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Abstract

We survey theoretical properties and algorithms concerning the prob-
lem of solving a nonsymmetric algebraic Riccati equation, and we report
on some known methods and new algorithmic advances. In particular,
some results on the number of positive solutions are proved and a care-
ful convergence analysis of Newton’s iteration is carried out in the cases
of interest where some singularity conditions are encountered. From this
analysis we determine initial approximations which still guarantee the
quadratic convergence.

1 Introduction

Nonsymmetric Algebraic Riccati equations (NARE) are quadratic matrix equa-
tions of the kind

XCX −AX −XD +B = 0, (1)

where the unknown X is an m× n matrix, and the coefficients A, B, C and D
have sizes m×m, m× n, n×m and n× n, respectively.

The term nonsymmetric distinguishes this case from the widely studied
continuous-time algebraic Riccati equations, defined by the quadratic matrix
equation XCX−AX−XAT +B = 0, where B and C are symmetric. We refer
the reader to the books [38, 44] for a comprehensive analysis of continuous-time
algebraic Riccati equations.

The matrix coefficients of the NARE (1) define the (m+n)× (m+n) matrix

M =
[

D −C
−B A

]
, (2)

which, throughout the paper, we assume to be an M-matrix. This assumption
is motivated by the increasing applicative interest of this kind of NAREs, and
by the recent theoretical and algorithmic advances that have been achieved.

We recall that M is an M-matrix if it can be written as M = αI −N where
N has nonnegative entries, α > ρ(N), and ρ(N) is the spectral radius of N . We
say that equation (1) is associated with an M-matrix if its coefficients form an
M-matrix M .
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There are two important applications where nonsymmetric algebraic Riccati
equations associated with M-matrices play a very important role: the study
of fluid queues models [47, 46, 48], and the analysis of transport equations
[35, 34]. In both cases the solution of interest is the matrix S with nonnegative
entries, which among all the nonnegative solutions is the one with component-
wise minimal entries. We call any solution S sharing this property minimal
nonnegative solution. These applications will be outlined in Sections 1.1 and
1.2.

The research activity concerning the analysis of NAREs associated with M-
matrices and the design of numerical algorithms for their solution has had a
strong acceleration in the last decade. Important progress has been made con-
cerning theoretical properties of this class of matrix equations and new effective
algorithms relying on the properties of M-matrices have been designed and an-
alyzed [6, 10, 11, 13, 15, 18, 20, 21, 23, 24, 25, 26, 32, 35, 41, 42, 43].

In this paper we provide a survey of the most important results and of the
most effective algorithms concerning the analysis and the numerical treatment
of the NAREs associated with M-matrices together with some new results. We
also provide a unifying framework where different techniques and properties can
be described in a simpler form and where more insights into the properties of
matrix equations are given.

In particular, we report on results concerning the existence of a minimal non-
negative solution S and prove some new results on the number of nonnegative
solutions of the NARE (1). We analyze the spectral properties of the matrix

H =
[
D −C
B −A

]
,

relate them to the eigenvalues of S and use this relation when H is singular to
classify the problem into three classes according to the sign of the drift associated
with the equation.

After reporting on perturbation results of the solution, we present, ana-
lyze and compare different algorithms for computing the minimal nonnegative
solution S. Besides a “direct” method based on the Schur decomposition we
consider functional iterations having linear convergence and then the Newton
iteration which has a generally quadratic speed of convergence. The class of
doubling algorithms is discussed. This class includes cyclic reduction and the
Structure-preserving Doubling Algorithm (SDA). Here we report very recent
results relating these two algorithms, in particular the proof that SDA turns
out to be cyclic reduction applied to a specific problem.

We give a separate treatment on the case of interest where the associated
matrix M is singular. Here we prove that a particular choice of the initial point
in Newton’s iteration can restore the quadratic speed of convergence which oth-
erwise would be linear. In fact, we provide a simple but general result concerning
the “structured” convergence of Newton’s iteration.

Furthermore, we discuss the possibility of replacing the original equation
with a different one, having the same solution S, but where the singularity is
removed. The advantage that we get with this technique is twofold: on one
hand we can accelerate the speed of iterative methods by switching from the
linear to the quadratic convergence; on the other hand we may guarantee the
full machine accuracy ε in the solution which otherwise would be O(

√
ε).
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Numerical experiments which validate our theoretical analysis conclude the
paper.

The paper is structured as follows: in Sections 1.1 and 1.2 we describe the
applications of NAREs; in Section 2 we deal with theoretical properties and in
Section 3 with algorithms; the case where M is singular is discussed in Section 4
while Section 5 reports the results of numerical experiments and the concluding
remarks.

1.1 Application to fluid queues

In the analysis of two dimensional continuous-time Markov processes, called
fluid queues, a crucial step is to compute the element-wise minimal nonnegative
solution S of the NARE (1). In [3, 46, 47, 17, 1, 6], the fluid flow models
are described in terms of a two-dimensional continuous-time Markov process
denoted by {(X(t), ϕ(t)), t > 0} where X(t) represents the level, while ϕ(t)
represents the phase. The phase process {ϕ(t) : t > 0} is an irreducible Markov
chain with space state S1 ∪S2, S1 = {1, 2, . . . ,m}, S2 = {m+1,m+2, . . . ,m+
n}, and infinitesimal generator the opposite of (2). The minimal nonnegative
solution S = (si,j) of (1) is such that si,j is the probability that, starting from
level x in phase i ∈ S2, the process (X(t), ϕ(t)) first returns to level x in finite
time and does so in phase j ∈ S1, while avoiding levels below x. A detailed
description of this kind of models can be found in [46].

1.2 Application to transport equation

Riccati equations associated with M-matrices also appear in a problem in neu-
tron transport theory, a variation of the one-group neutron transport equation,
described in [35] where the mathematical model consists in solving an integrod-
ifferential equation. After discretization of this integrodifferential equation, the
problem can be expressed as the following equation for an unknown matrix
X ∈ Rn×n

∆X +X∆̂ = (Xq + e)(eT + qTX), (3)

with

∆ = diag(δ1, . . . , δn), ∆̂ = diag(δ̂1, . . . , δ̂n),

δi =
1

cxi(1− α)
, δ̂i =

1
cxi(1 + α)

, i = 1, . . . , n,

e =
[
1 1 · · · 1

]T
, qi =

wi

2xi
, i = 1, . . . , n.

The matrices and vectors above depend on the two parameters 0 < c 6 1,
0 6 α < 1, and on the sequences (xi)n

i=1 and (wi)n
i=1, which are the nodes and

weights of a Gaussian quadrature on [0, 1], ordered such that (xi) is decreasing.
The solution of physical interest is the minimal nonnegative one, whose existence
can be proved thanks to Theorem 2.7 that we report in Section 2.3.

Equation (3) coincides with the NARE (1) with

A = ∆̂− eqT , B = eeT ,

C = qqT , D = ∆− qeT .
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Under these hypotheses it is easy to prove that M is a diagonal-plus-rank-1 M-
matrix. Due to this additional structure, ad-hoc algorithms can be developed,
such as the ones described in [43, 42, 11]. Moreover, the iterates appearing
when implementing most of the traditional algorithms are structured and can
be completely described with O(n) parameters. Therefore, structured versions
of these algorithms can be developed, resulting in quadratically convergent iter-
ations for (3) that require only O(n2) operations per step, as shown in [11] for
Newton’s method.

2 Theoretical properties

Before analyzing the numerical methods for the effective solution of equation
(1), it is worth giving some theoretical properties of the NARE.

A large amount of properties concerning equation (1) have been stated in
[18, 20, 21, 25, 35]; we summarize some of them. These results concern al-
gebraic Riccati equations associated with nonsingular or singular irreducible
M-matrices. The case in which M is singular and reducible is of minor interest.

A nonzero matrix A = (aij) is said nonnegative (nonpositive) if aij > 0
(aij 6 0). In this case one writes A > 0 (A 6 0). A matrix A = (aij) is said
positive (negative) if aij > 0 (aij < 0). In this case one writes A > 0 (A < 0).

A matrix B is called a Z-matrix, if there exists a nonnegative matrix A such
that B = sI −A, for a suitable scalar s. In other words a Z-matrix is a matrix
all whose off-diagonal elements are nonpositive.

A matrix B is called an M-matrix, if it can be written in the form B = sI−A,
where A is nonnegative, s > 0 and s > ρ(A). If s = ρ(A) the M-matrix is
singular. Observe that an M-matrix is a Z-matrix.

