On the tail decay of M/G/1-type Markov renewal processes

D.A. Bini B. Meini V. Ramaswami

March 18, 2008

Abstract

The tail decay of M/G/1-type Markov renewal processes is studied. The Markov renewal process is transformed into a Markov chain so that the problem of tail decay is reformulated in terms of the decay of the coefficients of a suitable power series. The latter problem is reduced to analyze the analyticity domain of the power series.

1 Introduction

Consider a Markov Renewal Process (MRP) $(X_n, \tau_n)_n$ of M/G/1-type on the state space $E = \{(i, j, x) : i \ge 0, 1 \le j \le m, x \ge 0\}$ defined by the kernel

$$K(x) = \begin{bmatrix} \tilde{B}_{0}(x) & \tilde{B}_{1}(x) & \tilde{B}_{2}(x) & \tilde{B}_{3}(x) & \dots \\ \tilde{A}_{-1}(x) & \tilde{A}_{0}(x) & \tilde{A}_{1}(x) & \tilde{A}_{2}(x) & \dots \\ & \tilde{A}_{-1}(x) & \tilde{A}_{0}(x) & \tilde{A}_{1}(x) & \ddots \\ & & \tilde{A}_{-1}(x) & \tilde{A}_{0}(x) & \ddots \\ & & & \ddots & \ddots \end{bmatrix}, \quad x \ge 0,$$

where the $m \times m$ matrices $\widetilde{A}_k(x)$ and $\widetilde{B}_k(x)$ are defined as follows:

$$\widetilde{A}_{k}(x) = P\{X_{n+1} \in \ell_{i+k}, \ \tau_{n+1} - \tau_{n} \leq x | X_{0}, \dots, X_{n}, \\
\tau_{0}, \dots, \tau_{n}, X_{n} \in \ell_{i}, \ i \geq 1\}, \ k \geq -1, \\
\widetilde{B}_{k}(x) = P\{X_{n+1} \in \ell_{k}, \ \tau_{n+1} - \tau_{n} \leq x | X_{0}, \dots, X_{n}, \\
\tau_{0}, \dots, \tau_{n}, X_{n} \in \ell_{0}\}, \ k \geq 0.$$

Here ℓ_i , for $i = 0, 1, \ldots$, denotes the *i*-th *level*, i.e., the set of pairs $\{(i, j), j = 1, \ldots, m\}$.

For $n \ge 0$ let $\widetilde{G}(n, x)$ be the probability that in n steps and in time at most x the system goes from level ℓ_1 to level ℓ_0 .

An important issue arising in the applications is the analysis of the speed of convergence to zero of the sequence $\{\tilde{G}(n,x)\}_n$, as n tends to infinity, or in

Numerical Methods for Structured Markov Chains

http://drops.dagstuhl.de/opus/volltexte/2008/1396

Dagstuhl Seminar Proceedings 07461

other words, the analysis of the tail decay of the sequence $\{\tilde{G}(n,x)\}_n$. In order to simplify the problem, one may apply the Laplace-Stiltjes transform to $\tilde{A}_k(x)$ and to $\tilde{G}(n,x)$, by defining

$$A_n(s) = \int_0^\infty e^{-sx} \widetilde{A}_n(dx), \quad n \ge -1,$$

$$G(w,s) = \sum_{n=1}^\infty w^n \int_0^\infty e^{-sx} \widetilde{G}(n,dx), \quad s \in \mathbb{C}^+ 0.$$

In this way, one finds that

$$G(w,s) = w \sum_{n=-1}^{\infty} A_n(s) G(w,s)^{n+1}, \quad |w| \le 1, s \in \mathbb{C}^+.$$

