterministic fashion from the basenamea of the verifier. Then any two signatures for

the same verifier using the same f-value will have the same valD& bence these signatures can be linked.

23

It will not be possible, however, to link these signatureshiméxecution of the join-protocol or to signatures
for other verifiers.V takes the role of a verifier-specific pseudonym.
We now discuss how to write this protocol in our calculus. We start with the anonymous variantiwhere

is a fresh name.

daasigna :=

daavera :=

vC.

let f = hash(pair(daaseed(id), cnt)) in

let N =exp(C, f) in

let zkp = ZK(f, cert; N, ¢, pk(issuerK), m; Fyign) in
event DAASIGNEDA(id, cnt, m).

pub(zkp)

pub(zkp).

if Verg 4(Fyign; 2kp) = true then
let N = Publicy(zkp) in

let ¢ = Publicy(zkp) in

if Publicg(zkp) = pk(issuerK) then
let m = Publicy(zkp) in

if rogue = true then 0 else

event DAAVERIFIEDA(m)

As in the case of théssuer process,rogue is a predicate depending @nand N that we will elaborate
upon further when we discuss rogue detection below. The pseudonymous variants of these processes are
similarly defined: The pseudonymous DAA-signing proagssignp is defined likedaasigna, except that/¢
is replaced byet ¢ = hash(pair(ny, bsny)) in . The corresponding verification processaverp is defined
like daavera, except that aftetet (= Publica(zkp) in we insertif (= H(pair(ni, bsny)) then . Further-
more, to be able to formulate a more fine-grained authenticity property below, we output the more informative
eVentsDAASIGNEDP(id, cnt, bsny , m) andDAAVERIFIEDP(m, bsny, N) instead oDAASIGNEDA(id, cnt, m)

24

andDAAVERIFIEDA(m), respectively. These changes yield the following two processes:

daasignp := let ¢ = hash(pair(ny, bsny)) in (%)
let f = hash(pair(daaseed(id), cnt)) in
let N =exp((, f) in
let zkp = ZK(f, cert; N, ¢, pk(issuerK), m; Fyign) in
event DAASIGNEDP(id, cnt, bsny,m).

pub(zkp)

daaverp := pub(zkp).
if Verg 4(Fiign; 2kp) = true then
let N = Publicy(zkp) in
let ¢ = Publicy(2kp) in
if ¢ = hash(pair(ny, bsny)) then (%)
if Publicg(zkp) = pk(issuerK) then
let m = Publicy(zkp) in
if rogue = true then 0 else

event DAAVERIFIEDP(m, bsny, N)

with ny := n;. The most important changes with respect to the anonymous DAA-sign protocol are marked
with (x). Note that we parametrized these processes with respect to thewateen; used in the computa-

tion of {. This is to be able to express the changes needed for circumventing the attack described in [27], see
below.

5.3 Rogue-tagging

So far, we presented the DAA protocol under the assumption that no TPM is compromised. A TPM is a single
chip so that it is very difficult to extract private information from a TPM. Extracting such private information
is however not impossible, so we have to expect that a few TPMs can get compromised. But as soon as a
single TPM is compromised, the attacker can sign arbitrary messages, and these signatures even cannot be
traced to this specific TPM. Even worse, the attacker could release the f-value and a corresponding certificate
on the Internet; this would allow everyone to fake DAA-signatures. To capture this last case, a so-called rogue
list is introduced that contains all f-values that have been published on the Internet. Furthermore, the issuer
maintains a list of revoked TPM ids. Since the communication with the issuer is authenticated, the issuer can
refuse to issue certificates to a revoked TPM. Already issued certificates stay valid. To address this problem
— note that in every protocol execution (join or DAA-sign) based on some f-vali¢he TPM sends a pair
(¢, N)with N = exp(¢, f). So given a list of rogue f-value := (fi,. .., f.), we can check whethgtr € F
by checking whetheN = exp((, f;) for somei € [1,n]. Thus the attacker cannot use a certificate relative to
an f-value that has been marked rogue.

To model this mechanism in our calculus, we introduce two predicatgs:id and rogue in the issuer
and verifier processes above. The predicatecid (used only be the issuer) is defined to evaluate to true iff
the TPMid is marked rogue. Soif, e.g., the ids, ids, id3 are marked rogue, we would seyueid := (id =
idy V id = ids V id = id3). The predicateogue checks whetheN = exp(¢, f’) for somef’ on the rogue
list, so if, e.g., the f-valuegi, f2, f3 were rogue-listed, we would definegue := (N = exp((, f1) VN =

EXp(C, f2) VN = EXp(C, f3))

25

5.4 Security properties of DAA

We will now discuss the main security properties of DAA and how to model them in our calculus.

5.4.1 Authenticity of the DAA-sign protocol

The first property we would like to model is authenticity: If the verifier accepts a messadpensomel PM
has DAA-signed this message. To model this, we consider the following process:

issuer|pub(pk(issuerK))|!pub(id). TPMs|!daavera|!daaverp

The outputpub(pk(issuerK)) reflects that the public keyk(issuerK) is publicly known. if we omitted this
output, the adversary could not generate this term, discerK is a private name (otherwise the adversary
would knowsk(issuerK)). The subproces3 PMs reflects that we require authenticity to hold even if the
adversary controls the execution of an arbitrary number of TPMs in an arbitrary fashion (except for learning
their secrets). We model this process as follows:

TPMs :=!pub(cnt).voch.(tpmjoin|
(och(cert).!pub(m).(daasigna|pub(bsny).daasignp))).

Thus for any pair ofd, cnt received from the adversary, this process performs a join, and with the certificate
cert received from the issuer, it DAA-signs any messaganonymously or pseudonymously with respect to
arbitrary basenamésny,. Note how we used inputs to bind the free variabléscnt, m, bsny in tpmjoin,
daasigna, anddaasignp.

Given this process, authenticity is defined as the fulfillment of the following two trace properties:

DAAVERIFIEDP(m, bsn, N') = DAASIGNEDP(id, cnt, bsn, m)

DAAVERIFIEDA(m) = (DAASIGNEDA(id, cnt,m) V
DAASIGNEDP(id, cnt, bsn,m)).

Intuitively, the first property means that if an eveDAAVERIFIEDP(m, bsn, N) occurs, then also
DAASIGNEDP(id, cnt, bsn, m) occurs in that tracevith the same values dfsn and m, i.e., when a veri-
fier accepts a pseudonymously signed messagthen a valid TPM actually sent that messagdor that
verifier. Similarly, the second property guarantees that if a verifier accepts a message as anonymously signed,
that message has been signed anonymously or pseudonymously by some valid TPM. (An inspection of the
protocol reveals that we cannot expect pseudonymously signed messages hot to be accepted by anonymous
verification.) We refer tf Definifion] 8 for a formal definition of these trace properties.