We denote the set of the eigenvalues of A by σ(A). Throughout the paper,
e will denote the vector with components equal to 1, whose length is specified
by the context.

2.1 Some useful facts about nonnegative matrices

A nonnegative matrix maps the cone of nonnegative vectors into itself; this cone
contains an eigenvector as stated by the following celebrated result [8].

Theorem 2.1 (Perron–Frobenius theorem). Any nonnegative matrix A has a
real eigenvalue λ > 0 such that |µ| 6 λ for each µ ∈ σ(A). Moreover, there
exists a vector v > 0 such that Av = λv.

Any irreducible nonnegative matrix A has a real eigenvalue λ > 0 such that
|µ| 6 λ for each µ ∈ σ(A). Moreover, λ is simple and there exists a vector v > 0
such that Av = λv.

If A is positive, then |µ| < λ for each µ ∈ σ(A)\{λ}.
We state a useful corollary of the Perron–Frobenius theorem.

Corollary 2.2. Let A be an irreducible nonnegative matrix and let v1, . . . , vn

be a set of Jordan chains of A. Then there exists only one positive or negative
vector among the vi’s and it is a scalar multiple of v.

From the Perron–Frobenius theorem many interesting properties of Z- and
M-matrices follow. For instance, a Z-matrix has a ”leftmost” (in the com-
plex plane) real eigenvalue corresponding to a nonnegative eigenvector, for an
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M-matrix this eigenvalue is nonnegative. In particular, one deduces that the
eigenvalues of an M-matrix have nonnegative real part.

A very common problem is to check if a given Z-matrix is an M-matrix.
The following result states many equivalent conditions for a Z-matrix to be a
nonsingular M-matrix. The proofs can be found in [8].

Theorem 2.3. For a Z-matrix A, the following conditions are equivalent:

(a) A is a nonsingular M-matrix;

(b) A−1 > 0;

(c) Au > 0 for some vector u > 0;

(d) All the eigenvalues of A have positive real parts.

Theorem 2.4. For a Z-matrix A it holds that: A is an M-matrix if and only if
there exists a nonzero vector v > 0 such that Av > 0 or a nonzero vector w > 0
such that wTA > 0.

The equivalence of (a) and (c) in Theorem 2.3 implies the next result.

Lemma 2.5. Let A be a nonsingular M-matrix. If B > A is a Z-matrix, then
B is also a nonsingular M-matrix.

The following well-known result concerns the properties of Schur comple-
ments of M-matrices.

Lemma 2.6. Let M be a nonsingular M-matrix or an irreducible singular M-
matrix. Partition M as

M =
[
M11 M12

M21 M22

]
,

where M11 and M22 are square matrices. Then M11 and M22 are nonsingular
M-matrices. The Schur complement of M11 (or M22) in M is also an M-matrix
(singular or nonsingular according to M). Moreover, the Schur complement is
irreducible if M is irreducible.

2.2 The dual equation

Reverting the coefficients of equation (1) yields the dual equation

Y BY − Y A−DY + C = 0, (4)

which is still a NARE, associated with the matrix

N =
[

A −B
−C D

]
that is a nonsingular M-matrix or an irreducible singular M-matrix if and only
if the matrix M is so. In fact N is clearly a Z-matrix and N = ΠMΠ, where
Π = Π−1 is the matrix which permutes the blocks of M . So, if Mv > 0, for
v > 0, then NΠv > 0 and by Theorem 2.4, N is an M-matrix.
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2.3 Existence of nonnegative solutions

The special structure of the matrix M of (2) allows one to prove the existence
of a minimal nonnegative solution S of (1), i.e., a solution S > 0 such that
X − S > 0 for any solution X > 0 to (1). See [20] and [21] for more details.

Theorem 2.7. Let M in (2) be an M-matrix. Then the NARE (1) has a
minimal nonnegative solution S. If M is irreducible, then S > 0 and A − SC
and D−CS are irreducible M-matrices. If M is nonsingular, then A−SC and
D − CS are nonsingular M-matrices.

Observe that the above theorem holds for the dual equation (4) and guar-
antees the existence of a minimal nonnegative solution of (4) which is denoted
by T .

2.4 The eigenvalue problem associated with the matrix
equation

A useful technique frequently encountered in the theory of matrix equations
consists in relating the solutions to some invariant subspaces of a matrix poly-
nomial.

In particular, the solutions of (1) can be described in terms of the invariant
subspaces of the matrix

H =
[
D −C
B −A

]
, (5)

which is obtained premultiplying the matrix M by J =
[
In 0
0 −Im

]
.

In fact, if X is a solution of equation (1), then, by direct inspection,

H

[
In
X

]
=

[
In
X

]
R, (6)

where R = D − CX. Moreover, the eigenvalues of the matrix R are a subset
of the eigenvalues of H. Conversely, if the columns of the (n +m) × n matrix[
Y
Z

]
span an invariant subspace of H, and Y is a nonsingular n × n matrix,

then ZY −1 is a solution of the Riccati equation [38].
Similarly, for the solutions of the dual equation it holds that

H

[
Y
Im

]
=

[
Y
Im

]
U,

where U = BY − A. The eigenvalues of the matrix U are a subset of the
eigenvalues of H.

2.5 The eigenvalues of H

We say that a set A of k complex numbers has a (k1, k2) splitting with respect
to the unit circle if k = k1 + k2, and A = A1 ∪ A2, where A1 is formed by k1

elements of modulus at most 1 and A2 is formed by k2 elements of modulus
at least 1. Similarly, we say that A has a (k1, k2) splitting with respect to
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the imaginary axis if k = k1 + k2, and A = A1 ∪ A2, where A1 is formed by
k1 elements with nonpositive real part and A2 is formed by k2 elements with
nonnegative real part. We say that the splitting is complete if at lest one set A1

or A2 has no eigenvalues in its boundary.
Since the eigenvalues of an M-matrix have nonnegative real part, it follows

that the eigenvalues of H have an (m,n) splitting with respect to the imaginary
axis. This property is proved in the next

Theorem 2.8. Let M be an irreducible M-matrix. Then the eigenvalues of
H = JM have an (m,n) splitting with respect to the imaginary axis. Moreover,
the only eigenvalue that can lie on the imaginary axis is 0.

Proof. Let v > 0 be the only positive eigenvector of M , and let λ > 0 be the
associate eigenvalue; define Dv = diag(v). The matrix M = D−1

v MDv has the
same eigenvalues as M ; moreover, it is an M-matrix such that Me = λe. Due
to the sign structure of M-matrices, this means that M is diagonal dominant
(strictly in the nonsingular case). Notice that H = D−1

v HDv = JM , thus H is
diagonal dominant as well, with m negative and n positive diagonal entries. We
apply Gershgorin’s theorem [30, Sec. 14] to H; due to the diagonal dominance,
the Gershgorin circles never cross the imaginary axis (in the singular case, they
are tangent in 0). Thus, by using a continuity argument we can say that m
eigenvalues of H lie in the negative half-plane and n in the positive one, and
the only eigenvalues on the imaginary axis are the zero ones. But since H and
H̄ are similar, they have the same eigenvalues.

We can give a more precise result on the location of the eigenvalues of H,
after defining the drift of the Riccati equation. Indeed, when M is a singular
irreducible M-matrix, by the Perron–Frobenius theorem, the eigenvalue 0 is
simple, there are positive vectors u and v such that

uTM = 0, Mv = 0, (7)

and both the vectors u and v are unique up to a scalar factor.

Writing u =
[
u1

u2

]
and v =

[
v1
v2

]
, with u1, v1 ∈ Rn and u2, v2 ∈ Rm, one

can define
µ = uT

2 v2 − uT
1 v1 = −uTJv. (8)

The number µ determines some properties of the Riccati equation. Depending
on the sign of µ and following a Markov chain terminology, one can call µ the
drift as in [6], and can classify the Riccati equations associated with a singular
irreducible M-matrix in three categories:

(a) positive recurrent if µ < 0;

(b) null recurrent if µ = 0;

(c) transient if µ > 0.

In fluid queues problems, v coincides with the vector of ones. In general v
and u can be computed by performing the LU factorization of the matrix M ,
say M = LU , and solving the two triangular linear systems uTL = [0, . . . , 0, 1]
and Uv = 0 (see [30, Sec. 54]).

