QBD processes and matrix valued orthogonal
polynomials: some new explicit examples

F. Alberto Griinbaum

Abstract. The connection between birth-and-death processes and
orthogonal polynomials was exploited starting with a paper in 1959
by Karlin and McGregor. At the end of their paper they discuss
the case of a random walk on the set of all integers, and they
compute its spectral matrix. This can be considered as a precursor
to the connection between matrix valued orthogonal polynomials
and QBD processes, recently discussed in the literature. We take
a second look at this example of Karlin and McGregor and look
at two variants of it. In each case we give an explicit expression
for the spectral matrix. We try to include some pointers to the
history of the subject.

Dedicated to Sam Karlin, who passed away on December 18, 2007.

1. Introduction

The recent paper [DRSZ], sets forth the advantage of using ma-
trix valued orthogonal polynomials, as introduced by MG Krein back
around 1950 in connection with QBD processes. For the same obser-
vation see-also [G2] and the more recent paper [GI], where a rather
sophisticated family of examples is displayed. The examples here are
close to the one in the original paper by Karlin and McGregor.

As usual, a good idea has many parents, and this paper tries to
show how the work of Karlin-McGregor, Krein and Berezans’ki can
be seen as precursors of these interesting developments. As far as

2000 Mathematics Subject Classification. 33C45, 22E45.
Key words and phrases. Matrix valued orthogonal polynomials, Karlin-

McGregor representation.
The author was supported in part by NSF Grant # DMS 0603901.
1

Dagstuhl Seminar Proceedings 07461
Numerical Methods for Structured Markov Chains
http://drops.dagstuhl.de/opus/volltexte/2008 /1392



2 F. ALBERTO GRUNBAUM

the natural development of this field, the original paper of Karlin and
McGregor gives a good account of previous instances of the same kind
of ideas in the work of W. Feller and H. P. McKean, jr. To these two
authors one could add the contributions of 1. J. Good, T. Harris, M.
Kac, W. Ledermann and G. Reuter. For the benefit of the reader,
these references are included in this paper. Apologies for those that
are missing.

For a general guidance into the field of quasi-birth-and-death-processes
(QBD) see [LPT], [LR1], [N].
- I note that my interest in this field owes a lot to the work of S.
Bochner, [B]. He was the Ph.D. advisor of S. Karlin who in turn was
the advisor of M.F. Neuts, who is widely considered as responsible for
the present interest in QBD processes. A small world indeed.

The plan for this paper is as follows:

1) We first review briefly the approach of S. Karlin and J. Mc-
Gregor. This is done in section 2.

2) As a warmup we consider an explicit example of this repre-
sentation, featuring Chebychev polynomials. This is done in
section 3.

3) We introduce (with MG Krein) the notion of matrix valued
orthogonal polynomials and introduce the notion of "folding
the integers" to get as state space one that corresponds to a
QBD with two phases. This idea of studying a difference oper-
ator on the integers by introducing a block difference operator
on the non-negative integers is well discussed in the book by
Berezans’ki, see [B1], which reports on the work started by his
Ph.D. advisor MG Krein. This is done in section 4.

4) We revisit the example considered in the original paper of Kar-
lin and McGregor of a random walk on the integers. The only
extra result given here is an explicit expression of the matrix
valued orthogonal polynomials associated to the spectral ma-
trix already found back in 1959. This is done in section 5.

5) We modify the case treated by Karlin and McGregor to deal
with attraction or repulsion towards the center located at 1/2.
This is done in section 6.

6) We allow for a "defect at one site" in the previous model. This
is done in section 7.

2. The Karlin-McGregor representation

If we have
P;; = Pr{X(n+1) = j|X(n) =i}
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for the 1-step transition probability of our Markov chain, and we put
pi = Piina, ¢iya = Pig1y, and 7, = P ; we get for the matrix P, in the
case of a birth and death process, the expression

o po 0 O
P gg n ;O

0 g T2 p2

We will assume that p; > 0, gj41 > 0 and 7; > 0 for j > 0. We also
assume p;+7;+¢q; = 1 for § > 1 and by putting pp+7¢ < 1 we allow for
the state 5 = 0 to be an absorbing state (with probability 1 —po — 7).
Some of these conditions can be relaxed.