Trace properties such as the above authenticity properties can be verified with the mechanized prover
ProVerif [4]. We applied the compilation described in Secfibn 4 and feed the output — now a process in a
finitely generated equational theory — to ProVerif. ProVerif successfully verifies the authenticity properties.
The running time of this proof is 3 seconds on a Pentium 4, 3GHz. A more detailed description of the
necessary steps is given[ln-Secfiod 6.2. The tool implementing the compiler from $ection 4.1 can be found
at [18]. So far, we have not investigated the case that some TPMs are rogue-listedg(ie= rogueid =
false). An analysis of this case can be foundin-Secfion 6.2.3.

5.4.2 Authenticity of the Join Protocol

In contrast to the DAA-sign operation, after a join the issuer learns the identity of the joining party (since
the joining party authenticates itself using its endorsement key). This is necessary for verifying that no rogue
TPM joins but is also used to limit the number of times a given TPM can join with respect to different f-values.

26

It is therefore a natural question whether the following eatfcity property holdsJoOINED(id, cnt, cert) =
CERTIFIED(id). We investigated whether this property holds in the following process which represents a
situation where the attacker may corrupt or control arbitrary TPMs.

Ipub(id).leaktpm|leakpubliclissuer| TPMs|!daavera|!daaverp
with L . _
leaktpm := event LEAKTPM(id).pub(daaseed(id)).pub(sk(ek(id))).pub(pk(ek(id)))
and L L
leakpublic := pub(pk(issuerK))|!pub(id); pub(pk(ek(id))).
As it turned out, ProVerif proves that the property is not fulfilled and finds the following attack:

TPMp TPMy4 Issuer
B, ZK(...blind(f,v)...)————
A, ZK(...blind(f,v)...)———
~<~——————encasym(n,pka)

<~ €NCasym (n,pkB)

hash(blind(f,v),n)
blindsign(blind(f,v),skr)

The adversary corrupts TPMand retrieves its endorsement key. When the (uncorrupted) g Riis, it
sends a ZK proo¥Z containing some f-valug to the issuer and authenticat&sas coming fromB. The
adversary intercept® and sends to the issuer and authenticat&sas coming fromA. The issuer checks
the authentication and the ZK proof. Since the ID®{s not included in the ZK proﬁfthe issuer accepts
and issues a certificate fgr Then the adversary forwards the certificatéBtand B successfully checks the
certificate. After this interaction, the issuer believes to have certfiednd B has successfully joined. To
the best of our knowledge, this attack was not known before. Note that this attack also violates the security
guarantees given i [ﬁ].Fortunater, the DAA protocol can be easily modified to exclude this attack: One
simply includes the ID of the joining TPM in the ZK proof as an additional public parameter. Then the
issuer checks whether the ZK proofs contains the corre@ WBing ProVerif and our compiler, we could
then successfully verify that the modified protocol indeed satisfies the above trace property. Note that this
modification can be applied to the original DAA protocol from [9] without loosing efficiency by including
the ID of the TPM in the hash value:= H (c;||n:) (see the protocol description inl [9]).

Besides the propertyoINED(id, cnt, cert) = CERTIFIED(id), there are a few more properties that are
related to the authenticity of the join protocol. First,

CERTIFIED(id, exp(z, H (pair(daaseed(ids), cnt))))
= STARTJOIN(id, exp(z, hash(pair(daaseed(id), cnt)))) A id = ido
V' LEAKTPM(id) A LEAKTPM(id2).

Here the evenSTARTJOIN(id, f) is defined to be raised as soon as an honest TPM tries to join witl ID
and f-valuef (i.e., this event is raised at the beginningtpfnjoin). Intuitively this property means, if some
process joins using an f-value that belonggde but the issuer believes that joined, then (i) the join was
performed by an honest TPM andid, = id, or (ii) the adversary has corrupted both TPMsandid; (i.e.,

At least not directly. An honestly generated f-value depends on the ID, however, this is not verified in the ZK proof.

2They defined security via an ideal functionality. In this ideal functionality, the issuer is notified when a party joins, and a party
can check whether it joined successfully (e.g., by DAA-signing a message).

®Note that the statemelff.;, is not changed, we do not prove anything about the ID. However, similar to the messiaghe
signing operation, the attacker cannot replace the ID by some other ID without producing a new proof from scratch.

27

accessed their internal secrets). Further, we want thapitlispossible that a message is successfully signed
using an f-value belonging to an I if the TPM with that ID has either been certified or corrupted.

DAAVERIFIEDA(m, exp(z, H (pair(daaseed(id), cnt)))) = CERTIFIED(id, N)|LEAKTPM(id).
DAAVERIFIEDP(m, bsn, exp(z, H (pair(daaseed(id), cnt)))) = CERTIFIED(id, N)|LEAKTPM(id).

Note that we cannot guarantee that if the TRMs corrupted then it uses an f-value that belongs to it. It can
use an f-value that belongs to another corrupted TPM. So the above property only guarantees that a corrupted
TPM cannot “steal” the f-value of another uncorrupted TPM. (As done in the attack described above.)

All these property are proven by ProVerif not to hold in the original DAA protocol but to hold in our
modified protocol.

5.4.3 Anonymity

The second property we would like to examine is the anonymity of the anonymous DAA-sign operation.
In other words, if two TPMg1, 75 might have signed a given message, the attacker should not be able to
distinguish which TPM has signed the message. Obviously, this can be formalized as observational equiva-
lence between two processEs, P, where inP; the TPMT; signed the concerned message. E.g., a natural
formulation would be to defin®, and P, as follows:

P; := leak |
(let (id, ent, och) = (id1,mq, int1) in tpmjoin) |
(let (id, ent, och) = (ida,n1, int1) in tpmjoin) |
(intq(certy).into(certs).

let (id, cnt, cert) = (id;, nq, cert;) in daasigna)

with leak := (!pub(id).pub(pk(ek(id)))) [pub(pk(issuerK)) | pub(sk(issuerK)), whereids, ids,n; are
free names anéhtq, inty are private channels for transmitting the certificate fromtfmjoin process to the
daasigna process. Théeak process leaks all public information and all secrets of the issuer. This models the
case that the issuer is corrupted, thus making the security property stronger since anonymity holds even when
the issuer colludes with the attacker. The two invocationipefjoin request certificates for different idg;
andid,. These certificates are then assigned to the variables and cert,. Then a message (m is a free
name indaasigna) is signed with respect to eithéd; andcert; or id, and cert,, depending on whether we
consider the proceds, or P,. Anonymity is then defined as the statement thaaind P, are observationally
equivalent.