The location of the eigenvalues of H is made precise in the following [20, 23]:
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Theorem 2.9. Let M be a nonsingular or a singular irreducible M-matrix, and
let λ1, . . . , λm+n be the eigenvalues of H = JM ordered by nonincreasing real
part. Then λn and λn+1 are real and

Reλn+m 6 . . . 6 Reλn+2 < λn+1 6 0 6 λn < Reλn−1 6 . . . 6 Reλ1.

The minimal nonnegative solutions S and T of the equation (1) and of the
dual equation (4), respectively, are such that σ(D − CS) = {λ1, . . . , λn} and
σ(A− SC) = σ(A−BT ) = {−λn+1, . . . ,−λn+m}.

If M is nonsingular then λn+1 < 0 < λn. If M is singular and irreducible
then:

1. if µ < 0 then λn = 0 and λn+1 < 0;

2. if µ = 0 then λn = λn+1 = 0 and there exists only one eigenvector, up to
a scalar constant, for the eigenvalue 0;

3. if µ > 0 then λn > 0 and λn+1 = 0.

We call λn and λn+1 the central eigenvalues of H. If H (and thus M) is
nonsingular, then the central eigenvalues lie on two different half planes so the
splitting is complete. In the singular case the splitting is complete if and only
if µ 6= 0.

The close to null recurrent case, i.e., the case µ ≈ 0, deserves particular
attention, since it corresponds to an ill-conditioned null eigenvalue for the matrix
H. In fact, if u and v are normalized such that ‖u‖2 = ‖v‖2 = 1, then 1/|µ| is
the condition number of the null eigenvalue for the matrix H (see [19]).

When M is singular irreducible, for the Perron–Frobenius theorem the eigen-
value 0 is simple, therefore H = JM has a one dimensional kernel and uTJ and
v are the unique (up to a scalar constant) left and right eigenvectors, respec-
tively, corresponding to the eigenvalue 0. However the algebraic multiplicity of
0 as an eigenvalue of H can be 2; in that case, the Jordan form of H has a 2× 2
Jordan block corresponding to the 0 eigenvalue and it holds uTJv = 0 [31].

The next result, presented in [25], shows the reduction from the case µ < 0
to the case µ > 0 and conversely, when M is singular irreducible. This property
enable us to restrict our interest only to the case µ 6 0.

Lemma 2.10. The matrix S is the minimal nonnegative solution of (1) if and
only if Z = ST is the minimal nonnegative solution of the equation

XCTX −XAT −DTX +BT = 0. (9)

Therefore, if M is singular and irreducible, the equation (1) is transient if and
only if the equation (9) is positive recurrent.

Proof. The first part is easily shown by taking transpose on both sides of the
equation (1). The M-matrix corresponding to (9) is

Mt =
[

AT −CT

−BT DT

]
.

Since [
vT
2 vT

1

]
Mt = 0, Mt

[
u2

u1

]
= 0,

the second part readily follows.
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2.6 The differential of the Riccati operator

The matrix equation (1) defines a Riccati operator

R(X) = XCX −AX −XD +B,

whose differential dRX at a point X is

dRX [H] = HCX +XCH −AH −HD. (10)

The differential H → dRX [H] is a linear operator which can be represented by
the matrix

∆X = (CX −D)T ⊗ Im + In ⊗ (XC −A), (11)

where ⊗ denotes the Kronecker product (see [30, Sec. 10]).
We say that a solution X of the matrix equation (1) is critical if the matrix

∆X is singular.
From the properties of Kronecker product [30, Sec. 10], it follows that the

eigenvalues of ∆X are the sums of those of CX − D and XC − A. If X = S,
where S is the minimal nonnegative solution, then D − CX and A − XC are
M-matrices (compare Theorem 2.7), and thus all the eigenvalues of ∆S have
nonpositive real parts. Moreover, since D − CS and A − SC are M-matrices
then −∆S is an M-matrix. The minimal nonnegative solution S is critical if
and only if both M-matrices D − CS and A − SC are singular, thus, in view
of Theorem 2.9, the minimal solution is critical if and only if M is irreducible
singular and µ = 0.

Moreover, if 0 6 X 6 S then D−CX > D−CS and A−XC > A−SC are
nonsingular M-matrices by lemma 2.5, thus −∆X is a nonsingular M-matrix.

2.7 The number of positive solutions

If the matrix M is irreducible, Theorem 2.7 states that there exists a minimal
positive solution S of the NARE. In the study of nonsymmetric Riccati differ-
ential equations associated with an M-matrix [18, 34] one is interested in all the
positive solutions.

In [18] it is shown that if M is nonsingular or singular irreducible with µ 6= 0,
then there exists a second solution S+ such that S+ > S and S+ is obtained by
a rank one correction of the matrix S. More precisely, the following result holds
[18].

Theorem 2.11. If M is irreducible nonsingular or irreducible singular with
µ 6= 0, then there exists a second positive solution S+ of (1) given by

S+ = S + kabT ,

where k = (λn−λn+1)/bTCa, a is such that (A−SC)a = −λn+1a and b is such
that bT (D − CS) = λnb

T .

We prove that there are exactly two nonnegative solutions in the noncritical
case and only one in the critical case. In order to prove this result it is useful to
study the form of the Jordan chains of an invariant subspace of H corresponding
to a positive solution.
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Lemma 2.12. Let M be irreducible and let Σ be any positive solution of (1).
Denote by η1, . . . , ηn the eigenvalues of D − CΣ ordered by nondecreasing real
part. Then η1 is real, and there exists a positive eigenvector v of H associated
with η1. Moreover, any other vector independent of v, belonging to Jordan
chains of H corresponding to η1, . . . , ηn cannot be positive or negative.

Proof. Since Σ is a solution of (1), then from (6) one has

H

[
I
Σ

]
=

[
I
Σ

]
(D − CΣ).

Since D−CS is an irreducible M-matrix for Theorem 2.7, and Σ > S (S is the
minimal positive solution), then D−CΣ is an irreducible Z-matrix and thus can
be written as sI−N with N nonnegative and irreducible. Then by Theorem 2.1
and Corollary 2.2 η1 is a simple real eigenvalue of D − CΣ, the corresponding
eigenvector can be chosen positive and there are no other positive or negative
eigenvectors or Jordan chains corresponding to any of the eigenvalues. Let
P−1(D − CΣ)P = K be the Jordan canonical form of D − CΣ, where the first
column of P is the positive eigenvector corresponding to η1. Then we have

H

[
P

ΣP

]
=

[
P

ΣP

]
K.

Thus, the columns of
[

P
ΣP

]
are the Jordan chains of H corresponding to

η1, . . . , ηn, and there are no positive or negative columns, except for the first
one.

Theorem 2.13. If M is an irreducible nonsingular M-matrix or an irreducible
singular M-matrix with µ 6= 0, then (1) has exactly two positive solutions. If M
is irreducible singular with µ = 0, then (1) has a unique positive solution.

Proof. From Lemma 2.12 applied to S it follows that H has a positive eigen-
vector corresponding to λn, and no other positive or negative eigenvectors or
Jordan chains corresponding to λ1, . . . , λn. Let T be the minimal nonnegative
solution of the dual equation (4). Then

H

[
T
I

]
=

[
T
I

]
(−(A−BT )).

As in the proof of Lemma 2.12, we can prove that H has a positive eigen-
vector corresponding to the eigenvalue λn+1 and no other positive or negative
eigenvectors or Jordan chains corresponding to λn+1, . . . , λn+m.

If M is irreducible nonsingular, or irreducible singular with µ 6= 0, then
λn > λn+1, and there are only two linearly independent positive eigenvectors
corresponding to real eigenvalues. By Lemma 2.12, there can be at most two
solutions corresponding to λn, λn−1, . . . , λ1, and to λn+1, λn−1, . . . , λ1, respec-
tively. Since it is know from Theorem 2.11 that there exist at least two positive
solutions, thus (1) has exactly two positive solutions.

If M is irreducible singular with µ = 0, there is only one positive eigenvector
corresponding to λn = λn+1, and the unique solution of (1) is obtained by the
Jordan chains corresponding to λn, λn−1, . . . , λ1.
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The next results provide a useful property of the minimal solutions which
will be useful in Section 4.

