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1 Introduction

In this extended abstract we define a class of distributions which we shall
refer to as multivariate matrix–exponential distributions (MVME). They are
defined in a natural way, inspired by the definition of univariate matrix–
exponential distributions, as the distributions on Rn

+ having a rational (mul-
tidimensional) Laplace transform. A multidimensional rational function is
the fraction between two multidimensional polynomials. The marginal distri-
butions are hence univariate matrix–exponential distributions and in general
dependent. In one dimension, matrix–exponential distributions are defined
as distributions on R+ with a rational Laplace transform, which in turn is
equivalent to its density being a weighted sum of the elements of a matrix–
exponential. Thereby their name.

The main purpose of this work is to characterize the MVME distributions
in terms of one–dimensional matrix–exponential distributions. In Section 2
we provide some background on univariate matrix–exponential distributions
as well as a historical review of two subclasses of MVME which were defined
previously by respectively Assaf et al. and Kulkarni. We also formulate
Kulkarni’s definition in terms of the structure of their projections which is
more in line with our characterization theorem. The main result states that
a multivariate distribution is a MVME if and only if any non–negative non–
null linear combination of the coordinates are again matrix–exponential. This
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theorem is stated in section 3. We conclude the paper with a construction
(in Section 4) and a number of examples (in Section 5), illustrating that the
approach taken in this paper can be used to unify and understand a number
of distributions discussed previously.

2 Preliminaries

In this section we first provide some necessary background from the theory of
one–dimensional matrix–exponential distributions. In the second part of the
section we review two classes of multivariate phase–type distributions, which
are special cases of the MVME distributions. In particular, the class proposed
by Kulkarni Kulkarni (1989) is of interest, and we provide a characterization
of this subclass in terms of the structure of the intensity matrices of the linear
combinations of the coordinates which is generalizable to MVME.

2.1 Univariate matrix–exponential distributions

Definition 2.1 A non–negative random variable X is said to have a matrix–
exponential distribution if the Laplace transform L(s) = E [exp(−sX)] is a
rational function in s.

The following result is standard see e.g. Asmussen & Bladt (1997) page 315
for a proof.

Lemma 1 A random variable is matrix–exponentially distributed if and
only if there exists a triple (β, D,d) such that the density f(x) of X can be
expressed as

f(x) = βeDxd .

Here β and d is a row respectively column vector of dimension m and D is
a m × m matrix, possibly with complex elements. �

The triple (β, D,d) is called a representation of the matrix exponential distri-
bution. The Laplace transform of X can be determined from a representation
(β, D,d) as

L(s) = β (sI − D)−1 d , (1)

where I is the identity matrix of dimension m. Any matrix–exponential dis-
tribution has infinitely many representations. The dimension of D is called
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the order of the representation. If the rational function L(s) of Equation (1)
cannot be reduced we say that m is also the degree of the distribution (As-
mussen & O’Cinneide (2000)).

The non–centralized moments of a matrix–exponentially distributed ran-
dom variable is easily derived by successive differentiation in the Laplace
transform.

Mi = IE(X i) = i!β (−D)−(i+1) d i = 0, 1, ... .

We shall also need what has been termed reduced moments,

µi =
Mi

i!
, i = 0, 1, ... .

2.2 Two classes of multivariate phase–type distribu-
tions

Assaf et al. (1984) introduced the class of multivariate phase–type distri-
butions MPH by considering a special type of reward structure on a one–
dimensional phase–type representation. Consider a generator D of dimension
m and a n–dimensional vector X of random variables. With each random
variable is associated a set Γi of termination states. Whenever, Γi is entered
that set can not be left. The random variable Xi is defined as the exit time
of Γc

i . Although this definition seems restrictive surprisingly many of the dis-
tributions, that has been proposed as multivariate exponential and gamma
distributions are actually of this type. The class is sufficiently restricted that
it is possible to give closed form expressions for the joint density and Laplace
transform of X.