Although we can successfully prove this fact using our compiler and ProVerif, a closer inspection reveals
that this property is not very general. For example, it does not cover the case that tHE, TikdtIsigns a few
messages, and then eithigr or T, sends another message (so that the adversary can try to link messages).
Further it does not take into account that the adversary might influence (i.e., choose) the messages to be
signed, or that th&; signs several messages, or that additionally pseudonymous signatures are produced. To
capture all these cases, we need a much more complex security definition which is captured by the following
game:

1. Theissuer and an arbitrary number of TPMs are corrupted (i.e., their secrets leak).

2. Two non-corrupted challenge TPM ids$,, ids are chosen. Two cnt-valueit, cnt, are chosen.

3. The TPMsid4, id- join with respect to cnt-valuent, cnto, respectively.

4. The adversary may ask both challenge TPMs to execute the join protocol and to sign messages chosen

by the adversary anonymously or pseudonymously with respect to either the certificates obtained in
StepB or the certificates obtained in this step. This may happen arbitrarily often.

28

Table 8 The processe®;, and P in the definition of anonymity. The numbers in square brackets refer to the
steps in the description of the security property.

M P :=leak | (pub(x). let id = corrupt(z) in pub(daaseed(id)).pub(sk(ek(id)))) | (1)
B (let (id, ent, och) = (idy, cnty, int1) in tpmjoin) | 2
B (let (id, ent, och) = (ida, cntg, intg) in tpmjoin) | (3)
@ (let id = idy in TPMs) | (let id = idy in TPMs) | 4
B (mtl (certy).into(certs). (5)
H ((pub(m). let (id, ent, cert, pub) = (id;, ent;, cert;, pubT') in daasigna) | (6)
2] ('pub(m). let (id, ent, cert) = (idy, cntq, certy) in daasigna) | (7)
2] (Ipub(m). let (id, ent, cert) = (ida, cnte, certs) in daasigna) | (8)
2] ('pub(m). pub(bsny). let (id, ent, cert) = (idy, cnty, certy) in daasignp) | 9)
2] (Ipub(m). pub(bsny). let (id, cnt, cert) = (ida, cnta, certs) in daasignp)) (10)

5. The adversary may ask the challenge TRIMto sigh a message chosen by the adversary with respect
to the certificatecert;. Herei € {1,2} depending on whether we are running the prodgssr P, (and
the adversary has to distinguish whether 1 or i = 2). This may happen arbitrarily often.
We model this by the processé%, P, given in[Table B. These processes constitute a formalization of the
game depicted above. Note that although the adversary’s possibilities in[life$ (7—10) seem to be subsumed
by the invocations of the subproceE®Ms in line (@), there is a slight difference: The procd¥3Ms does
not allow the attacker to sign messageth the certificates obtained in StEb Bhe constructocorrupt in
(@) is used to generate an infinite supply of ids of corrupted TPMs. Finally, we additionally give the observer
the capability to distinguish the messages sent by the challenge TPM from the messages sent by the other
processes: this is technically achieved by letting the challenge TPM use a different public ghdrinel
The property of anonymity is then formalized as the statementithand P, are observationally equiv-
alent, which is a statement accessible to ProVerif. When directly applying ProVerif to the output of the
compiler described ii“Secfion #.1, however, ProVerif does not terminate. Instead, we additionally have to
rewrite the resulting theory using the technique given by Thebiem 4 and LElnma 8. After this additional step,
ProVerif successfully verifies that, and P, are observationally equivalent. The running time is 117 seconds
on a Pentium 4, 3GHz. More details can be founfIn-Secfion]6.2.3. Note that in the case of anonymity, we
do not need to consider the case of rogue-listing, since neither the issuer nor the verifier appear in corrupted
form.

5.4.4 Pseudonymity

Modeling the pseudonymity requirements is similar to anonymity; however, there are a few additional
subtleties to be considered. A naive approach of modeling the security of the pseudonymous signatures
would be to take the process describedin Table 8, but replaaggna by daasignp in line (@) and let the
adversary choose the value bfny in that line. This denotes the fact that the adversary can now ask the
challenge TPMd; to perform a pseudonymous signature. The resulting security property, however, cannot
be expected to hold since the adversary could request a pseudonymous DAA-signature from the challenge
TPM id; via line (8) and a pseudonymous from the TR# via line (). Then the adversary could compare
whether both signatures carry the same pseudaNyiifiso we have = 1, otherwise we havé= 2. Instead,
we must require that the signatures produced in lini€s}(9,10) to use a different basenames than thdsk in line (6).

29

Table 9 The processe®; and P in the definition of pseudonymity. Compare also viith Table 8.

P, := leak | (pub(z). let id = corrupt(z) in pub(daaseed(id)).pub(sk(ek(id)))) | (11)
(let (id, ent, och) = (idy, cnty, int1) in tpmjoin) | (12)
(let (id, ent, och) = (ida, cnte, inte) in tpmjoin) | (13)
(let id = idy in TPMs) | (let id = ids in TPMs) | (14)
(mt1 certl .inta(certs). (15)
(Ipub(m). let (id, ent, cert) = (id;, cnt;, cert;) in daasigna) | (16)
((‘pub(m pub(m). let (id, cnt, cert, bsny) =

(id;, cnt;, cert;, bsnVch(x)) in daasignp) | (17)
(Ipub(m). let (id, ent, cert) = (id1, cntq, certy) in daasigna) | (18)
(Ipub(m). let (id, ent, cert) = (idg, cnta, certy) in daasigna) | (19)
(Ipub(m).pub(x). let (id, ent, cert, bsny) =

(id1, cnty, certy,bsnVoth(z)) in daasignp) | (20)
(Ipub(m).pub(x). let (id, ent, cert, bsny) =

(idg, cnts, certy, bsnVoth(z)) in daasignp)) (21)

with

TPMs :=!pub(cnt).voch.(tpmjoin|(och(cert).!pub(m).
(daasigna|pub(x).let bsny = bsnVoth(zx) in daasignp))).

We do this using two different sets of basenames. The basenaltoered for requesting a signature from
the challenge TPMd; are of the formbsnVch(z) and those allowed for all other DAA-sign requests are of
the formbsnVoth(z) wherebsnVch andbsnVoth are constructors of arity. The resulting processdy , P»
are depicted il_Tabld 9. Note that we allow the adversary to request both anonymous and pseudonymous
DAA-signatures from the challenge TPM,;.

Using our compiler and ProVerif, we can show that and P, are observationally equwale[ﬂt The
verification of this fact takes 44 seconds on a Pentium 4, 3 GHz.