Theorem 2.14. Let M be singular and irreducible, and let S and T be the
minimal nonnegative solutions of (1) and (4), respectively. Then the following
properties hold:

(a) if µ < 0, then Sv1 = v2 and Tv2 < v1;

(b) if µ = 0, then Sv1 = v2 and Tv2 = v1;

(c) if µ > 0, then Sv1 < v2 and Tv2 = v1.

Proof. From the proof of Theorem 2.13, it follows that if µ 6= 0, there exist two
independent positive eigenvectors a and b ofH relative to the central eigenvalues

λn and λn+1, respectively. We write a =
[
a1

a2

]
and b =

[
b1
b2

]
, with a1, b1 ∈

Rn and a2, b2 ∈ Rm.
Since the solution S is constructed from an invariant subspace containing a,

then Sa1 = a2, since the solution S+ is constructed from an invariant subspace
containing b, then S+b1 = b2. Analogously, if T+ is the second positive solution
of the dual equation, then Tb2 = b1 and T+a2 = a1.

The statements (a) and (c) follow from the fact that if µ < 0 then v = a
(compare Theorem 2.9), so Sv1 = v2 and Tv2 < T+v2 = v1, since T < T+; if
µ > 0 then v = b, so Tv2 = v1 and Sv1 < S+v1 = v2, since S < S+.

The statement (b) corresponding to the case µ = 0 can be proved in a similar
way.

Remark 2.15. When µ > 0, from Lemma 2.10 and Theorem 2.14 we deduce
that the minimal nonnegative solution S of (1) is such that uT

2 S = uT
1 .

2.8 Perturbation analysis for the minimal solution

We conclude this section with a result of Guo and Higham [24] who perform a
qualitative description of the perturbation of the minimal nonnegative solution
S of a NARE (1) associated with an M-matrix.

The result is split in two theorems where an M-matrix M̃ is considered which
is obtained by means of a small perturbation of M . Here, we denote by S̃ the
minimal nonnegative solution of the perturbed Riccati equation associated with
M̃ .

Theorem 2.16. If M is a nonsingular M-matrix or an irreducible singular
M-matrix with µ 6= 0, then there exist constants γ > 0 and ε > 0 such that
‖S̃ − S‖ 6 γ‖M̃ −M‖ for all M̃ with ‖M̃ −M‖ < ε.

Theorem 2.17. If M is an irreducible singular M-matrix with µ = 0, then
there exist constants γ > 0 and ε > 0 such that

(a) ‖S̃ − S‖ 6 γ‖M̃ −M‖1/2 for all M̃ with ‖M̃ −M‖ < ε;

(b) ‖S̃ − S‖ 6 γ‖M̃ −M‖ for all singular M̃ with ‖M̃ −M‖ < ε.

11



It is interesting to observe that in the critical case, where µ = 0 or if µ ≈ 0,
one has to expect poor numerical performances even if the algorithm used for
approximating S is backward stable. Moreover, the rounding errors introduced
to represent the input values of M in the floating point representation with
precision ε may generate an error of the order

√
ε in the solution S.

This kind of problems will be overcome in Section 4.1.

3 Numerical methods

We give a brief review of the numerical methods developed so far for computing
the minimal nonnegative solution of the NARE (1) associated with an M-matrix.
Here we consider the case where the M-matrix M is nonsingular or is singular,
irreducible and µ 6 0. The case µ > 0 can be reduced to the case µ < 0 by
means of Lemma 2.10. The critical case where µ = 0 needs different techniques
which will be treated in the next Section 4.

We start with a direct method based on the Schur form of the matrix H then
we consider iterative methods based on fixed-point techniques, Newton’s itera-
tion and we conclude the section by analyzing a class of doubling algorithms.

The latter class includes methods based on Cyclic Reduction (CR) of [12],
and on the Structure-preserving Doubling Algorithm (SDA) of [2].

3.1 Schur method

A classical approach for solving equation (1) is to use the (ordered) Schur decom-
position of the matrixM to compute the invariant subspaces ofH corresponding
to the minimal solution S. This approach for the symmetric algebraic Riccati
equation was first presented by Laub in 1979 [40]. Concerning the NARE, a
study of that method in the singular and critical case was done by Guo [23] who
presented a modified Schur method for the critical or near critical case (µ ≈ 0).

As explained in Section 2.4 from

H

[
In
S

]
=

[
In
S

]
(D − CS)

it follows that finding the minimal solution S of the NARE (1) is equivalent
to finding a basis of the invariant subspace of H relative to the eigenvalues of
D − CS, i.e., the eigenvalues of H with nonnegative real part.

A method for finding an invariant subspace is obtained by computing a
semi-ordered Schur form of H, that is, computing an orthogonal matrix Q and
a quasi upper-triangular matrix T such that Q∗HQ = T , where T is block upper
triangular with diagonal blocks Ti,i of size at most 2. The semi-ordering means
that if Ti,i, Tj,j and Tk,k are diagonal blocks having eigenvalues with positive,
null and negative real parts, respectively, then i < j < k.

A semi-ordered Schur form can be computed in two steps:

• Compute a real Schur form of H by the customary Hessenberg reduction
followed by the application of the QR algorithm as described in [19].

• Swap the diagonal blocks by means of orthogonal transformations as de-
scribed in [4].
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The minimal solution of the NARE can be obtained from the first n columns

of the matrix Q partitioned as
[
Q1

Q2

]
such that Q1 is an n×n matrix, that is,

S = Q2Q
−1
1 .

In the critical case this method does not work, since there is no way to
choose an invariant subspace relative to the first n eigenvalues, moreover in the
near critical case where µ ≈ 0, there is lack of accuracy since the 0 eigenvalue is
ill-conditioned. However, the modified Schur method given by C.-H. Guo [24]
overcomes these problems.

The cost of this algorithm is 200n3 ops [23].

3.2 Functional iterations

In [20] a class of fixed-point methods for (1) is considered.
The fixed-point iterations are based on suitable splittings of A and D, that

is A = A1 − A2 and D = D1 −D2, with A1, D1 chosen to be M-matrices and
A2, D2 > 0. The form of the iterations is

A1Xk+1 +Xk+1D1 = XkCXk +XkD2 +A2Xk +B, (12)

where at each step a Sylvester equation of the form M1X +XM2 = N must be
solved.

Some possible choices for the splitting are:

1. A1 and D1 are the diagonal parts of A and D, respectively;

2. A1 is the lower triangular part of A and D1 the upper triangular part of
D;

3. A1 = A and D1 = D.

The solution Xk+1 of the Sylvester equation can be computed, for instance,
by using the Bartels and Stewart method [5], as in MATLAB’s sylvsol function
of the Nick Higham Matrix Function toolbox [28]

The cost of this computation is roughly 60n3 ops including the computation
of the Schur form of the coefficients A1 and D1 [29]. However, observe that for
the first splitting, A1 and D1 are diagonal matrices and the Sylvester equation
can be solved with O(n2) ops; for the second splitting, the matrices A1 and
D1 are already in the Schur form. This substantially reduces the cost of the
application of the Bartels and Stewart method to 2n3. Concerning the third
iteration, observe that the matrix coefficients A1 and D1 are independent of the
iteration. Therefore, the computation of their Schur form must be performed
only once.

A monotonic convergence result holds for the three iterations [20].

Theorem 3.1. If R(X) 6 0 for some positive matrix X, then for the fixed-point
iterations (12) with X0 = 0, it holds that Xk < Xk+1 < X for k > 0. Moreover,
limXk = S.

We have also an asymptotic convergence result [20].

Theorem 3.2. For the fixed-point iterations (12) with X0 = 0, it holds that

lim sup k
√
‖Xk − S‖ = ρ((I⊗A1 +DT

1 ⊗ I)−1(I⊗ (A2 +SC)+(D2 +CS)T ⊗ I).
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These iterations have linear convergence which turns to sublinear in the
critical case. The computational cost varies from 8n3 arithmetic operations per
step for the first splitting, to 64n3 for the first step plus 10n3 for each subsequent
step for the last splitting. The most expensive iteration is the third one which,
on the other hand, has the highest (linear) convergence speed.

3.3 Newton’s method

Newton’s iteration was first applied to the symmetric algebraic Riccati equation
by Kleinman in 1968 [37] and later on by various authors. In particular, Benner
and Byers [7] complemented the method with an optimization technique (exact
line search) in order to reduce the number of steps needed for arriving at con-
vergence. The study of the Newton method for nonsymmetric algebraic Riccati
equations was started by Guo and Laub in [26], and a nice convergence result
was given by Guo and Higham in [24].

