Characterizing Coxian Distributions of Algebraic Degree q and Triangular Order p (Research Note)

Mark Fackrell
Department of Mathematics and Statistics
University of Melbourne
Victoria 3010
AUSTRALIA
email: mfackrel@ms.unimelb.eu.au

Keywords: phase-type distribution; Coxian distribution; rational Laplace-Stieltjes transform; algebraic degree; triangular order

In this research note we present a procedure to characterize the set of all Coxian distributions of algebraic degree q with real poles that have Coxian representations of order p where $p>q$.

Coxian distributions (Cox [3]) are a particular class of phase-type $(P H)$ distributions (Neuts [8]) whose representations have the form

$$
\begin{align*}
\boldsymbol{\beta} & =\left(\begin{array}{llllll}
\beta_{1} & \beta_{2} & \ldots & \beta_{p}
\end{array}\right) \tag{1}\\
\boldsymbol{S} & =\left(\begin{array}{rrrrrr}
-\lambda_{1} & \lambda_{1} & 0 & \cdots & 0 \\
0 & -\lambda_{2} & \lambda_{2} & \cdots & 0 \\
0 & 0 & -\lambda_{3} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -\lambda_{p}
\end{array}\right) \tag{2}
\end{align*}
$$

where, without loss of generality, $0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{p}$.
Consider a general order p PH representation $(\boldsymbol{\alpha}, \boldsymbol{T})$. For $s<-\lambda_{1}$, where λ_{1} is the dominant eigenvalue of \boldsymbol{T}, the Laplace-Stieltjes transform of the $P H$ distribution with representation $(\boldsymbol{\alpha}, \boldsymbol{T})$ is

$$
\begin{align*}
\phi(s) & =-\boldsymbol{\alpha}(s \boldsymbol{I}-\boldsymbol{T})^{-1} \boldsymbol{T} \boldsymbol{e}+\alpha_{0} \tag{3}\\
& =\frac{a_{q} s^{q-1}+\ldots+a_{2} s+a_{1}}{s^{q}+b_{q} s^{q-1}+\ldots+b_{2} s+b_{1}}+\alpha_{0} \tag{4}
\end{align*}
$$

where the numerator and denominator are coprime polynomials. Here, the coefficients are real, and the zeros of the denominator polynomial are a subset of the eigenvalues of \boldsymbol{T}. The point mass at zero is $\alpha_{0}=1-\boldsymbol{\alpha e}$. We define the algebraic degree of the $P H$ distribution to be the degree of the denominator polynomial, q, see O'Cinneide [9].

Typically, representations for $P H$ distributions are not unique, and we say that any representation for a $P H$ distribution of minimal order is a minimal representation. The order of the $P H$ distribution itself, is defined to be the order of any of its minimal representations. The order of a $P H$ distribution is greater than or equal to its algebraic degree, see O'Cinneide [9].

O'Cinneide [11] showed that any $P H$ distribution whose generator \boldsymbol{T} has only real eigenvalues, has an equivalent Coxian representation of some order. This order is called
the triangular order of the distribution. The order of such a $P H$ distribution is less than or equal to its triangular order. Indeed, He and Zhang [6] showed that any order 3 PH distribution with only real eigenvalues has an equivalent Coxian representation of order no more than 4.

We can represent any PH distribution with Laplace-Stieltjes transform (4) with an alternative, so-called, matrix-exponential representation:

$$
\begin{align*}
\boldsymbol{\gamma} & =\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{q}
\end{array}\right) \tag{5}\\
\boldsymbol{R} & =\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-b_{1} & -b_{2} & -b_{3} & \cdots & -b_{q}
\end{array}\right) \tag{6}\\
\boldsymbol{e}_{q} & =\left(\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right)^{\prime}, \tag{7}
\end{align*}
$$

see Asmussen and Bladt [1]. This representation is minimal, and its order (that is, q) is equal to the algebraic degree of the $P H$ distribution. Clearly, the representation in (5)-(7) is not a $P H$ representation. We have alternative expressions for the density function and Laplace-Stieltjes transform of the $P H$ distribution:

$$
\begin{align*}
& f(u)=\boldsymbol{\gamma} \exp (\boldsymbol{R} u) \boldsymbol{e}_{q} \tag{8}\\
& \phi(s)=\boldsymbol{\gamma}(s \boldsymbol{I}-\boldsymbol{T})^{-1} \boldsymbol{e}_{q}+\alpha_{0} . \tag{9}
\end{align*}
$$

From now on we will assume that $\alpha_{0}=0$ since it makes the analysis slightly simpler, but the case when $\alpha_{0}>0$ can be dealt with similarly.