Our modelling inCTablel9 implicitly assumes that it is guaranteed that the basenamef the issuer
does not equal any of the basenames of the verifiers. (The basésamaf the issuer is modelled as a free
name.) Itis known that if the basename of the issuer may coincide with one of the verifiers basenames there is
an attack on the pseudonymity of the system [27}sH; = bsny, the valueg computed by thepmjoin and
thedaasignp processes are equal. If further both processes use the same ffyahgeresulting pseudonym
N = exp((, f) will also be equal. This allows to link signatures and joins. To model this, we niedglas
a term of the formbsnVch(z). More exactly, we set

P, := let bsnj = bsnVch(ng) in P,

and ask whetheP, and P, are observationally equivalent. As expected, the combination of our compiler and
ProVerif successfully detects the attack and outputs Bhatnd P, are not observationally equivalent. The
verification takes 26 seconds on a Pentium 4, 3 GHz.

“4As with the proof of anonymity, we have to apply Theofdm 4 and Lefdma 8 to ensure termination.

30

In [27] it is proposed to fix the protocol by using differentégers in the computation @fin the pro-
cessegpmjoin anddaasignp. We do this by defininguy, := ng instead ofny := nq in the definition of
daasignp. Using this change, our compiler together with ProVerif successfully determineB;thatd P, are
observationally equivalent. The verification takes 73 seconds on a Pentium 4, 3 GHz.

6 Mechanized Security Proofs for DAA

In this section, we will examine the practical applicability of the results of the previous sections to mechanized
security proofs. Instead of designing a new tool from scratch, we implemented a compiler that generates input
for the automated prover ProVelii [7] according to the description givenin Secfibn 4.1. This compiler together
with example inputs can be found &t [18]. To show how our theory is applied, we analyze two protocols,
namely the simple example protocol frém_Secfiod 3.3 and the DAA protbtol [9]. We will describe how to
prove different security properties of these protocols and also what pitfalls occurred in our investigation and
how to avoid these.

6.1 Example Protocol

We first examine the example protocol fréml3.3. Many of the techniques described here will also be used
in the more complex example of DAA below. We model the example protocol as follows (omitting the
specification of the base theory hﬁe):

free pub, A B.
private free priv,sl, s2,s3.

define zkproof =
| and(
or (or(eq(al pha2, betal), eq(al pha2, beta2)), eq(al pha2, bet a3)),
si gver (al phal, bet a4, al pha2)).

| et server = event GAVEAUTHFOR(Ss, A, B); out(priv,sign(pair(A B),sk(s))).
let B =in(priv,sig); if sigver(sig,pair(A B),pk(s))=true then

out (pub, zk(si g, pk(s); pk(sl), pk(s2), pk(s3), pair (A B); zkproof)).
let A = in(pub,zkp); if zkver(2;4; zkproof;zkp)=true then

i f publicl(zkp)=pk(sl) then

i f public2(zkp)=pk(s2) then

i f public3(zkp)=pk(s3) then

if fst(publicd4(zkp))=Athen

event GOTAUTHFOR(snd(public4(zkp))).
| et | eakpublic = out(pub, pk(sl)) | out(pub, pk(s2)) | out(pub, pk(s3)).

The syntax of this protocol should be mostly self-explanatory. Itis the syntax of ProVerif with a few additions
particular to our tool. Thelef i ne statement defines an abbreviatiokpr oof for the formula we use in
all ZK proofs and verifications (we useand instead ofand sinceand is a reserved keyword in proVerif).
The processer ver produces a signature gnir(A, B) using the secret kesk(s) and sends it td3 over
a secret channel. All server processtsre modelled using this single processr ver by instantiatings
with different identities.
The proces®8 then waits for a message from a server, checks whether this message constitutes a valid
signature ofpair(A, B) and then sends a ZK proof té that it knows a signatursi g that is valid with

°[14], filesi npl e. pvi .

31

respect to one of the keysk(s1), pk(s2), pk(s3) (without revealing which one). Note the syntax of the ZK
constructor: It takes arguments, ..., o;; 61, ..., 3;; F); the placement of the semicolons indicate which
arguments are privatex(,), which are public ¢,) and which is the formula to be proveR’).

The process\ waits for the proof sent b3 and assigns it to the variab#kp. It first verifies whether
zkp is actually a valid proof of the correct arit@(4) for the right formulazk pr oof . Further it verifies that
the public keys given in the ZK proof are the right ones and that the messagevhich B claims to know
a signature is indeed a pair haviAgs its first component. If s@& claims to have received authorization to
communicate with the process whose identity is given in the second component of

Finally, we need to model a fourth process. This is due to the fact that we had to declare the
server idssi,s2,s3 as private free names since otherwise the adversary would know the secret keys
sk(s1),sk(s2),sk(s3). Since the adversary should however kngkys1), pk(s2), pk(s3), we define a pro-
cesd eakpubl i ¢ that outputs these values on a public channel.

So far these processes stand by themselves and are not executed in a common context. How these pro-
cesses are actually executed depends on the property we want to prove.

We will now model the first security property. We require thatwill not accept to communicate
with B unless some server has signed an authorization. Or in the parlance of the events defined in
the protocol description above, we want that if the eveBTAUTHFOR(sender) occurs, then the event
GAVEAUTHFOR(server, recipient, sender) occurred earlier with the same valuesehder. This is modelled
by the following code fragmelﬁ:

conpi l er ZK.
passt hrough query ev: GOTAUTHFOR(sender)
==> ev: GAVEAUTHFOR(server, A, sender) .

process
| eakpublic |
(let s=s1 in server) |
(let s=s2 in server) |
(let s=s3 in server) |
(let s=s1in B) |
A

Here we see how we instantiate the vatué different server ids, so that we can use the single definition
of ser ver for all occurrences of the server: We runs several instancesmover , and in each of them we
substitutes with a different server id using tHeet statement. Similarly, we instantiate the procBs® that

it expects a message from sergdr. The first line of the code fragment indicates which property we would
like to prove. The keyworghasst hr ough simply indicates that this command should be passed through
directly to ProVerif and not be parsed by our compiler.

Finally, we have to tell our compiler what to do with our code. This is done by the stateroepi | er
ZK which instructs our tool to implement the compiler as describ&din Secfibn 4.1.

If we compile and execute this code (see REEADIVE file in [L8] for instructions) ProVerif successfully
determines that the required property is indeed fulfilled (the running time is less than one second on a Pentium
4, 3GHz). This property intuitively depends both on the soundness of the ZK proof (i.e., we cannot prove a
wrong statement) and on the unforgeability of the signatures.

We will now investigate a more complex property: We require that given the public communication
betweerA andB, we cannot determine which server authorized the communication. In other words, we want

®[1d], file si npl e- aut h. pvz.