A rephrasing of the definition of MPH says that reward for Xk is cumu-
lated with rate 1 in states belonging to Γc

k, where Γc
k is the complement of

Γk. Based on this interpretation Kulkarni (1989) introduced the class MPH∗

as a generalization of the MPH class. In the class MPH∗ reward for Xi is ac-
cumulated in state j with rate Kij. There is no restriction on the phase–type
generator D. If the total sojourn time in state j of this Markov chain before
absorption is denoted by Yj we have that the n dimensional random vector X
is defined element wise by Xi =

∑m

j=1 KijYj. The class proposed by Kulkarni
and its natural generalization to the matrix–exponential case is surprisingly
rich. The following theorem which gives an alternative characterization in
terms of all non–negative projections was not given explicitly by Kulkarni.
We state it without proof.
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Theorem 2.1 A distribution in MPH∗ is uniquely determined by the repre-
sentation (α, T (a)) of the Phase type distributed random variable < a,X >
with T (a) = ∆(Ka)−1T .

3 Multivariate matrix–exponential distribu-

tions

We define multivariate matrix–exponential distributions as a natural exten-
sion of the univariate case.

Definition 3.1 A non–negative random vector X = (X1, ..., Xn) of dimen-
sion n is said to have multivariate matrix–exponential distribution (MVME)
if the joint Laplace transform L(s) = E [exp(− < s,X >)] is a multi–dimensional
rational function, that is, a fraction between two multi–dimensional polyno-
mials. Here < ·, · > denotes the inner product in R

n with s = (s1, . . . , sn).

Our main theorem characterizes the class of MVME.

Theorem 3.1 A vector X = (X1, . . . , Xn) follows a multivariate matrix–
exponential distribution if and only if < a,X >=

∑n

i=1 aiXi has a univariate
matrix–exponential distribution for all non–negative vectors a 6= 0.

Proof: In the full version of the paper we prove the main result by means
of continued fractions. We note that there is an alternative approach to
this using the Caley Hamilton theorem. However, we currently prefer the
approach using continued fractions.

�

The following corollary is immediate.

Corollary 3.1 Let X = (X1, ..., Xn) have a MVME distribution and let A
be a non–negative m × n matrix. Then Y = AX has a MVME distribu-
tion. In particular, all marginal distributions are again matrix–exponentially
distributed.

The next theorem gives some further structure to the MVME class.
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Theorem 3.2 Let X = (X1, . . . , Xn) follow a multivariate matrix–exponential
distribution Then we may write its moment generating function for < a,X >
as

f ∗

1 (a)sm−1 + f ∗

2 (a)sm−2 + ... + f ∗

m−1(a)s + 1

g∗

0(a)sm + g∗

1(a)sm−1 + .... + g∗

m−1(a)s + 1
,

where the terms f ∗

i (a) and g∗

i (a) are sums of monomials in a of order m− i.

Inspired by Theorem 3.1 we propose the following definition of a multi-
variate phase–type distribution.

Definition 3.2 A vector X = (X1, ..., Xn) has a multivariate phase–type
distribution (MVPH) if < a,X > has a (univariate) phase–type distribution
for all non–negative a 6= 0.

The following definition is now natural.

Definition 3.3 Let MME∗ be the subclass of MVME, where < a,X > can
be expressed by a representation with constant initial vector and generator
matrix of the form (∆(Ka))−1 T by MME∗

The class MME∗ contains most but probably not all multivariate distribu-
tions with rational Laplace transforms discussed to date.

Theorem 3.3 An MVME with distribution with m=2 will always have at
least one representation in MME∗.

However, cases exist where it is not possible to find a MME∗ representation
corresponding to the the degree of < a,X >.

Theorem 3.4 There exists MVME distributions where the MVME order is
strictly less than the MME∗ order.

Proof: The proof is based on the non–existence of a three dimensional
MME∗ representation of Krishnamoorthy and Parthasarathy’s Multivariate
Exponential when n = 3. For a discussion of this distribution see section
48.3.3 in Kotz, Balakrishnan & Johnson (2000).

�
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3.1 Joint distribution of age and residual life in a re-
newal process

Theorem 3.5 Let At and Rt be the age and residual life time in a stationary
renewal process respectively with interarrival time distribution f(x). The

joint distribution of At and Rt is given by f(x+y)
R

∞

0
xf(x)dx

.

Proof: The joint distribution of (At, Rt) in a renewal process is given by

P (Rt ≥ x, At < y) =

∫ t

t−y

(1 − F (t + x − u))dU(u) ,

see e.g. Yanushkevichius (1995). Inserting 1/IEX for the stationary renewal
density and differentating we obtain the result.