Now, let us define

$$G(w) = \lim_{s \to 0^+} G(w, s), \quad |w| \le 1,$$

 $A_n = \lim_{s \to 0^+} A_n(s), \quad n \ge -1.$

It is proved in [4] that the matrices A_n for $n \ge -1$ are nonnegative, and that $\sum_{n=-1}^{\infty} A_n$ is a stochastic matrix. Therefore, the matrices A_n define the homogeneous part of the transition matrix of an M/G/1-type Markov chain. Moreover, the matrix G(w) solves the matrix equation

$$G(w) = w \sum_{n=-1}^{\infty} A_n G(w)^{n+1}$$

and $|G(w,s)| \leq |G(w)|$ for any $s \in \mathbb{C}^+$. It is known (see [4]) that, if $0 \leq w \leq 1$, the matrix G(w) is the minimal nonnegative solution of the matrix equation

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}.$$

Moreover, the function G(w) is analytic for |w| < 1 and its power series expansion $G(w) = \sum_{n=0}^{\infty} w^n G_n$, is such that $G_n \ge 0$ for any $n \ge 0$, and is convergent for |w| = 1. The coefficients G_n have the following probabilistic interpretation: G_n is the probability that in n steps the system goes from level ℓ_1 to level ℓ_0 .

Our goal is to estimate the decay rate of the coefficients G_n of the power series G(w). From a classical result in complex analysis [3, Theorem 2.2f], if r > 1 is the convergence radius of G(w), then for any matrix norm, one has $||G_n|| = O(\theta^n)$ for any θ such that $1/r < \theta < 1$. Therefore, our problem is reduced to estimating the convergence radius of G(w).

We prove that, under suitable mild assumptions, the matrix power series G(w) is analytic for |w| < R and convergent for $|w| \leq R$. Here $R = \sigma/\theta(\sigma)$, where σ is the unique solution of the equation $\theta'(z)z = \theta(z)$ in the interval $(0, r_a)$, where $r_a > 1$ is the convergence radius of $A(z) = \sum_{n=-1}^{+\infty} z^{n+1}A_n$ and $\theta(z)$ is the spectral radius of A(z).

The numerical value of R can be computed by relying on any effective iterative algorithm for solving a nonlinear scalar equation where at each step of the iteration the spectral radius of A(z) must be computed together with its derivative.

2 Tail decay analysis

In this section we study the tail decay of the matrix power series $G(w) = \sum_{n=0}^{\infty} w^n G_n$. We recall that G(w), for $|w| \leq 1$, solves the matrix equation

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}.$$
 (1)

Moreover, $G_0 = 0$, $G_n \ge 0$ for any $n \ge 1$ and, if $0 < w \le 1$, G(w) is the minimal nonnegative solution of (1).

We denote by r_a the convergence radius of the matrix power series $A(z) = \sum_{n=-1}^{+\infty} z^{n+1}A_n$, and we assume that the matrix A(1) is irreducible and stochastic. We will denote by $\theta(z)$ the spectral radius of A(z). It is proved in [2, Lemma 1] that, since A(1) is irreducible, $\theta(z)$ is a real analytic function for $0 < z < r_a$. Moreover, $\theta(z)$ is strictly increasing for $0 < z < r_a$.

The tail decay analysis of G(w) is performed by estimating the speed of convergence to zero of G_n as $n \to \infty$. To do this, we determine the analyticity domain of G(w) on the complex plane. Indeed, from a classical result on analytic functions (see [3, Theorem 2.2f]), if G(w) is analytic for |w| < R, where R > 1, then $||G_n|| = O(\sigma^n)$ for any $1/R < \sigma < 1$ and for any matrix norm.

Define the scalar function

$$\phi_w(z) = w\theta(z), \quad w \in \mathbb{C},$$

and recall that the drift of an M/G/1-type Markov chain is defined by $\mu = \alpha^T a$, where α^T is the stationary probability vector of A(1), $\boldsymbol{a} = \sum_{n=-1}^{+\infty} n A_n \boldsymbol{e}$, and \boldsymbol{e} is the vector of all ones.