32

observational equivalence between a process where setvauthorizesB and a process where sena2
authorizesB. This can be modelled as folloWs:

process
| eakpublic |
(let s=choice[sl,s2] in server)
(let s=choice[sl,s2] in B) |
A

In the language of ProVerif, thehoi ce operator is used to check for observational equivalence. The code
given here specifies two procesdgs P, whereP,; results from replacing every occurrencechbice[t, to]

by t;, and ProVerif tries to prove thd® and P, are observationally equivalent. In the present case, ProVerif
tries to prove observational equivalence between procé3sasd P, whereP; is an execution of our example
protocol whereB gets its authorization from servefl, and P is an execution wherB gets its authorization

from servers2. Unfortunately, however, on the input described above, ProVerif does not seem to terminate.
Experiments show that we need to get rid of the construd¢tarsd andor to allow for termination. Unfor-
tunately, we cannot just remove them from our equational theory, since our protocol actually uses them (in
zkpr oof). Even after applying our compiler, which removes all occurrences of the formutazk pr oof

from the process itself,and andor are still contained in the equational theory generated by the compiler
since this theory contains the following rule:

ZK§:4(Z'1, x2,Y1,Y2,Y3, y4) = PZK§:4(Z'1, x2,Y1,Y2,Y3, Y4,
land(or(or(eq(xg, y1)7 eq($2, yQ))? eq(w27 93))7 Sigver(xlv Y4, $2))) (22)

[Theorem ¥ allows us to remove this rule. It is easy to see that in our equational Eheary ThEorem 4 applies
with ng 4.F = 3and

7:21,4,F = (SI gn(x’Sk(y))apk(y)apk(y)ap%p&x)’
7:22,4,}7' = (SI gn(x73k(y))7pk(y)7p17pk(y)vpv?nw)’
7:3,4,F = (SI gn(x’Sk(y))apk(y)aplap%pk(y)’x)

Application offLemmalB then removes the rdlel(22). Instead, the rules

Ver§4(ZK£4(Si gn(xvsk(y))v pk(y)7 pk(y)7p27p37w) =true,
Very 4 (ZK3 4(si gn(, sk(y)), Pk (y), p1. Pk (y), p3,) =t T ue,
Ver§:4(ZK§4(Si gn(x’Sk(y))a pk(y)’pl)an pk(y),x) =true

are introduced (besides the obvious rules concerninguheic, constructor). Since now neither the process
nor the equational theory contaihgeind or or , by[Lémma®B we can remove the corresponding equational
rules.

These additional transformations can also be performed using our tool. For this, we have to add the
following additional commands to the input fle:

conpiler AlternativezZKVer (
zkver (2; 4; zkproof ; zk(si gn(x, sk(y)), pk(y); pk(y), p2, p3, x; zkproof)),
zkver (2; 4; zkpr oof ; zk(si gn(x, sk(y)), pk(y); pl, pk(y), p3, x; zkproof)),
zkver (2; 4; zkproof ; zk(si gn(x, sk(y)), pk(y); pl, p2, pk(y), x; zkproof))).

’[a8], file si npl e- obseq- nont erm pvz.
8[g], file si npl e- obseq. pvz.

33

conpi | er RenmpveEquati ons(or).
conpi l er RenobveEquati ons(l and).

(after theconpi | er ZK command). The first command corresponds to an applicatidn_of Thebrem 4.
The tuplesty, ..., t, are implicitly given by supplying terms of the forMer; ;(F, ZK; ;(t;, F)). Finally,
conpi l er RermveEquatl ons(¢) for a constructor removes all equations of the fore...) = ..

Using the resulting modified but equivalent (§ee Theorkm 4 and T efhma 8) equational theory, ProVerif
terminates and successfully proves observational equivalence, i.e., the adversary cannot distinguish which
server authorize® to communicate wittd. The verification takes 16 seconds on a Pentium 4, 3 GHz.

6.2 Direct Anonymous Attestation

We will now describe the mechanized analysis of the DAA protddol [9] described In Settion 5.

6.2.1 Join

First, we describe the basic definition of the various components of the DAA protocol (join and DAA-sign).
The join protocol is described by the following two procesgesjoin andissuer

define joinproof = | and(eq(betal, blind(al phal, al pha2)),
eq(bet a2, exp(bet a3, al phal))).

let tpnmjoin =
let f = hash(pair(daaseed(id),cnt))
new v;

let U= blind(f,v) in

| et zetal = hash(pair(nl, bsnl))

let NI = exp(zetal,f) in

let zkp = zk(f,v; U NI, zetal ;joi nproof)
event STARTJO N(id, N);

out (conm pai r (id, zkp));

i n(com?®, enchonce) ;

| et nonce=dec(encnonce, sk(ek(id)))

out (comm hash((U, nonce)));

in(comm A) ;

et cert = unblind(A V) in

if blindver(cert,f,pk(issuerK))=true then
event JO NED(id, cnt,cert);

out (och, cert).

l et issuer =
I in(comm nsgQ);
l et zkp = snd(nsg) in
i f zkver(2;3;]joinproof;zkp)=true then
let id = fst(msg) in
let U= publicl(zkp) in
new nonce;

°[19], filedaa. pvi .

34

out (comm®, enc(nonce, pk(ek(id))));

i n(comm hashednonce) ;

i f hashednonce=hash((U, nonce)) then

et N = public2(zkp) in

l et zeta = public3(zkp) in

if rogue=true then event ROGUEI (id) el se
i f rogueid=true then event ROGUEI D(id) else
i f zeta=hash(pair(nl, bsnl)) then

let cert = blindsign(U,sk(issuerK)) in
event CERTI FI ED(id, N);

out (comm cert).

These processes are ProVerif implementations of the corresponding procdsSSes In Séction 5.1. We added the
additional eventSTARTJO N, JO NED andCERTI FI EDto have to possibility of formulating additional
properties. In contrast f{g Secfionb.1, the communication channel is represented by the varabahich
we then instantiate with the public chanmelb or a private channel, depending on the property we model.
The predicatesogue andr oguei d can be defined usirdef i ne rogue = ... anddefi ne rogue
= ... depending on the situation. In most cases we wilrsegue = r oguei d = f al se to model that
no rogue checking occurs. The tejrai npr oof corresponds tdj., inSeciion 5.11. We also implemented
a variant of the DAA protocol where we use signatures instead of encrypted nonces for authentication. This
variant enjoys greater simplicity and may be preferred for first experiragnts.

For the analysis of protocols with rogue TPMs we will need an additional process. The precassr
will never issue a certificate to a TPM that is detected to be rogue, but we might want to model the case
that some TPMs have already received a certificate before they were marked rogue. In order to be able to
model this situation, we introduce the following procesgyuei ssuer that issues a certificate for a given
f-valueld

| et roguei ssuer =
I in(pub,v); out(pub,unblind(blindsign(blind(f,v), sk(issuerK)),v)).