The convergence of the Newton method is generally quadratic except for the
critical case where the convergence is observed to be linear with rate 1/2 [26].
At each step, a Sylvester matrix equation must be solved, so the computational
cost is O(n3) ops per step, but with a large overhead constant.

The Newton method for a NARE [26] consists in the iteration

Xk+1 = N (Xk) = Xk − (dRXk
)−1R(Xk), k = 0, 1, . . . (13)

which, in view of (10), can be written explicitly as

(A−XkC)Xk+1 +Xk+1(D − CXk) = B −XkCXk. (14)

Therefore, the matrix Xk+1 is obtained by solving a Sylvester equation. This
linear equation is defined by the matrix

∆Xk
= (D − CXk)T ⊗ Im + In ⊗ (A−XkC)

which is nonsingular if 0 6 Xk < S, as shown in section 2.6. Thus, if 0 6 Xk < S
for any k, the sequence (13) is well-defined.

In the noncritical case, dRS is nonsingular, and the iteration is quadratically
convergent in a neighborhood of the minimal nonnegative solution S by the
traditional results on Newton’s method (see e.g. [36]). Moreover, the following
monotonic convergence result holds [24]:

Theorem 3.3. Consider Newton’s method (14) starting from X0 = 0. Then
for each k = 0, 1, . . . , we have 0 6 Xk 6 Xk+1 < S and ∆Xk

is a nonsingular
M-matrix. Therefore, the sequence (Xk) is well-defined and converges monoton-
ically to S.

The same result holds when 0 6 X0 6 S; the proof in [24] can be easily
adapted to this case.

In [26], a hybrid method was suggested, which consists in performing a
certain number of iterations of a linearly convergent algorithm, such as the ones
of Section 3.2, and then using the computed value as the starting point for
Newton’s method.

At each step of Newton’s iteration, the largest computational work is given
by the solution of the Sylvester equation (14). We recall that the solution Xk+1,
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computed by means of the Bartels and Stewart method [5] costs roughly 60n3

ops. Therefore the overall cost of newton’s iteration is 66n3 ops.
It is worth noting that in the critical and near critical cases, the matrix

∆k becomes almost singular as Xk approaches the solution S; therefore, some
numerical instability is to be expected. Such instability can be removed by
means of a suitable technique which we will describe in Section 4.1.

3.4 Doubling algorithms

In this section we report some quadratically convergent algorithms obtained
in [10] for solving (1). Quadratically convergent methods for computing the
extremal solution of the NARE can be obtained by transforming the NARE
into a Unilateral Quadratic Matrix Equation (UQME) of the kind

A2X
2 +A1X +A0 = 0 (15)

where A0, A1, A2 and X are p × p matrices. Equations of this kind can be
solved efficiently by means of doubling algorithms like Cyclic Reduction (CR)
[12, 9] or Logarithmic Reduction (LR) [39].

The first attempt to reduce a NARE to a UQME was performed by Ra-
maswami [46] in the framework of fluid queues. Subsequently, many contribu-
tions in this direction have been given by several authors [23, 13, 10, 33, 6] and
different reduction techniques have been designed.

Concerning algorithms, Cyclic Reduction and SDA are the most effective
computational techniques. The former was applied the first time in [12] by D.
Bini and B. Meini to solve unilateral quadratic equations. The latter, was first
presented by Anderson in 1978 [2] for the numerical solution of discrete-time
algebraic Riccati equations. A new interpretation was given by Chu, Fan, Guo,
Hwang, Lin, Xu [16, 32, 41], for other kinds of algebraic Riccati equations.

CR applied to (15) generates sequences of matrices defined by the following
equations

V (k) = (A(k)
1 )−1

A
(k+1)
0 = −A(k)

0 V (k)A
(k)
0

A
(k+1)
1 = A

(k)
1 −A

(k)
0 V (k)A

(k)
2 −A

(k)
2 V (k)A

(k)
0 k = 0, 1, . . .

A
(k+1)
2 = −A(k)

2 V (k)A
(k)
2

Â(k+1) = Â(k) −A
(k)
2 V (k)A

(k)
0

(16)

where A(0)
i = Ai, i = 0, 1, 2, Â(0) = A1.

The following result provides convergence properties of CR [9].

Theorem 3.4. Let x1, . . . , x2p be the roots of a(z) = det(A0 + zA1 + z2A2),
including roots at the infinity if deg a(z) < 2p, ordered by increasing modulus.
Suppose that |xp| 6 1 6 |xp+1| and |xp| < |xp+1|, and that a solution G exists to
(15) such that ρ(G) = |xp|. Then, G is the unique solution to (15) with minimal
spectral radius, moreover, if CR (16) can be carried out with no breakdown, the
sequence

G(k) = −
(
Â(k)

)−1

A0
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is such that for any norm

||G(k) −G|| 6 ϑ|xp/xp+1|2
k

where ϑ > 0 is a suitable constant. Moreover, it holds that ||A(k)
0 || = O(|xp|2

k

),
||A(k)

2 || = O(|xp+1|−2k

).

Observe that, the convergence conditions of the above theorem require that
the roots of a(z) have a (p, p) complete splitting with respect to the unit circle.
For this reason, before transforming the NARE into a UQME, it is convenient
to transform the Hamiltonian H into a new matrix Ĥ such that the eigenvalues
of Ĥ have an (n,m) splitting with respect to the unit circle, i.e., n eigenvalues
belong to the closed unit disk and m are outside. This can be obtained by means
of one of the two operators: the Cayley transform Cγ(z) = (z+γ)−1(z−γ), where
γ > 0, or the shrink-and-shift operator Sτ (z) = 1 − τz, where τ > 0. In fact,
the Cayley transform maps the right open half-plane into the open unit disk.
Similarly, for suitable values of τ , the transformation Sτ maps a suitable subset
of the right half-plane inside the unit disk. This property is better explained in
the following result which has been proved in [10].

Theorem 3.5. Let γ, τ > 0 and let

Hγ = Cγ(H) = (H + γI)−1(H − γI), Hτ = Sτ (H) = I − τH.

Assume µ < 0, then:

1. Hγ has eigenvalues ξi = Cγ(λi), i = 1, . . . ,m+ n, such that

max
i=1,...,n

|ξi| 6 1 < min
i=1,...,m

|ξi+n|;

2. if τ−1 > max{maxi(A)i,i,maxi(D)i,i}, Hτ has eigenvalues µi = Sτ (λi),
i = 1, . . . ,m+ n, such that

max
i=1,...,n

|µi| 6 1 < min
i=1,...,m

|µi+n|.

Moreover, if X is any solution of (1) then

Hγ

[
I
X

]
=

[
I
X

]
Rγ , Hτ

[
I
X

]
=

[
I
X

]
Rτ

where Rγ = Cγ(D − CX), Rτ = Sτ (D − CX).

In the following we will denote by Ĥ =

[
D̂ −Ĉ
B̂ −Â

]
either Hγ or Hτ . Since

the transformations Cγ and Sτ are invertible, from the above theorem one has
that X is a solution of the NARE (1) if and only if X is a solution of the
NARE defined by Ĥ. In particular, the extremal solution S is the solution of
the NARE associated with Hγ or Hτ corresponding to the n eigenvalues Hγ or
Hτ , respectively, smallest in modulus.

The following result provides a means for reducing a NARE into a UQME:
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Theorem 3.6. Let X be a solution of the NARE (1). Then:

1. Y =
[
D̂ − ĈX 0

X 0

]
is a solution to

[
D̂ 0
B̂ 0

]
+

[
−I −Ĉ
0 −Â

]
Y +

[
0 0
0 −I

]
Y 2 = 0; (17)

2. Y =

[
D̂ − ĈX 0

X(D̂ − ĈX) 0

]
is a solution to

[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
Y +

[
0 0
0 U2

]
Y 2 = 0, (18)

where U1 = −ĈÂ−1, U2 = −Â−1, L1 = D̂ − ĈÂ−1B̂, L2 = −Â−1B̂.

Conversely,

V =
[
D̂ − ĈS 0

S 0

]
, W =

[
D̂ − ĈS 0

S(D̂ − ĈS) 0

]

are the unique solutions of UQME (17) and (18), respectively, with m eigenval-
ues equal to 0 and n eigenvalues in the closed unit disk.

A reduction similar to the one provided in equation (17) was proved by
Ramaswami in [46] by using probabilistic tools.