O'Cinneide [9] showed that the rational Laplace-Stieltjes transform (4) (with $\alpha_{0}=0$) corresponds to a $P H$ distribution if and only if

1. the pole of $\phi(s)$ of maximal real part is real, negative, and unique,
2. $a_{1}=b_{1}$, and
3. $f(u)=\gamma \exp (\boldsymbol{R} u) \boldsymbol{e}_{q}>0, \quad$ for all $u>0$.

The first two conditions are simple to check. Equivalently, the third condition can be expressed as: $\phi(s)$ corresponds to a $P H$ distribution if and only if the point $\left(a_{2}, \ldots, a_{q}\right)$ is in the set

$$
\begin{equation*}
\Omega_{q}=\bigcap_{u>0}\left\{\boldsymbol{x} \in \mathbb{R}^{q-1} \mid a_{1} \boldsymbol{e}_{i} \exp (\boldsymbol{T} u) \boldsymbol{e}_{q}+\sum_{i=1}^{q-1} x_{i} \boldsymbol{e}_{i+1}(u) \exp (\boldsymbol{T} u) \boldsymbol{e}_{q}>0\right\} . \tag{10}
\end{equation*}
$$

In Bean, Fackrell, and Taylor [2] or Fackrell [5] a complete characterization of the boundary of Ω_{3} when $p=3$ was given. (In fact, because the paper was concerned with matrixexponential distributions, the inequality in (10) was not strict, and hence there, the boundary was included in the set.) Figure 1 shows Ω_{3} when the eigenvalues of \boldsymbol{T} are $-1,-2,-3$. Any point $\left(x_{1}, x_{2}\right)$ in Ω_{3} corresponds to a such a $P H$ (or Coxian as the eigenvalues are all

Figure 1: The set Ω_{3} contains all points $\left(x_{1}, x_{2}\right)$ that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$.
real) distribution. Here, because the curved boundary is not in the set it is indicated by a dashed line.

Let $0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{p}$. For any subset $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ of $\{1,2, \ldots, p\}$, let $F_{i_{1}, i_{2}, \ldots, i_{r}}$ represent the point in \mathbb{R}^{p-1} that corresponds to the Coxian distribution with LaplaceStieltjes transform

$$
\begin{equation*}
\phi_{i_{1} i_{2} \ldots i_{r}}(s)=\frac{\lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{r}}}{\left(s+\lambda_{i_{r}}\right)\left(s+\lambda_{i_{2}}\right) \ldots\left(s+\lambda_{i_{r}}\right)} . \tag{11}
\end{equation*}
$$

Every Coxian distribution with (triangular) order p (or less) and generator with eigenvalues (diagonal entries) in $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$ is contained in the ($p-1$)-dimensional hypertetrahedron (a subset of Ω_{p}) with vertices $F_{12 \ldots p}, F_{23 \ldots p}, \ldots, F_{p}$, see Dehon and Latouche [4]. Let T_{p} denote this hypertetrahedron. Figure 2 shows the 2-dimensional tetrahedron (triangle) with vertices F_{123}, F_{23}, and F_{3} - the set T_{3} contains all points $\left(x_{1}, x_{2}\right)$ that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$ and triangular order 3 . We note here that some points in T_{3} correspond to Coxian distributions of algebraic degree 1 or 2 . For example, F_{3} and F_{23} have algebraic degrees 1 and 2, respectively. Also, the line $\overline{F_{23} F_{3}}$ contains points that correspond to distributions of algebraic degree 2, except for F_{2} whose algebraic degree is 1 .

The question now is: how do we characterize all Coxian distributions of algebraic degree q, with poles $-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{q}$, that have triangular order p with Coxian representation whose generator has eigenvalues (diagonal entries) $-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{q},-\lambda_{q-1}, \ldots-\lambda_{p}$ (ordered from largest to smallest)? The idea is to embed Ω_{q} in \mathbb{R}^{p-1}, and intersect the ($q-1$)-dimensional hyperplane generated by the q vertices of T_{q} with the hypertetrahedron T_{p}. The resultant set will contain all points (in \mathbb{R}^{p-1}) that correspond to Coxian

Figure 2: Plot of Ω_{3} and $T_{3} . T_{3}$ contains all points that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$ and triangular order 3 .
distributions of algebraic degree q (with the designated poles), that have triangular order p (whose Coxian generators have the designated eigenvalues). Projecting this intersection back onto Ω_{q} gives the required subset of Ω_{q}, that is, the set of all points in \mathbb{R}^{q-1} that correspond to Coxian distributions of algebraic degree q and triangular order p.