The variablef will be assigned the correct value in our security properties usingtadirective. The nonce
v used for blinding the signature is chosen by the adversary to model that a rogue TPM is assumed to be
completely under the control of the adversary.

Finally, we also need to model the fact that the issuer is corrupted. This is achieved by giving all the
issuer’s knowledge to the adversE/:

| et | eakissuer =
('in(pub,id); out(pub, pk(ek(id)))) |
out (pub, pk(issuerK)) | out(pub, sk(issuerK)).

Similarly, we model that a given TPM is corrupIEj:

l et | eaktpm =
out (pub, daaseed(id)) | out(pub,sk(ek(id))) | out(pub, pk(ek(id))).

Finally, besides leaking private information of corrupted principals, the adversary should get all public
information:

| et | eakpublic = out(pub, pk(issuerK)) | !in(pub,id); out(pub, pk(ek(id))).

1T his variant can be enabled by settitignset f | ag nonceaut hent i cat i onin [Ig], file daa- confi g. pvi .
g, file daa. pvi .
1211g], file daa. pvi .
3[g], file daa. pvi .

35

6.2.2 DAA-Sign

We will now describe the modelling of the second part of the DAA protocol, namely the DAA-sign protocol.
The processes for performing an anonymous DAA-sign are defined as ffflows:

define signproof = |l and(eq(betal, exp(beta2, al phal)),
bl i ndver (al pha2, al phal, beta3)).

| et daasigha =
new zet a;
let f = hash(pair(daaseed(id),cnt)) in
et N = exp(zeta,f) in
| et zkproof = zk(f,cert; N, zeta, pk(issuerK), msignproof) in
event DAASI GNEDA(i d, cnt, m;
out (comm zkpr oof) .

| et daavera =
i n(comm zkproof);
i f zkver(2;4; signproof; zkproof)=true then
let N = publicl(zkproof) in
| et zeta = public2(zkproof) in
i f public3(zkproof)=pk(issuerK) then
et m= public4(zkproof) in
i f rogue=true then event ROGUEAV(mM el se
event DAAVERI FI EDA(M) .

These are again direct encodings of the corresponding processes presenfed in Section 5.2, except that we
have added a few more events and eeamfor communication. The termi gnpr oof corresponds td g,
inBeciion 5.P.

Similarly, we define the pseudonymous DAA-sign protocol:

defi ne nunberZetaV = nl.

| et daasighp =
| et zeta = hash(pair(nunberZetaV, bsnV)) in
let f = hash(pair(daaseed(id),cnt)) in
et N = exp(zeta,f) in
| et zkproof = zk(f,cert; N, zeta, pk(issuerK), msignproof) in
event DAASI GNEDP(i d, cnt, bsnV, n;
out (conm zkpr oof).

| et daaverp =
i n(comm zkproof);
i f zkver(2;4; signproof; zkproof)=true then
let N = publicl(zkproof) in
| et zeta = public2(zkproof) in
i f zeta=hash(pair (nunberZetaV, bsnV)) then
i f public3(zkproof)=pk(issuerK) then

18], file daa. pvi .

36

l et m= public4(zkproof) in
i f rogue=true then event ROGUEPV(m bsnV, N) el se
event DAAVERI FI EDP(m bsnV, N) .

This formalizes the corresponding processes from Secfidn 5.2 with the addition of events and the change of
the communication channel.

For convenience, we further implement the following processes:
| et daaverifier = (! daavera) | (! daaverp).

This process represents a verification server that waits for anonymous and pseudonymous signatures, checks
them, and outputs the corresponding events.

| et tpntontrolled =
et commepub in ! in(pub,cnt); new och; (tpnjoin | (in(och,cert);
I in(pub,n; (daasigna | in(pub,bsnV); daasignp))).

| et tpnctontrolledall ="! in(pub,id); tpncontroll ed.

The process$ pntont r ol | ed corresponds to the proce$®Ms introduced on page 26 and models a TPM
that is under the control of the adversary without revealing any of its secrets, i.e., the TPM joins and signs at

the adversary’s discretion. The procégsrcont r ol | edal | represents the fact thatl TPMs are under
the control of the adversary.

6.2.3 Security Properties
Authenticity. The authenticity property froliSecfion 54.1 is encoded as folldws:

passt hr ough query ev: DAAVERI FI EDP(xm xbsn, xN)
==> ev: DAASI GNEDP(xi d, xcnt, xbsn, xn) .
passt hrough query ev: DAAVERI FI EDA(xm)
==> (ev: DAASI GNEDA(xi d, xcnt, xn) | ev: DAASI GNEDP(xi d, xcnt, xbsn, xm)) .

process
(let commepub in issuer) | |eakpublic
t pncontrol | edal | |
(l et comm=pub in daaverifier).

The passt hr ough directive is only necessary since our compiler is not able to parse the full syntax of
guery. It does not have any semantic meaning. Applying the compiler and ProVerif, the result is that the
queried properties hold. The running time is 3 seconds on a Pentium 4, 3 GHz.

To implement this security property in the presence of rogue TPMs, we have to choose some rogue
f-value and rogue TPM ids and define the predicateggue and r oguei d to returnstrue if a
rogue f-value or id is being used. We choose to implement a test with a fixed number of rogue ids

roguei d1,r oguei d2,r oguei d3 and three fixed f-valuesogueF1,r ogueF2,r ogueF3. These are
defined using the following codé:

free roguei dl, roguei d2, r oguei d3.

9[1g], filedaa- veri fy-t pncontrol | ed. pvz.
18[g], file daa- veri f y-t pntontrol | ed- r ogue3. pvz.

37

defi ne rogueFl
defi ne rogueF2
defi ne rogueF3

hash(pai r (daaseed(roguei dl),nl)).
hash(pai r (daaseed(r oguei d2),nl)).
hash(pai r (daaseed(roguei d2),n2)).

fun roguet est/5.

equati on roguetest (zeta, exp(zeta, x),X,y,z) = true.
equation roguetest(zeta, exp(zeta,y),X,y,z) = true.
equation roguetest (zeta, exp(zeta, z),Xx,y,z) = true.

define rogue

= roguet est (zet a, N, rogueF1, r ogueF2, r ogueF3) .
define rogueid =

or(or(eq(id,rogueidl), eq(id,rogueid2)), eq(id,rogueid3)).
Note that we did not use the somewhat more natural definition

define rogue = or(or(eq(exp(zeta,rogueFl)), eq(exp(zeta,rogueF2))),
eq(exp(zeta, rogueFl))).

but instead used a definition using a special construct@uet est . Using the more natural definition
ProVerif fails to prove security; it seems that the rogue test is simply ignored. A minimal ProVerif example
that reproduces this behaviour is givenlini[18, éiket i f act s/ or. pv].