If one introduces the polynomials Q;(z) by the conditions Q_;(0) =
0, Qo(z) = 1 and then using the notation

Qo(z)
Q) = | %)
we insist on the recursion relation
PQ(z) = zQ(z)

one proves the existence of a unique measure 9(dz) supported in [—1, 1]
such that

w [ Qua)Q;(a)b(de) = 3

for suitable constants 7;, and one gets the Karlin-McGregor represen-
tation formula

(B = 7, / Q) (o).

In general this representation is only of theoretical value, since the
measure and the polynomials cannot be obtained explicitly. But, in
the cases when the measure is known this gives a way to compute for
a given pair ¢, J the value of the left handside from the knowledge of a
finite piece of the matrix P.

3. A Chebyshev type example

The example below illustrates nicely how certain recurrence prop-
erties of the process are related to the presence of point masses in the
orthogonality measure. This is seen by comparing the two integrals at
the end of the section.
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Consider the matrix
01 O

g 0 p

P=1og¢ 0 »p

with 0 < p <1 and ¢ = 1 —p. We look for polynomials Q;(z) such
that

Q-1(z) =0, Qo(z)=1
and if Q(z) denotes the vector

we ask that we should have

PQ(z) = zQ(z).

The matrix P can be conjugated into a symmetric one and in this
fashion one can find the explicit expression for these polynomials.
We have

Qi(z) = G))j/z [(2 — 2p)T; (%) + =1 <%> ]

where T; and U; are the Chebyshev polynomials of the first and second
kind.
If p > 1/2 we have

oV VApg — 22 2(1—p)r, n=0
p Dq _ p)m,
(&) [/ o Qu@Qne) dx—énm{zp(l_p)ﬂ, "0

l1-p
while if p < 1/2 we get a new phenomenon, namely the presence of
point masses in the spectral measure

( P ) [ / @ Qu(@) YL,

1—-p Nz 1—22

+ 2= 4pTIQn1)Qn(D) +Qn<—1>czm<—1>]]

_s 21 —p)r, n=0
T (1 —p)w, n>1
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From a probabilistic point of view the interpretation of these two
cases is very natural. People that prefer to avoid analytical tools and
would rather think in terms of sample paths will be pleased.

4. Matrix valued orthogonal polynomials

Here we recall a notion due to M. G. Krein, see [K1, K2]. Given
a self adjoint positive definite matrix valued smooth weight function
W (z) with finite moments, we can consider the skew symmetric bilinear
form defined for any pair of matrix valued polynomial functions P(z)
and Q(z) by the numerical matrix

(P,Q) = (P, Q)w = / P(2)W (2)Q"(z)dz,

where Q*(z) denotes the conjugate transpose of Q(z). By the usual
construction this leads to the existence of a sequence of matrix valued
orthogonal polynomials with non singular leading coefficient.

Given an orthogonal sequence {P,(z)},>0 one gets by the usual
argument a three term recursion relation

(1) TPy (z) = ApPr—1(z) + BpPy(z) + CpPpia (),

where A,, B, and C, are matrices and the last one is nonsingular. .
In the case of a birth and death process it is useful to think of a
graph like

ﬂ ﬂ PR DR D,
| S S Sm—— S—

If we want to deal with a nearest neighbourhood random walk on
the set of all integers it is convenient to fold the integers to get a two
stranded version of the nonnegative integers. This is a very useful and
classical idea which plays an important role in [B1] and can be seen
used in the continuous case in [T]. The resulting state space is the one
that corresponds to a QBD process with two phases.

The labelling in the graph below is such that the nonnegative inte-
gers 0,1,2,3, ... correspond to the upper strand on the graph and are
labelled 0, 2,4, 6, ... while the original states —1, —2, —3, ... are mapped
onto 1,3, 5, .....

This idea can be pushed further.
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The graph below

1 3 5 U 7

clearly corresponds to a general block tridiagonal matrix, with blocks
of size 2 x 2. The transitions here are much more general than those
needed in the examples to be given later. In particular all the diagonal
transitions between states on the two strands as well as the self-loops
are set to zero.

For the general graph above if P; ; denotes the 4,5 block of P we
can generate a sequence of 2 X 2 matrix valued polynomials @;(¢) by
imposing the three term recursion (1) of this section. By using the
notation of section 2, we would have

PQ(z) = 2Q(z)
where the entries of the column vector Q(x) are now 2 x 2 matrices.
Proceeding as in the scalar case, this. relation can be iterated to
give

P*Q(z) = z"Q(z)

and if we assume the existence of a weight matrix W(z) as in section
2, with the property

(@5, Q)0:5 = / Qi)W (2)Q:(x)dz,
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it is then clear that one can get an expression for the (i, j) entry of the
block matrix P* that would look exactly as in the scalar case, namely

(P")i;(Qj, @;) = /JJ"Qi(x)W(a:)Q;(m)dx.