We assume throughout that one of the following two conditions holds:

1. $\mu \ge 0$

2. $\mu < 0, r_a > 1$ and $\det(A(z) - zI)$ has a zero outside the closed unit disk.

We prove the following

Proposition 1. The following properties hold:

- 1. the equation $z\theta'(z) = \theta(z)$ has a unique solution σ in $(0, r_a)$;
- 2. the equation $\phi_w(z) = z$ has:
 - a solution of multiplicity two in $(0, r_a)$ if $w = \sigma/\theta(\sigma)$,
 - two distinct solutions in $(0, r_a)$ for any $0 < w < \sigma/\theta(\sigma)$.

Proof. Define the function $f_w(t) = \log \phi_w(e^t) - t$, for $-\infty < t < \log r_a$. In [2] it is shown that the function $\log \theta(e^t)$, for $-\infty < t < \log r_a$ is a convex increasing function of t. Moreover, according to the results of [2], the equation $f_1(t) = 0$ has in $(-\infty, \log r_a)$: two distinct solutions $t_1 < 0$ and $t_2 = 0$ if $\mu > 0$, a solution of multiplicity two in t = 0 if $\mu = 0$, two distinct solutions $t_1 = 0$ and $t_2 > 0$

Figure 1: Plot of the function $\phi_w(z) - z$ for different values of w, case $\mu < 0$

if $\mu < 0$. In all the cases, for convexity, the function $f_1(t) = \log(\theta(e^t)) - t$ has a unique global minimum $t_1 \leq t^* \leq t_2$ in $-\infty < t < \log r_a$. Moreover, t^* is the unique solution to the equation $f'_1(t) = 0$ in $(-\infty, \log r_a)$. By computing the derivative, we find that t^* is the unique solution to $e^t\theta'(e^t) = \theta(e^t)$ in $(-\infty, \log r_a)$. By setting $\sigma = e^{t^*}$, we conclude that σ is the unique solution to $z\theta'(z) = \theta(z)$ in the interval $(0, r_a)$. Concerning the second part, observe that $\phi_w(z) = z$ has a solution in $0 < z < r_a$ if and only if the equation $f_w(t) = 0$ has a solution in $-\infty < t < \log r_a$. Since $f_w(t) = f_1(t) + \log w$, the equation $f_w(t) = 0$ has a solution of multiplicity two if $f_w(t^*) = 0$, two distinct solutions if $f_w(t^*) < 0$. Since $\sigma = e^{t^*}$, one finds that $f_w(t^*) = 1/\theta'(\sigma) = \sigma/\theta(\sigma)$.

Figure 1 shows the behaviour of the function $\phi_w(z) - z$ for different values of w.

By Proposition 1, if $0 < w \leq R$, the equation $\phi_w(z) = z$ has at least a solution in $(0, r_a)$. Let us donote by $\xi(w)$ the smallest $\xi(w) \in (0, r_a)$ such that $\phi_w(\xi(w)) = \xi(w)$. Since A(1) is irreducible, also $A(\xi(w))$ is irreducible and by the Perron-Frobenius theorem [1], there exists a positive vector $\boldsymbol{v}(w)$ such that $wA(\xi(w))\boldsymbol{v}(w) = \xi(w)\boldsymbol{v}(w)$.

Proposition 2. Consider the matrix sequence $X^{(k)}(w)$ defined by

$$X^{(k+1)}(w) = w \sum_{n \ge -1} A_n (X^{(k)}(w))^{n+1}, \quad k \ge 0,$$
(2)

with $X^{(0)}(w) = 0$. Then:

- 1. $X^{(k)}(w)$ is analytic for |w| < R and convergent for |w| = R, where $R = \sigma/\theta(\sigma)$;
- 2. $X^{(k)}(w) = \sum_{n=0}^{k} w^n G_n + \sum_{n=k+1}^{\infty} w^n E_n^{(k)};$
- 3. if $0 < w \leq R$, then $0 \leq X^{(k)}(w) \leq X^{(k+1)}(w)$ and $X^{(k)}(w)\boldsymbol{v}(w) \leq \xi(w)\boldsymbol{v}(w)$ for any $k \geq 0$;