Furthermore, we have to model the fact that the rogue TPMs may already have joined before they were
rogue-listed, and that the adversary may know the secret information of the rogue TPMs. This is done
by addg the following processes (additionally to those given in the authenticity property without rogue
listing)t:

(let id=rogueidl in |eaktpm |
(let id=rogueid2 in | eaktpm |
(let id=rogueid3 in | eaktpm |
(let f=rogueFl in rogueissuer) |
(let f=rogueF2 in roguei ssuer) |
(let f=rogueF3 in rogueissuer)

The authenticity property in this setting is proven in 5 seconds on a Pentium 4, 3 GHz.

Authenticity of the Join Protocol. The authenticity property of the join protoc@{Secfion5.4.2) is given
by the following cod

passt hrough query ev:JO NED(x, Yy, z) ==> ev: CERTI Fl ED(X, W) .
passt hrough query ev: CERTI FI ED(i d, exp(z, hash(pai r (daaseed(id2),cnt))))
==> ((ev: STARTJA N(i d, exp(z, hash(pair(daaseed(id),cnt)))) & id=id2)
| (ev:LEAKTPMid) & ev:LEAKTPMi d2))).
passt hrough query ev: DAAVERI FI EDA(m exp(z, hash(pai r (daaseed(id),cnt))))
==> (ev:CERTIFIED(id, N | ev:LEAKTPMid)).
passt hrough query ev: DAAVERI FI EDP(m bsn, exp(z, hash(pai r (daaseed(id),cnt))))
==> (ev: CERTIFIED(id, N | ev:LEAKTPMid)).

l et | eaktpm =
event LEAKTPM d);
out (pub, daaseed(id)) |

Y[ag], file daa- veri fy-t pntontrol | ed- r ogue3. pvz.
18[9, file daa- j oi n- aut h. pvz.

38

out (pub, sk(ek(id))) |
out (pub, pk(ek(id))).

free bsnV,conm com?®.
process
(' in(pub,id); |eaktpm
| eakpublic |
i ssuer |
t pncontrol | edal | |
daaverifier.

With the original modelling of DAA (as presented above), all queries fail. To solve this problem, we change
the DAA protocol as follows. In the definition ofprj oi n, we replace

let zkp = zk(f,v; U NI, zetal;joinproof) in
by

let zkp = zk(f,v; U NI, zetal,id;joinproof) in
and in the definition of ssuer , we replace

i f zkver(2;3;]joinproof;zkp)=true then
let id = fst(msg) in

by

i f zkver(2;4;]joinproof;zkp)=true then
let id = public4(zkp) in

Then the above queries succeed. To activate this modified version of DAA, changeet fl ag
i di nproof to#setflag idinproof in file daa-confi g. pvi. Note that this change affects all
source files contributed in_[18].

Anonymity. The anonymity property frofi Secfion 5.4.3 is given by the following codé{cE_Talfi2 8):

free chal | engei d1, chal | engei d2.

free chal | engecnt 1, chal | engecnt 2.

define chall engecnt = choi ce[chal |l engecnt 1, chal | engecnt 2] .
define chall engeid = choi ce[chal | engei d1, chal | engei d2] .
define chall engecert = choice[chal |l engecertl, chal |l engecert?2].
private free intl,int?2.

fun corruptid/ 1.

process
| eakpublic |
| eaki ssuer |

1919, file daa- obseq- anonyni t y4. pvz.

39

(in(pub,x); let id=corruptid(x) in |leaktpm |

(let (id,cnt,conm och) (chal I engei d1, chal | engecnt 1, pub,int1l)
in tpnjoin) |
(chal I engei d2, chal | engecnt 2, pub, i nt 2)

in tpnjoin) |

(let (id,cnt,conm och)

(let id=challengeidl in tpntontrolled) |
(let id=challengeid2 in tpntontrolled) |

(in(intl,challengecertl); in(int2,challengecert?2);
(('in(pub,m; let (id,cnt,commcert) =
(chal I engei d, chal | engecnt, pubT, chal | engecert) i n daasigna) |
('in(pub,m; let (id,cnt,commcert) =
(chal I engei d1, chal | engecnt 1, pub, chal | engecert1) in daasi gna) |
('in(pub,m; let (id,cnt,commcert) =
(chal I engei d2, chal | engecnt 2, pub, chal | engecert2) in daasi gna) |
('in(pub,m; in(pub,bsnV); let (id,cnt,commcert) =
(chal I engei d1, chal | engecnt 1, pub, chal | engecert1) in daasi gnp)
('in(pub,m; in(pub,bsnV); let (id,cnt,commcert) =
(chal | engei d2, chal | engecnt 2, pub, chal | engecert?2) in daasi gnp)
)
)

The two processes to compare are implicitly given bydhei ce operator. The semantics is that the pro-
cessP; is the one resulting from replacinghoi ce[x, y] by z, andP; is the one resulting from replacing
choi ce[z, y] by y. Running our compiler and ProVerif one this process directly does not lead to termi-
nation. The technique for removing thand andor constructors that was already describedin-Secfidn 6.1
helps to ensure termination. In the case of DAA we apply Theolem 4mwithy,,, = n2,4,r,,, = 1 and

join

%21737Fj°in = (f,v; blind(f,v), exp(zeta, f), zeta)
Ta4,Fyy = (unblind(blindsign(blind(z, 2),sk(y)), 2); exp(¢; f), ¢, pk(y), m)

Then we can remove the e%ations fand andor (by[CEmma®B). These modification of the equational
theory are encoded as follows:
conpi l er AlternativezZKVer (zkver(2;3;]joinproof;
zk(f,v;blind(f,v),exp(zeta,f), zeta; joinproof))).

conpi l er AlternativezZKVer (zkver(2;4; signproof;
zk(x, unbli nd(blindsign(blind(x,z),sk(y)),z);exp(zeta,f), zeta, pk(y), m
signproof))).

conpi | er RenmpbveEquati ons(| and).
conpi | er RenobveEquati ons(or).

After these changes, the proof terminates and we get the result that the two processes are observationally
equivalent, i.e., that we have anonymity, after 117 seconds on a Pentium 4, 3 GHz.

2[1g), fileal t er nati ve- zk. pvi .

40

The remaining property is that of pseudonymity. Since theodimg of the processes given
in for modeling this property does not give any new insights, we refer the reader
to the files daa- obseq- pseudonyni ty6. pvz (for the processesP;, P, given in [Iable®),
daa- obseq- pseudonyni ty- attack. pvz (for the processe@l,Pg capturing the attack of27]) and
daa- obseq- pseudonyni ty-fi x. pvz (modeling P;, P, in the fixed version of the protocol with
ny = ng) in [18].