The following reduction holds for any NARE (1) provided that m = n and
detC 6= 0

Theorem 3.7. Let m = n and detC 6= 0. The matrix X is a solution of the
NARE (1) if and only if Y = C−1(D − CX)Ĉ is a solution of the UQME

Y 2 + (C−1DC −A)Y + (B −AC−1D)C = 0. (19)

Similarly, X is a solution of the NARE (1) if and only if Y = D − CX is a
solution of the UQME

Y 2 + (D − CAC−1)Y + C(B −AC−1D) = 0. (20)

If we choose H = Ĥ, then Y = Ĉ−1(D̂ − ĈX)Ĉ is the solution of the (19)
with minimal spectral radius. Similarly, Y = D̂ − ĈS is the solution of (20)
with minimal spectral radius.

Observe that if detC = 0, we may replace (1) with a new equation defined
by blocks Ã, B̃, C̃, and D̃ such that det C̃ 6= 0 according to the following

Lemma 3.8. The Riccati equation (1) has solution X if and only if the Riccati
equation

Y C̃Y − ÃY − Y D̃ + B̃ = 0

where Ã = A−BK, B̃ = B, C̃ = R̃(K), D̃ = D−KB, has solution X̃ = X(I−
KX)−1 and K is such that det(I−KX̃) 6= 0 (or equivalently, det(I+XK) 6= 0).
Moreover, D̃ − C̃X̃ = (I −KX)(D − CX)(I −KX)−1.
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It can be easily verified that if Ĥ = Hτ then

Â = −I − τA, B̂ = −B, Ĉ = −C, D̂ = I − τD.

If Ĥ = Hγ then a direct calculation shows that

Â = −I + 2γV −1, B̂ = 2γ(−A+ γI)−1BW−1,

Ĉ = 2γ(D + γI)−1CV −1, D̂ = I − 2γW−1,

with V = −A+ γI +B(D + γI)−1C and W = D + γI + C(−A+ γI)−1B.
Equations (17), (18), (19) and (20) can be solved by means of CR (16), which

provides a matrix sequence G(k) that converges, when applicable, to the solution
with minimal spectral radius. In view of Theorem 3.5, and of the subsequent
discussion, this solution is the one which is needed for computing the extremal
solution S to the NARE (1).

The cost of CR applied to (19) and (20) is about (38/3)n3 ops.
Concerning convergence it follows from Theorem 3.4 that the approximation

error is O(σ2k

), for σ = σγ if Ĥ = Hγ , σ = στ if Ĥ = Hτ . Here we define

στ = maxi=1,...,n |µi|/mini=1,...,m |µn+i|,
σγ = maxi=1,...,n |ξi|/mini=1,...,m |ξn+i|,

where στ , σγ < 1 if µ < 0.
Applying CR to (19) and (20) generates blocks of size m + n. However,

it is possible to verify that the structure of the blocks Ai, i = 0, 1, 2 given in
equations (17) and (18) is maintained unchanged by the blocks A(k)

i , i = 0, 1, 2.
More precisely, it turns out that applying (16) to the equation (17) yields blocks
of the kind

A
(k)
0 =

[
R

(k)
1 0

R
(k)
2 0

]
, A

(k)
1 =

[
−I R

(k)
3

R
(k)
4 R

(k)
5

]
,

A
(k)
2 =

[
0 0
0 R

(k)
6

]
, Â(k) =

[
−I R

(0)
3

R
(k)
4 R

(0)
5

]
.

It can be easily verified that the matrices R(k)
i , i = 1, . . . , 6 satisfy the following

equations:

S(k) = R
(k)
5 +R

(k)
4 R

(k)
3 ,

Y (k) =
(
S(k)

)−1 (
R

(k)
2 +R

(k)
4 R

(k)
1

)
,

X(k) = R
(k)
3 Y (k) −R

(k)
1 ,

Z(k) =
(
S(k)

)−1

R
(k)
6 ,

T (k) = R
(k)
3 Z(k),

R
(k+1)
1 = −R(k)

1 X(k),

R
(k+1)
2 = −R(k)

2 X(k),

R
(k+1)
3 = R

(k)
3 −R

(k)
1 T (k),

R
(k+1)
4 = R

(k)
4 −R

(k)
6 Y (k),

R
(k+1)
5 = R

(k)
5 −R

(k)
2 T (k),

R
(k+1)
6 = −R(k)

6 Z(k).

(21)

for k = 0, 1, . . . , starting from the initial values R(0)
1 = D̂, R(0)

2 = B̂, R(0)
3 = −Ĉ,

R
(0)
4 = 0, R(0)

5 = −Â, R(0)
6 = −I. From Theorem 3.4 it follows that

S = −
(
R

(0)
5 +R

(k)
4 R

(0)
3

)−1 (
R

(0)
2 +R

(k)
4 R

(0)
1

)
+O(σ2k

),
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where σ = στ if Ĥ = Hτ , while for Ĥ = Hγ one has σ = σγ .
The computational cost of this algorithm is (74/3)n3 per step, assuming

m = n.
Similarly, it turns out that applying (16) to the equation (18) yields blocks

of the kind

A
(k)
0 =

[
E(k) 0

0 0

]
, A

(k)
1 =

[
−I G(k)

H(k) −I

]
, A

(k)
2 =

[
0 0
0 F (k)

]
,

where the sequences E(k), F (k), G(k), H(k) are given by

E(k+1) = E(k)(I −G(k)H(k))−1E(k),

F (k+1) = F (k)(I −H(k)G(k))−1F (k),

G(k+1) = G(k) + E(k)(I −G(k)H(k))−1G(k)F (k),

H(k+1) = H(k) + F (k)(I −H(k)G(k))−1H(k)E(k),

(22)

for k > 0, starting from the initial values E(0) = L1, F (0) = U2, G(0) = U1,
H(0) = L2. The following convergence result holds:

S = H(k) +O(σ2k

)

in the noncritical case, where σ = σγ , στ . Observe that in this case the compu-
tation of Â(k) is not required.

The cost per step of this iteration is (64/3)n3 for m = n.
It is interesting to point out that (22), obtained by applying CR to the

solution of the UQME (18), coincides with SDA of [16, 32, 41]. In the critical
case where H is singular and µ = 0, the convergence of the doubling algorithms
is linear as shown in [15, 25].

4 Exploiting the singularity of H

In this section we assume that M is singular irreducible. Under this assumption,
the matrix H = JM has only one independent left and only one independent
right eigenvector corresponding to the null eigenvalue. These vectors can be
computed easily as already explained in Section 2.5. The knowledge of these
eigenvectors can be used for improving the performances of the algorithms by
means of two techniques: the shift technique which we deal in Section 4.1, and a
suitable choice of the initial approximation in iterative methods which we treat
in Section 4.2.

The advantage that one can obtain from these two techniques is twofold: on
one hand it is possible to increase the accuracy in the (close to) critical case
where the approximation error changes from O(

√
ε) to O(ε); on the other hand

one can accelerate the convergence speed from the linear convergence to the
quadratic convergence in the critical case and improve the quadratic convergence
in the close to critical case.

In the rest of the section we consider only the case µ 6 0 in view of Lemma
2.10.
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4.1 The shift technique

The shift technique was introduced by He, Meini and Rhee for a quadratic
matrix equation arising in the numerical solution of Markov chains modeling
quasi-birth-and-death (QBD) processes [27].

For these problems, the interest is in the computation of the minimal non-
negative solution G of the matrix equation

X = A2X
2 +A1X +A0,

where Ai > 0, i = 0, 1, 2, and (A2 +A1 +A0)e = e.
A property generally satisfied in the applications is that the polynomial

detϕ(z), ϕ(z) = A2z
2 + (A1 − I)z + A0, has degree at least n + 1 and roots

ξ1, ξ2, . . ., ordered by increasing modulus such that ξn and ξn+1 are real and
|ξn−1| < ξn = 1 6 ξn+1. Moreover one has ϕ(1)e = 0 and σ(G) = {ξ1, . . . , ξn}
[9].

The conditioning of the minimal nonnegative solution G and the convergence
of the available algorithms depend on the ratio 1/ξn+1 [39, 12, 27]: the closer
is this ratio to 1, the worse conditioned is the solution and the slower is the
convergence of the iterative algorithms.