�

Theorem 3.6 In a stationary renewal process with matrix–exponentially dis-
tributed inter–arrival times with representation (α, C) the joint distribution
of age and residual life is a MME∗ with representation

((

α (−C)−1

µ
, 0

)

,

[

C −C
0 C

]

,

[

em 0
0 em

]

)

,

where m is the dimension of C.

Proof: The proof is purely analytical.

�

4 Bivariate Morgenstern type distributions

In this section we discuss the Farlie–Gumbel–Morgenstern construction, which
will indeed lead to a rational Laplace transform and hence a MVME dis-
tribution whenever the marginal distributions are ME. Let Fi(x), i = 1, 2
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be univariate distributions and define the joint distribution in terms of the
Farlie–Gumbel–Morgenstern copula to be

F (x1, x2) = F1(x1)F2(x2) (1 + ρ (1 − F1(x1)) (1 − F2(x2))) . (2)

These distributions are in MME∗ if F1(x), F2(x) have rational Laplace trans-
forms. To see this we start with the following general result.

Lemma 2 Let Fmin
i (x) = 1 − (1 − Fi(x))2 and Fmax

i (x) = F 2
i (x) such

that Fmin
i (x) and Fmax

i (x) are cumulative distribution functions of minimum
respectively maximum of two independent random variables distributed ac-
cording to Fi(x). Then the bivariate Morgenstern distribution F (x1, x2) from
F1(x1)F2(x2) is

F (x1, x2) =
1 + ρ

4
Fmax

1 (x1)F
max
2 (x2) +

1 − ρ

4
Fmax

1 (x1)F
min
2 (x2) +

1 − ρ

4
Fmin

1 (x1)F
max
2 (x2) +

1 + ρ

4
Fmin

1 (x1)F
min
2 (x2)

�

Proof: The result is proved by eliminating Fi(x) using Fi(x) =
Fmin

i (x)+Fmax

i (x)

2

in (2).

�

The lemma is useful as we can express the Morgenstern type distributions
as a non–negative mixture of four bivariate distributions. Each of these
four terms are distributions of independent variables formed from the two
basic distributions F1(x) and F2(x). The following lemma is well–known for
phase–type distributions.

Lemma 3 Let X1 and X2 be two independent matrix–exponentially dis-
tributed random variables with representation (α, T ). Then max (X1, X2) is
matrix–exponentially distributed with representation

(

(α ⊗ α, 0),

[

T ⊕ T (t ⊕ t)e
0 T

])

and min (X1, X2) is matrix–exponentially distributed with representation

(α ⊗ α, T ⊕ T ) .

�
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The next lemma is also a generalization of the phase–type case.

Lemma 4 A matrix–exponential distribution with representation (α, T )
can alternatively be expressed by the representation (α̃, T̃ ) where

T̃ = ∆(π)−1T ′∆(π), α̃ =
π • t

πt

Here t = −T t and π is a positive solution to π(T + tα) = 0. �

Proof: The result is proved by direct verification.

�

Theorem 4.1 Consider the bivariate Farlie-Gumbel-Morgenstern distribu-
tion formed from two matrix-exponential distribution is in MME∗ with marginal
representation of Fi given by (αi, Si), i = 1, 2. A MME∗ representation
(α, S, K) is

α = (α1 ⊗ α1, 0, 0, 0)

S =























S1 ⊕ S1
1
2
(s1 ⊕ s1)

1−ρ

4
(s1 ⊕ s1) eα̃

(M,m)
2

1+ρ

4
(s1 ⊕ s1) eα̃

(m)
2

0 S1
1+ρ

2
s1α̃

(M,m)
2

1−ρ

2
s1α̃

(m)
2

0 0 ∆−1
1 ST

2 ∆1 ∆−1
1 (s2 ⊕ s2)

T∆2

0 0 0 S̃
(m)
2























,

K =









em1
⊗ em1

0
em1

0
0 em2

⊗ em2

0 em2









with
∆1 = ∆

(

π
(M,m)
2

)

, ∆2 = ∆
(

π
(m)
2

)

π2 = µ−1
2 α2 (−S2)