7 Conclusion and Future Work

We have designed an abstraction of non-interactive zero-knowledge protocols in the applied-pi calculus. A
novel equational theory for terms characterizes the semantic properties of non-interactive zero-knowledge
proofs. Additionally, we propose an encoding into a finite specification in terms of a convergent rewriting
system that is accessible to a fully mechanized analysis. The encoding is sound and fully automated. We suc-
cessfully used the automated protocol verifier ProVerif to obtain the first mechanized analysis of the Direct
Anonymous Attestation (DAA) protocol. The analysis in particular required us to come up with suitable ab-
stractions of sophisticated cryptographic security definitions that are based on interactive games; we consider
these definitions of independent interest.

Future work on this topic comprises the investigation of computational soundness results, the analysis
of other commonly employed protocols based on zero-knowledge, as well as the investigation of interactive
zero-knowledge proofs which have additional properties like the impossibility to reproduce a proof after
the protocols ends. Furthermore, other more direct techniques for mechanizing the analysis directly in the
original, infinite equational theory might be worth investigating.

References

[1] M. Abadi. Secrecy by typing in security protocoldournal of the ACM46(5):749—-786, 1999.

[2] M. Abadi, B. Blanchet, and C. Fournet. Automated verification of selected equivalences for security
protocols. InProc. 20th Annual IEEE Symposium on Logic in Computer Science (Li28gs 331—
340. IEEE Computer Society Press, 2005.

[3] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculd€M Transactions on
Information and System Security0(3):9, 2007.

[4] M. Abadi and C. Fournet. Mobile values, new names, and secure communicatieroclr28th Sympo-
sium on Principles of Programming Languages (PORigges 104—-115. ACM Press, 2001.

[5] M. Abadiand A. D. Gordon. A calculus for cryptographic protocols: The spi calcuiihisrmation and
Computation 148(1):1-70, 1999.

[6] D. Basin, S. Médersheim, and L. Vigand. OFMC: A symbolic model checker for security protocols.
International Journal of Information Securit2004.

[7] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rulePrdn. 14th IEEE
Computer Security Foundations Workshop (CSHvEyes 82—96. IEEE Computer Society Press, 2001.

[8] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS. InAdvances in Cryptology: CRYPTO '9&lume 1462 of_ecture Notes in Computer Science
pages 1-12. Springer-Verlag, 1998.

41

[9] E. Brickell, J. Camenisch, and L. Chen. Direct anonymdtesséation. InProc. 11th ACM Conference
on Computer and Communications Secunigiges 132—-145. ACM Press, 2004.

[10] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis of kerberos 5.
Theoretical Computer Sciencg67(1):57-87, 2006.

[11] D. E. Denning and G. M. Sacco. Timestamps in key distribution protoc8Glsmmunications of the
ACM, 24(8):533-536, 1981.

[12] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptographyIAM Journal on Computing
30(2):391-437, 2000.

[13] D. Fisher. Millions of .Net Passport accounts put at risWeekMay 2003. (Flaw detected by Muham-
mad Faisal Rauf Danka).

[14] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization in distributed systems. In
Proc. 20th IEEE Symposium on Computer Security Foundations (@&g¢s 31-45. IEEE Computer
Society Press, 2007.

[15] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — or —a completeness theorem
for protocols with honest majority. IRroc. 19th Annual ACM Symposium on Theory of Computing
(STOC) pages 218-229, 1987.

[16] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages
in NP have zero-knowledge proof systerdsurnal of the ACM38(3):690-728, 1991. Online available
athttp: /7 www. w sdom wei zmann. ac. | | / ~oded/ X/ gnwl]| . pdfl

[17] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computindl8(1):186—207, 1989.

[18] Omitted. Implementation of the compiler from zero-knowledge protocol descriptions into proverif-
accepted specifications., 2007. Availabl@at p: /7 www. geoci ti es. com zKappl | ed.

[19] R. Kemmerer. Analyzing encryption protocols using formal verification techniglieiSE Journal on
Selected Areas in Communicatioii¢4):448—-457, 1989.

[20] S. Kramer.Logical Concepts in CryptographyhD thesis, Ecole Polytechnique Fédérale de Lausanne,
2007.

[21] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied pi-calculu®rotn
14th European Symposium on Programming (ESQ@Bture Notes in Computer Science, pages 186—
200. Springer-Verlag, 2005.

[22] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FIFRodn2nd In-
ternational Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
volume 1055 ol ecture Notes in Computer Scienpages 147-166. Springer, 1996.

[23] C. Meadows. Using narrowing in the analysis of key management protocol®rotm 10th IEEE
Symposium on Security & Privaggages 138-147, 1989.

[24] J. K. Millen. The interrogator: A tool for cryptographic protocol securityPhoc. 5th IEEE Symposium
on Security & Privacypages 134-141, 1984.

42

http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf
http://www.geocities.com/zkapplied

[25] R. Needham and M. Schroeder. Using encryption for auitesion in large networks of computers.
Communications of the ACM2(21):993-999, 1978.

[26] L. Paulson. The inductive approach to verifying cryptographic protocdsurnal of Cryptology
6(1):85-128, 1998.

[27] B. Smyth, L. Chen, and M. D. Ryan. Direct anonymous attestation: ensuring privacy with corrupt
administrators. IrProceedings of the Fourth European Workshop on Security and Privacy in Ad hoc
and Sensor Networkaumber 4572 in Lecture Notes in Computer Science, pages 218-A231. Springer-
Verlag, 2007.

[28] F.J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol correct?
In Proc. 19th IEEE Symposium on Security & Privapgiges 160-171, 1998.

[29] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocolProc. 2nd USENIX Workshop on
Electronic Commergeages 29-40, 1996.

43

	Introduction
	Contributions
	Outline of the Paper

	Review of the Applied Pi-calculus
	An Equational Theory of Zero-Knowledge
	An Underlying Cryptographic Base Theory
	The Equational Theory for Zero-Knowledge
	An Illustrating Example

	Towards a Mechanized Analysis of Zero-Knowledge
	A Finite Specification of Zero-Knowledge
	Compilation into Finite Form
	Preservation of Observational Equivalence and Trace-based Security Properties

	Case Study: Direct Anonymous Attestation
	Join protocol
	DAA-sign protocol
	Rogue-tagging
	Security properties of DAA
	Authenticity of the DAA-sign protocol
	Authenticity of the Join Protocol
	Anonymity
	Pseudonymity

	Mechanized Security Proofs for DAA
	Example Protocol
	Direct Anonymous Attestation
	Join
	DAA-Sign
	Security Properties

	Conclusion and Future Work