The idea of the shift technique is to consider a new quadratic matrix equation
in which the convergence of numerical algorithms and the conditioning of the
solution is better, and whose solution easily provides the matrix G. This can be
achieved by using the available information of G, that is, ρ(G) = 1 and Ge = e.

The new UQME is
X = B2X

2 +B1X +B0, (23)

where
B2 = A2,
B1 = A1 +A2eu

T ,
B0 = A0 + (A1 +A2 − I)euT = A0 −A0eu

T ,

and u is any positive vector such that uT e = 1. An easy computation shows
that the equation (23) has the solution F = G− euT .

The matrix F has the same eigenvalues as the matrix G except for the
eigenvalue 1 of G that becomes the eigenvalue 0 in F , with the same eigenvector
e. It can be said that an eigenvalue of G is shifted to 0, this fact gives the name
to the technique. Observe that F is the solution with minimal spectral radius
of (23).

Concerning the matrix polynomials ϕ(z) and ψ(z) = B2z
2 +(B1− I)z+B0,

it holds that

ϕ(z) = (A1 − I +A2G− zA2)(zI −G),
ψ(z) = (B1 − I +B2F − zB2)(zI − F ) = (A1 − I +A2G− zA2)(zI − F ).

(24)
The latter equality follows from the fact that A2 = B2 and A1+A2G = B1+B2F
and implies that the determinants of the two matrix polynomials have the same
roots except for the root 1 that is replaced by 0. In this way, the ratio between
the nth and the (n + 1)-st root is reduced from 1/ξn+1 to |ξn−1|/ξn+1 (see
[27, 22] for further details).

The important case where ξn = ξn+1 = 1 is critical for the convergence
of algorithms since the ratio 1/ξn=1 is 1. In fact in this case the convergence
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of algorithms turns from quadratic to linear or from linear to sublinear. The
shift technique transforms this critical equation into another one where the ratio
between the nth and the (n+1)-st root is |ξn−1| < 1. In this way, the quadratic
convergence is preserved.

Even in the case where ξn is very close to ξn+1 the shift technique allows
one to improve the convergence speed since the ratio between the nth and the
(n+ 1)-st root becomes |ξn−1|/ξn+1 which is smaller than |ξn|/ξn+1.

The shift technique has a nice functional interpretation: the matrix poly-
nomial ψ(z) of (24) is obtained by the polynomial ϕ(z) by the simple relation
[9]

ψ(z)(I − z−1Q) = ϕ(z),

where Q = euT . This characterization has the advantage that the shift tech-
nique can be extended to matrix equations of any degree or even to matrix
power series [9].

The shift technique can be applied to the UQMEs (17), (18), (19), (20) which
derive from NAREs. In particular, in the case of equation (17) this technique
has been analyzed in detail in [13]. The cases of (18), (19), (20) can be similarly
treated.

Similarly to the case of the quadratic matrix equation, one can directly apply
the shift technique to the singular matrix H associated with the NARE [25].
Here the goal is to construct a new matrix H̃ having the same eigenvalues of H
except for the eigenvalue 0 which is moved to a positive eigenvalue η of H̃. In
this way we obtain a new NARE associated with H̃ having better computational
feature and with the same solution S of the original NARE.

The construction of H̃ is based on the following result of which we give a
simpler proof. This result was proved by Brauer in 1952 [14] and it has been
rediscovered several times (see [31]).

Theorem 4.1. Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn and
let v be a nonnull vector such that Av = λ1v. For any nonnull vector x, set
Q = vxT . Then the eigenvalues of A+Q are λ1 + xT v, λ2, . . . , λn.

Proof. Since AQ = λ1Q, one has the following identity

(λ− λ1)(A+Q− λI) = (A− λI)((λ− λ1)I −Q).

Taking the determinant of both sides and using the formula for the characteristic
polynomial of a rank-one matrix, pvxT (λ) = det(vxT − λI) = (λ− xT v)λn−1, it
holds that

pA+Q(λ)(λ− λ1)n = (−1)npA(λ)pvxT (λ− λ1)

= (−1)npA(λ)(λ− λ1)n−1(λ− λ1 − xT v).

The unique factorization of polynomials completes the proof.

From the above theorem follows immediately a corollary that will be useful
in the following.
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Corollary 4.2. Let A be a singular matrix and Aw = 0 for a nonzero vector
w. Assume that p is a vector such that pTw = 1 and η is a scalar. Then the
eigenvalues of the matrix

Ã = A+ ηwpA

are those of A except that one zero eigenvalue of A is replaced by η.

We now construct a rank-one modification of the matrix H:

Ĥ = H + ηvpT , (25)

where, v is a positive vector such that Hv = 0, η > 0 is a scalar and p > 0 is
a vector with pT v = 1. From Lemma 4.2 the eigenvalues of Ĥ are those of H
except that one zero eigenvalue of H is replaced by η.

We write pT =
(
pT
1 , p

T
2

)
and

H̃ =

[
D̃ −C̃
B̃ −Ã

]
,

where
D̃ = D + ηv1p

T
1 , C̃ = C − ηv1p

T
2 ,

B̃ = B + ηv2p
T
1 , Ã = A− ηv2p

T
2 .

Corresponding to H̃ we define the new NARE

XC̃X −XD̃ − ÃX + B̃ = 0, (26)

which defines the Riccati operator

R̃(X) = XC̃X −XD̃ − ÃX + B̃. (27)

We have the following important property about the NARE (26).

Theorem 4.3. If µ 6 0, then S is a solution of the NARE (26) and σ(D̃ −
C̃S) = {λ1, . . . , λn−1, η}, where S is the minimal nonnegative solution of the
original NARE (1).

Computing the minimal nonnegative solution S of the NARE (1) can be
achieved by computing the solution S of the new NARE (26) corresponding to
eigenvalues with positive real parts. Observe that equation (26) is not associated
with an M-matrix, however the algorithms and the techniques of Section 3 can be
applied and, if break-down is not encountered, convergence is much faster than
for the original equation (1). In particular, in the critical case, the convergence of
SDA applied to the new NARE (26) is again quadratic. A detailed convergence
analysis of SDA is reported in [25].

When µ = 0, the matrix H has two zero eigenvalues. The above shift
technique moves one zero eigenvalue to a positive number. We may use a double-
shift to move the other zero eigenvalue to a negative number. Recall that
Hv = 0, where v = [ v1

v2 ], and wTH = 0, where w = [ u1
−u2 ]. We define the matrix

H = H + ηvpT + ξqwT , (28)
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where η > 0, ξ < 0, p and q are such that pT v = qTw = 1. Since v and w are
orthogonal vectors, the double-shift moves one zero eigenvalue to η and the other
to ξ. Indeed, the eigenvalues of H̃ = H + ξqwT are those of H̃T = HT + ξwqT ,
which are the eigenvalues of H except that one zero eigenvalue is replaced by
ξ, by Lemma 4.2. Also, the eigenvalues of H = H̃ + ηvpT are the eigenvalues
of H̃ except that the remaining zero eigenvalue is replaced by η, by Lemma 4.2
again.

From H we may define a new Riccati equation

XCX −XD −AX +B = 0. (29)

As before, the minimal nonnegative solution S of (1) is a solution of (29) such
that σ(D − CS) = {η, λ1, . . . , λn−1}. However, it seems very difficult to de-
termine the existence of a solution Y of the dual equation of (29) such that
σ(A−B Y ) = {−ξ,−λn+2, . . . ,−λn+m}.

4.2 Choosing a new initial value

If the right eigenvector of H relative to the null eigenvalue is partitioned as

v =
[
v1
v2

]
, from Theorem 2.14 it follows that for the minimal nonnegative

solution S, it holds that Sv1 = v2 (and then (D − CS)v1 = 0).
In the algorithms in which the initial value can be chosen, like Newton’s

method, the usual choice X0 = 0 does not exploit this information, rather it
relies only on the positivity of S. Note that in the Riccati equations modeling
fluid queues, the condition Xv1 = v2 is equivalent to the stochasticity of S since
v1 = v2 = e.

A possibly better convergence is expected if one could generate a sequence
such that Xkv1 = v2 for any k > 0. More precisely, one must choose an iteration
which preserves the affine subspace Ŵ = {A ∈ Cn×n : Av1 = v2} and an initial
value X0 ∈ Ŵ for which the sequence converges to the desired solution.

A similar idea has been used in [45] in order to improve the convergence speed
of certain functional iterations for solving nonlinear matrix equations related to
special Markov chains.