4. the sequence $\{X^{(k)}(w)\}_k$ converges uniformly to G(w) in any closed disk $\{|w| \le r\}, with \ 0 < r \le R.$

Proof. The analyticity of $X^{(k)}(w)$ is proved by induction on k. More specifically, we prove that, for any $k \geq 0$, $X^{(k)}(w)$ is a matrix power series in w with nonnegative matrix coefficients, and that $X^{(k)}(R)\boldsymbol{v}(R) \leq \xi(R)\boldsymbol{v}(R)$. For the nonnegativity of the matrix coefficients and for the positivity of v(R), this latter property implies that $X^{(k)}(w)$ is analytic for |w| < R and convergent for |w| = R. For k = 0 then $X^{(k)}(w) = 0$ and therefore the property trivially holds. Assume that $X^{(k)}(w)$ is a power series with nonnegative matrix coefficients such Assume that $X^{(k)}(w)$ is a power series with nonnegative matrix connected states that $X^{(k)}(R)\boldsymbol{v}(R) \leq \xi(R)\boldsymbol{v}(R)$. Then $X^{(k+1)}(w)$ is a formal matrix power series, since $X^{(k+1)}(w) = wA(X^{(k)}(w))$, where $A(z) = \sum_{n \geq -1} A_n z^{n+1}$; moreover the matrix coefficients of $X^{(k+1)}(w)$ are an infinite sum of nonnegative matrices since $A_n \ge 0$ for any $n \ge -1$. Observe that, by inductive hypothesis, one has

$$X^{(k+1)}(R)\boldsymbol{v}(R) = R \sum_{n \ge -1} A_n (X^{(k)}(R))^{n+1} \boldsymbol{v}(R) \le R \sum_{n \ge -1} \xi(R)^{n+1} A_n \boldsymbol{v}(R) = \xi(R) \boldsymbol{v}(R),$$

hence $X^{(k+1)}(R)\boldsymbol{v}(R) \leq \xi(R)\boldsymbol{v}(R)$.

Let us prove Part 2. For $|w| \leq 1$ let $E^{(k)}(w) = X^{(k)}(w) - G(w)$. We prove by induction on k that $E^{(k)}(w) = \sum_{n=k+1}^{\infty} w^n E_n^{(k)}$. If k = 0 one has $E^{(0)}(w) = X^{(0)}(w) - G(w) = \sum_{n=1}^{\infty} w^n G_n$, since $G_0 = X^{(0)}(w) = 0$, therefore the property holds. Assume that $E^{(k)}(w) = \sum_{n=k+1}^{\infty} w^n E_n^{(k)}$. One has

$$E^{(k+1)}(w) = w \sum_{n \ge -1} A_n((X^{(k)}(w))^{n+1} - G(w)^{n+1}).$$

By using the identity $X^n - Y^n = \sum_{i=0}^{n-1} X^i (X - Y) Y^{n-i-1}$, $n \ge 1$, from the latter equation we obtain

$$E^{(k+1)}(w) = w \sum_{n \ge -1} A_n \sum_{i=0}^n (X^{(k)}(w))^i E^{(k)}(w) G(w)^{n-i}.$$

Therefore $E^{(k+1)}(w) = \sum_{n=k+2}^{\infty} w^n E_n^{(k+1)}$ for suitable matrix coefficients $E_n^{(k+1)}$. Part 3 can be easily proved by induction on k.

Concerning Part 4, let $0 < r \leq R$ and let $\|\cdot\|_1$ be the 1-norm. Since the matrix coefficients of $E^{(k)}(w)$ are nonnegative, one has

$$\sup_{|w| \le r} \|E^{(k)}(w)\|_1 = \sup_{|w| \le r} \left\|\sum_{n=k+1}^{\infty} w^n E_n^{(k)}\right\|_1 = \left\|\sum_{n=k+1}^{\infty} r^n E_n^{(k)}\right\|_1$$

and the latter quantity converges to zero as $k \to \infty$.