−1 , α̃2 = µ−1
2 π2 • s2 ,

π
(m)
2 =

(

µ
(m)
2

)

−1

(α2 ⊗ α2) (−S2 ⊕ S2)
−1 , α̃

(m)
2 =

(

µ
(m)
2

)

−1

π
(m)
2 •(s2⊕s2)
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π
(M)
2 =

(

µ
(m)
2

µ
(M)
2

π
(m)
2 , π

(M,m)
2

)

, α̃
(M)
2 =

(

µ
(M)
2

)

−1 (

0, π
(M,m)
2 • s2

)

S̃
(m)
2 = ∆

(

π
(m)
2

)

−1

(S2 ⊕ S2)
T ∆

(

π
(m)
2

)

S̃
(M)
2 = ∆

(

π
(M)
2

)

−1
[

(S2 ⊕ S2)
T 0

(s2 ⊕ s2)
T ST

2

]

∆
(

π
(M)
2

)

=





S̃
(m)
2 0

∆
(

π
(M,m)
2

)

−1

(s2 ⊕ s2)
T∆
(

π
(m)
2

)

∆
(

π
(M,m)
2

)

−1

ST

2 ∆
(

π
(M,m)
2

)





Proof: The result can be proved by calculation of the Laplace transforms.

�

The representation of Theorem 4.1 can be motivated by a probabilistic ar-
gument in the phase–type case.

5 MPH∗ representations for multivariate ex-

ponential and gamma distributions

This section discusses a number of bivariate and multivariate exponential
and gamma distributions that have been discussed in the literature. Many
of these have rational Laplace transform and most of those with rational
Laplace transform are in the MPH∗ or even in the MPH class. In general
the multivariate gamma distributions belong to MVME whenever the shape
parameters are integer. The main reference is Kotz, Balakrishnan & Johnson
(2000). In this reference the distributions are classified as bivariate and
multivariate exponential respectively gamma distributions. Here we take
the approach of classifying according to the (α, T, K) representations. The
treatment here is non–exhaustive. However, we believe that it should be
sufficiently complete to illustrate how these various results can be unified and
how the underlying generating probabilistic mechanism can be understood
by using the terminology of MVME and MME∗.
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5.1 The case where states can be revisited

The form that should contain all distributions of this section is




Em11
(λ11) λ11δm11

(m11)δm12
(1) 0

0 Em12
(λ12) λ12δm12

(m12)δm13
(1) 0

p1λ11δm11
(m1n)δm11

(1)



 ,

T =















E ′(λ1) λ′

1,nδ′(m1)
m1

δ(1)
m2

. . . 0
0 E ′(λ2) . . . 0
...

...
...
...
...

...

0 0 . . . λ′

k−1,nδ
′(mk−1)
mk−1

δ(1)
mk

0 0 . . . E′(λk)















, K =

































em11
0 . . . 0

0 em12
. . . 0

...
...

...
...
...

...
0 0 . . . em1n

...
...

...
...
...

...
emk1

0 . . . 0
0 emk2

. . . 0
...

...
...
...
...

...
0 0 . . . emkn

































where En(λ) denotes a sub–generator of Erlang form of dimension n, δi is a
vector with one in the ith position and zeros elsewhere, mi =

∑

mij , m =
∑

mi, λi = (λi1e
′

mi,1
, . . . , λi,ne

′

mi,n), λ′

jk = λjkpj , and E ′(λj) = E(λj) +

pjλj,nδ
′(mj )
mj

δ(1)
mj

.
For Kibble and Moran’s Bivariate Gamma 48.2.3 we have n = 2, k =

1, p =, λ1,1 = λ1,2. The distribution is described in Kotz, Balakrishnan &
Johnson (2000) Section 2.3 pp.436-437. Gaver’s Multivariate Gamma 48.3.2
is a variant of the KMBG, For Moran and Downton’s Multivariate Expo-
nential 47.3.6 we have k = 1, while for Moran and Downton’s Bivariate
Exponential 47.2.7 we further have n = 2

5.2 The case where states cannot be revisited

Cheriyan and Ramabhadran’s multivariate Gamma 48.3.1

For integer valued shape parameters the distributions are in MME∗.

f(x1, . . . , xn) =
e−

Pn
i=1

xi

∏n

i=0(mi − 1)!