A nice property of Newton’s method is that it is structure-preserving with
respect to the affine subspace Ŵ . To prove this fact consider the following
preliminary result which concerns the Newton iteration

Lemma 4.4. The Newton method Xk+1 = N (Xk),

N (Xk) = Xk − (dFXk
)−1F(Xk)

applied to the matrix equation F(X) = 0, when defined, preserves the affine
structure V̂ if and only if F is a function from V̂ to its parallel linear subspace
V .

Proof. Consider the matrix X ∈ V̂ . The matrix N (X) belongs to V̂ if and only
if N (X)−X = (dFX)−1(−F(X)) belongs to V , and that occurs if and only if
F(X) (and then −F(X)) belongs to V .

Now, we are ready to prove that the Newton method applied to the Riccati
operator is structure-preserving with respect to Ŵ .

23



Proposition 4.5. If X0 is such that X0v1 = v2, and the Newton method applied
to the Riccati equation R(X) = 0 is well defined then Xkv1 = v2 for any k > 0.
That is, the Newton method preserves the structure Ŵ .

Proof. In view of Lemma 4.4, one needs to prove that R is a function from Ŵ
to the parallel linear subspace W .

If X ∈ Ŵ , then R(X)v1 = 0, in fact

R(X)v1 = XCXv1 −AXv1 −XDv1 +Bv1 = XCv2 −Av2 −XDv1 +Bv1

and the last term is 0 since Cv2 = Dv1 and Av2 = Bv1.

A possible choice for the starting value is (X0)i,j = (v2)i/s where s =∑
i v1(i). It must be observed that the structured preserving convergence is

not anymore monotonic. Since the approximation error has a null component
along the subspace W , one should expect a better convergence speed for the
sequences obtained with X0 ∈ Ŵ . A proof of this fact and the convergence
analysis of this approach is still work in place.

If µ = 0, the differential of R is singular at the solution S as well as at any
point X ∈ Ŵ . This makes the sequence Xk undefined. A way to overcome this
drawback is considering the shifted Riccati equation described in Section 4.1.

The differential of the shifted Riccati equation (26) at a point X is repre-
sented by the matrix

∆̃X = ∆X + I ⊗ (η(Xv1 − v2)pT
2 ) + (ηv1(pT

1 + pT
2 X))T ⊗ I, (30)

where the vector p 6= 0 partitioned as p =
[
p1

p2

]
is an arbitrary nonnegative

vector such that pT v = 1. Choosing p2 = 0 provides a nice simplification of the
problem, in fact

∆̃X = ∆X −QT ⊗ I,

where Q = ηv1p
T
1 .

The next result gives more insights on the action of the Newton iteration on
the structure V̂ .

Proposition 4.6. Assume that p2 = 0. If X ∈ Ŵ then R(X) = R̃(X), where
R̃ is defined in (27). Moreover the sequences generated by Newton’s method,
when defined, applied to R(X) = 0 and to R̃(X) = 0 with X0 ∈ Ŵ are the
same.

Proof. The fact R(X) = R̂(X), in the assumption p2 = 0, follows from

R̃(X) = R(X)− η(Xv1 − v2)pT
1 .

LetN (X) = X−(dRX)−1R(X) and Ñ (X) = X−(dR̃X)−1R̃(X) denote the
Newton operator for the original equation and for the shifted one, respectively.
To prove that the sequences are the same, it must be shown that

(A−XC)N (X) +N (X)(D̃ − CX) = B̃ −XCX
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holds for any X ∈ Ŵ and for any η (for which the equation has a unique
solution). One has

(A−XC)N (X) +N (X)(D̃ − CX)

= B −XCX +N (X)ηv1pT
1 = B −XCX + ηv2p

T
1 = B̃ −XCX,

where we have used that N (X)v1 = v2 since N (X) ∈ Ŵ . This completes the
proof.

Since any starting value X0 ∈ V̂ gives the same sequence for the Newton
method applied either to the Riccati equation (1) or to the shifted Riccati
equation (26), then, choosing such an initial value has the same effect of applying
the shift technique.

For the applicability one needs that the matrix ∆Xk
is nonsingular at each

step. Unfortunately the derivative might be singular for some singular M-matrix
and some X ∈ Ŵ+ = {X ∈ Ŵ ,X > 0}.

If a breakdown occurs, it is always possible to perform the iteration by using
the shifted iteration, with p2 = 0 and for a suitable choice of the parameter η.
In fact, the iteration is proved in Proposition 4.6 to be the same by any choice
of p1 and η.

The convergence is more subtle. Besides the loss of monotonic convergence,
one may note that S is not the only solution belonging to Ŵ , even if it is the
only belonging to Ŵ+. In fact, in view of Theorem 2.13, there are at most two
positive solutions, and only one of them has the property Sv1 = v2. The proof
of convergence is still work in progress, we conjecture that for each X0 ∈ V̂+,
the sequence generated by the Newton method, if defined, converges to S.

A possible improvement of the algorithm could be obtained by implementing
the exact line search introduced in [7].

5 Numerical experiments and comparisons

We present some numerical experiments to illustrate the behavior of the algo-
rithms presented in Section 3 and 4.1 in the critical and noncritical case. To
compare the accuracy of the methods we have used the relative error err =
‖X − X̂‖1/‖X‖1 on the computed solution X̂, when the exact solution X was
provided. Elsewhere, we have used the relative residual error

res =
‖X̂CX̂ − X̂D −AX̂ +B‖1

‖X̂CX̂‖1 + ‖X̂D‖1 + ‖AX̂‖1 + ‖B‖1

.

The tests were performed using MATLAB 6 Release 12 on a processor AMD
Athlon 64. The code for the diverse algorithms is available for download at the
web page http://bezout.dm.unipi.it/mriccati/.

In these tests we consider three methods: the Newton method (N), the SDA,
and the Cyclic Reduction (CR) algorithm applied to the UQME (17) (in both
SDA and CR we have considered the matrix Ĥ obtained by the Cayley transform
of H and not the one relying on the shrink-and-shift operator).

We have also considered the improved version of these methods applied
to the singular/critical case; we denoted them as IN, ISDA and ICR, respec-
tively, where “I” stands for “Improved”. The initial value for IN is chosen
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as suggested in Section 4.1; the parameter for the shift is chosen as η =
max{max(A)i,i,max(D)i,i} and the vector p is chosen to be e/

∑
i vi.

The iterations are stopped when the relative residual/error ceases to decrease
or becomes smaller than 10ε, where ε is the machine precision.

Test 5.1. A null recurrent case [6, Example 1]. Let

M =


0.003 −0.001 −0.001 −0.001
−0.001 0.003 −0.001 −0.001
−0.001 −0.001 0.003 −0.001
−0.001 −0.001 −0.001 0.003


where D is a 2× 2 matrix. The minimal positive solution is X = 1

2

[
1 1
1 1

]
.

As suggested by the Theorem 2.17, the accuracy of the customary algorithms
N, SDA and CR is poor in the critical case, and is near to

√
ε ≈ 10−8. We report

in Table 1 the number of steps and the relative error for the three algorithms.
If one uses the singularity, due to the particular structure of the problem, the
solution is achieved in one step by IN, ISDA and ICR with full accuracy.

Algorithm Steps Relative error
N 21 6.0 · 10−7

SDA 36 8.6 · 10−7

CR 31 4.7 · 10−9

Table 1: Accuracy of the algorithms in the critical case, Test 5.1

Test 5.2. Random choice of a singular M-matrix with Me = 0 [20]. To con-
structM , we generated a 100×100 random matrix R, and setM = diag(Re)−R.
The matrices A,B,C and D are 50× 50. We generated 5 different matrices M
and computed the relative residuals and number of steps needed for the itera-
tions to converge.

All the algorithms (N, IN, SDA, ISDA, CR and ICR) arrive at a relative
residual less than 10ε. The number of steps needed by the algorithms are
reported in Table 2. As one can see the basic algorithms require the same
number of steps, whilst using the singularity the Newton method requires one
or two steps less than ISDA and ICR, however, the cost per step of these two
methods make their overall cost much lower than the Newton method.

The use of the singularity reduces dramatically the number of steps needed
for the algorithms to converge.

Table 3 summarizes the spectral and computational properties of the solu-
tions of the NARE (1).

Table 4 reports the computational cost of the algorithms for solving (1) with
m = n, together with the convergence properties in the noncritical case .
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