Just as in the scalar case, this expression becomes useful when
we can get our hands on the matrix valued polynomials @Q;(x) and
the orthogonality measure W(z). Notice that we have not discussed
conditions on the matrix P to give rise to such a measure.

In summary the spectral theory of a scalar double-infinite tridiag-
onal matrix leads naturally to a 2 X 2 semi-infinite matrix. This has
been looked at in terms of random walks in [P]. In [ILMV], this work
is elaborated further to get a formula that could be massaged to look
like the right hand side of the one above.

5. The example in Karlin-McGregor

The probabilities of going right or left are p and g, respectively,
with p+¢=1.
The block tridiagonal matrix P is given by

(0 g p»p 0 0 O \
p 0 0 g 0 O ..
qg 0 0 0 p O
P— 0O p»p 0 0 0 gq ...
0 0 ¢ O O 0 p»p O
0O 0 0 p»p O 0 0 gq

Here is the weight matrix, which was already computed by Karlin

and McGregor:
In the interval |z| < +/4pg

= (o )

In this example we have,

(0 g (00

Ak:(g 2),]{221

we also have
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ck=(§ 2),/@0

The orthogonal polynomials given by
AP (.’13) + BkPk(fL') + Cx Pry1 (.’17) = :IIPk(:U)

with P_1(z) = 0, Po(z) = I, can be readily expressed in terms of Cheby-
shev polynomials.

Let us denote by Uy,(z) the Chebyshev polynomials of the second
kind, which satisfy

Uns1(z) + Up—1(z) = 22U, (z), with U_i1(z)=0 and Up(z)=1.
The relation with the Chebyshev polynomials Uy, (z), is given by

_ (@/p)**Ur(z*)  ~(a/p)* ™/ 2Up_(z*)
Pk(x) - ( —(p/q)(k+1)/2Uk_1(x*) (p/q)k/zUk(liL'*) )

with z* = 2/(2,/pq).

A couple of extra historical comments: this model is treated in
the Ph.D. thesis of W. Pruitt, see [P] but there is no use there of the
spectral matrix that had been found earlier. The advantage of using
this matrix is pointed out in [ILMV].

and

6. An attractive or repulsive force

Consider now a modification of the example in Karlin-McGregor
with probabilities p of going away from the center (located at 1/2) and
g of going towards the center.

This yields the matrix

(O qg p O \
g 0 0 »p ... ... ..
g 0 0 0 p O
P— 0 ¢ 0 0 0 p ...

0 0 ¢ O O O p O

0 0 0 ¢ O O O p....

\ )
withp+g=1.

The corresponding weight matrix is given below:
In the interval |z| < +/4pg

\/W(l :c)

1—22 z 1
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and if p < 1/2 one adds the “point masses”

o [(h e (4 )]

One more historical note:

E. Schroedinger himself, see [SchK], considered the problem of a
discrete harmonic oscillator. In that case there is a quadratic potential
resulting in a linear attractive force. The stochastic model considered
above can be seen as a variant of this where the potential is given by
a scalar multiple of the function "distance to the origin" resulting in a
force that is a constant multiple of the sign function. This results in a
standard random walk which feels the presence of this extra force. We
have not found a classical treatment of the continuous quantum me-
chanical version of this problem in the literature, although it is likely
that it is written up somewhere in terms of appropriate linear combi-
nations of Airy functions.

7. Allowing for one defect

The example of random walk on the integers given originally in
Karlin-McGregor can be modified even further by allowing a "defect"
at one site, so that the one step transition probability matrix looks like

(0 o xp 0 ... .. oo ... \
g 0 0 p ... ... 0 L
qg 0 0 0 p O

P=10 ¢ 0 O 0 p ...
0 0 ¢ O O 0 p 0 ...
\0 0 0 ¢ 0 0 0 »p /

with 1+ X9 = 1.
The new weight matrix is now:
In the interval |z| < 1/4pq

W:@(m—m p(l - a1)a )

1_ 22 p(l —z)z (1—p)z1+ (p— 71)2?

Notice that if 3 = p this matrix is a scalar multiple of the one in
the previous example, as it should be.
If p < 1/2 one needs to add "point masses"

(1—xz)(1—2p)7 [(_11 “11) 6_1+ G 1‘) 51} :
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