∫ min (xi)

0

ym0−1

(

n
∏

i=1

(xi − y)mi−1

)

e(n−1)ydy
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γ = δ1

T = E(
Pn

i=0
mi) K =















em0
em0

. . . em0

em1
0 . . . 0

0 em2
. . . 0

...
...

...
...
... . . .

0 0 . . . emn















Cheriyan and Ramabhadran’s bivariate Gamma distribution is described in
Section 2.2 of Kotz, Balakrishnan & Johnson (2000) 48.2.2. The distribution
is obtained from the multivariate case by closing k = 2. McKay’s Bivariate
Gamma 48.2.1 distribution in described in Section 2.1 of Kotz, Balakrishnan
& Johnson (2000). The distribution is the special case of Cheriyan and
Ramabhadran’s bivariate Gamma with m2 = 0.

The Marshall–Olkin family

A number of distribution classes are either subsets of the Multivariate Mar-
shall and Olkin’s Exponential 47.3.2 or closely related. We state the joint
survival function

F̄X1,...,Xn
(x1, . . . , xn) = exp

(

−

n
∑

i=1

λixi −
∑

i1<i2

λi1i2 max (xi1 , xi2)

−
∑

i1<i2<i3

λi1i2i3 max (xi1 , xi2 , xi3) · · · − λ12...n max (x1, . . . , xn)

)

.

These distributions are in MPH∗. A representation for n = 3 is γ =
(1, 0, 0, 0, 0, 0, 0)

T =





















−τ1 λ3 λ2 λ1 λ23 λ13 λ12

0 −τ2 0 0 λ2 λ1 0
0 0 −τ3 0 λ3 0 λ1

0 0 0 −τ4 0 λ3 λ2

0 0 0 0 −λ1 0 0
0 0 0 0 0 −λ2 0
0 0 0 0 0 0 −λ3





















K =





















1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1





















.

Here we have taken τ1 = λ1 +λ2 +λ3 +λ12 +λ13 +λ23 +λ123, τ2 = λ1 +λ2 +
λ12, τ3 = λ1 + λ3 + λ13, and τ4 = λ2 + λ3 + λ23.
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Among related distributions are Freund’s Multivariate Exponential 47.3.1,
Freund’s Bivariate Exponential 47.2.3, Block and Basu’s Multivariate Expo-
nential 47.3.3, Olkin and Tong’s Multivariate Exponential 47.3.4, Raftery’s
Multivariate Exponential 47.3.7, Raftery’s Bivariate Exponential 47.2.9,
Friday and Patil’s Bivariate Exponential 47.2.5, Prèkopa and Szàntai’s Mul-
tivariate Gamma 48.3.4, and Prèkopa and Szàntai’s Bivariate Gamma 48.2.8.

5.3 Joint distribution of MAP/RAP inter arrival times

The joint distribution of a finite number of sojourn times in a Markovian
Arrival Process (MAP, see e.g. Lucantoni, Meier-Hellstern & Neuts (1990))
is contained in MPH∗. If a MAP parameterized by the matrices (D0, D1) and
with initial phase or state distribution θ, then the first two sojourn times X1

and X2 have joint density

f(x1, x2) = θeD0x1D1e
D0x2D1e .

The MME∗ representation is γ = (θ, 0),

T =

[

D0 D1

0 D0

]

, K =

[

em 0
0 em

]

.

Indeed the same expressions are valid for the more general class of Rational
Arrival Processes (RAP, see Asmussen & Bladt (1999)).

5.4 Restricted support

For most if not all distributions discussed in the literature the support of
at least one variable will be all positive reals regardless of the value of the
other variable. However, it is easy to construct distributions without this
restriction. We can write

[

X1

X2

]

=

[

2
3

1
3

1
3

2
3

] [

Z1

Z2

]

⇔

[

Z1

Z2

]

=

[

2 −1
−1 2

] [

X1

X2

]

,

where (Z1, Z2) are independent exp (1) distributed random variables. By a
standard formula for transformation of random variables we find the joint
density of (X1, X2)

f(x1, x2) = fZ1
(2x1 − x2) fZ2

(−x1 + 2x2) = e−(x1+x2),
1

2
x1 ≤ x2 ≤ 2x1 .
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