Figure 2: Convergence radius of G(w) for Example 1, as a function of λ

Theorem 3. The matrix function G(w) is analytic for |w| < R and convergent for $|w| \le R$, where $R = \sigma/\theta(\sigma)$ and σ is defined in Proposition 1. Moreover, if $0 < w \le R$, then the spectral radius of G(w) is $\xi(w)$.

Proof. G(w) is a power series with nonnegative matrix coefficients, therefore it is sufficient to prove that G(R) is bounded. This latter fact follows from Proposition 2, since the sequence $\{X^{(k)}(R)\}_k$ is bounded and convergent to G(R). In order to prove that $\rho(G(w)) = \xi(w)$, we consider the matrix B(w) = $D^{-1}G(w)D$, where $D = \text{Diag}(\boldsymbol{v}(w))$ and $\boldsymbol{v}(w)$ is a positive vector such that $G(w)\boldsymbol{v}(w) = \xi(w)\boldsymbol{v}(w)$. It easily follows that $B(w)\boldsymbol{e} = \xi(w)\boldsymbol{e}$, this implies that $||B(w)||_{\infty} = \xi(w)$. Since $\rho(B(w)) \leq ||B(w)||_{\infty} = \xi(w)$, and since $\xi(w)$ is an eigenvalue of B(w) one has $\rho(G(w)) = \rho(B(w)) = \xi(w)$.

From the proof of Proposition 1, the unique solution σ in $(0, r_a)$ of the equation $z\theta'(z) = \theta(z)$ is $\sigma = e^{t^*}$, where t^* is the global minimum of the function $f_1(t) = \log(\theta(e^t)) - t$ in $(-\infty, \log r_a)$. Morever $t_1 < t^* < t_2$ if $\mu \neq 0$, and $t^* = t_1 = t_2$ if $\mu = 0$, where t_1 and t_2 are the solutions to the equation $f_1(t) = 0$ in $(-\infty, \log r_a)$.

Example 1. Consider the simple scalar case of a Poisson distribution of parameter $\lambda > 0$, where $A_n = e^{-\lambda} \frac{\lambda^{n+1}}{(n+1)!}$, for $n \ge -1$. We may verify that $G(w) = \sum_{i=1}^{\infty} w^i e^{i(1-\lambda)} \lambda^{i-1}$, therefore the convergence radius of G(w) is $R_G = \frac{e^{\lambda-1}}{\lambda}$. Since A(z) is a scalar function, $\theta(z) = A(z) = e^{\lambda(z-1)}$, and the equation $z\theta'(z) = \theta(z)$ becomes $\lambda z e^{\lambda(z-1)} = e^{\lambda(z-1)}$, therefore $\sigma = \lambda^{-1}$. According to Theorem 3 $R = \sigma/\theta(\sigma) = \lambda^{-1}/A(\lambda^{-1})$, which coincides with R_G . Figure 2 illustrates the convergence radius of G(w) as a function of λ : we observe that for $\lambda = 1$ (the null recurrent case) the radius is minimum, and equal to 1, while it diverges as $\lambda \to 0$ and $\lambda \to +\infty$.

References

- A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.
- [2] H. R. Gail, S. L. Hantler, and B. A. Taylor. Matrix-geometric invariant measures for G/M/1 type Markov chains. Comm. Statist. Stochastic Models, 14(3):537–569, 1998.
- [3] P. Henrici. Applied and computational complex analysis. Vol. 1. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. Power series integration—conformal mapping—location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication.
- [4] M. F. Neuts. Moment formulas for the Markov renewal branching process. Advances in Appl. Probability, 8(4):690–711, 1976.