The approach is best illustrated with a simple example. We find all points in Ω_{3} that correspond to Coxian distributions with poles $-1,-2,-3$ that have a Coxian representation with the four eigenvalues $-1,-2,-3$, and $-\lambda \leq-3$. We start by considering the case when $\lambda=4$. Figure 3 shows the tetrahedron T_{4} (which has vertices $F_{1234}, F_{234}, F_{34}$, and F_{4}) intersected with Ω_{3} (embedded in \mathbb{R}^{3}). The intersection is the quadrilateral with vertices F_{123}, F_{23}, F_{3}, and X. Figure 4 shows the intersection projected back onto Ω_{3} - the triangle above T_{3} contains all points that correspond to Coxian distributions with poles $-1,-2,-3$ whose triangular order is 4 that has a Coxian representation with eigenvalues $-1,-2,-3,-4$. Here, we have labeled the fourth vertex of the quadrilateral X despite the two points in Figures 3 and 4 being different, because they represent the same distribution.

If we allow λ to vary so that $\lambda \geq 3$ and take the union of all sets formed in the manner described above, we get the set of all points corresponding to Coxian distributions of algebraic degree 3 and triangular order 4 . This set, denoted by S_{4}, is shown in Figure 5.

If we repeat the process and embed Ω_{3} in \mathbb{R}^{4}, intersect it with the hypertetrahedron with vertices $F_{12345}, F_{2345}, F_{345}, F_{45}$, and F_{5}, and project the intersection back onto Ω_{3} we get the set of all points that correspond to Coxian distributions of algebraic degree 3

Figure 3: The intersection of $\Omega_{3}\left(\right.$ embedded in $\left.\mathbb{R}^{3}\right)$ and T_{4}.

Figure 4: The projection of the intersection of Ω_{3} (embedded in \mathbb{R}^{3}) and T_{4} onto Ω_{3}. The triangle above T_{3} contains all points $\left(x_{1}, x_{2}\right)$ that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$, that have triangular order 4 whose Coxian representations have eigenvalues $-1,-2,-3,-4$.

Figure 5: The set of all points that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$, that have triangular order 4 .
whose poles are $-1,-2,-3$ that have triangular order 5 whose Coxian representations have eigenvalues $-1,-2,-3,-4,-5$. This set is the trapezium above T_{3} depicted in Figure 6. If we now consider Coxian representations with $-1,-2,-3,-\lambda,-\mu$, where $\mu \geq \lambda \geq 3$, and intersect all the resultant intersecting sets, we get the set S_{5} depicted in Figure 7. Since the boundary of S_{5} depends on the two parametrs λ and μ with $\lambda \leq \mu$ it is difficult to plot it as a single curve. The "shaded" and the thin "unshaded" regions above the boundary of S_{4} constitute S_{5}.

To further illustrate the process we find the set of points in Ω_{4} that correspond to Coxian distributions of algebraic degree 4 with poles $-1,-1,-1,-1$ that have triangular order 5 with eigenvalues $-1,-1,-1,-1,-2$. Figure 8 shows this set. Here, the set of points that correspond to all Coxian distributions of algebraic degree 4 with poles $-1,-1,-1,-1$ that have triangular order 5 with eigenvalues $-1,-1,-1,-1,-2$, consists of two tetrahedra on top of T_{4}. The vertices of the first tetrahedron are $F_{11}, F_{111}, F_{1111}$, and A_{1}, and the vertices of the second tetrahedron are F_{1}, F_{11}, F_{1111}, and A_{2}. Also, since A_{1} and A_{2} and the line $\overline{F_{1} F_{1111}}$ are in the same plane, the set is convex. When we allow $\lambda \geq 1$ to vary, the points A_{1} and A_{2} trace out two curves which are labeled C_{1} and C_{2} in Figure 9. The set that contains all points that corresponds to all Coxian distributions with poles $-1,-1,-1,-1$ that have triangular order 5 consists of two conical shapes, one with F_{1111} as its vertex and $\overline{F_{1} F_{11}}, \overline{F_{11} F_{111}}$, and the curve C_{1} forming its base, the other with F_{1} as its vertex and $\overline{F_{11} F_{111}}, \overline{F_{111} F_{1111}}$, and the curve C_{2} forming its base. We note here, that for $\lambda \geq 1$, each set is convex (as previously remarked), but since the line segment $\overline{F_{1} F_{1111}}$ is common to each set, the union of all the (convex) sets is not convex. Thus, the set of all PH distributions of algebraic degree 3 , with poles $-1,-1,-1,-1$ that have triangular order 5 is not convex. This phenomena was observed by He and Zhang [7].

Figure 6: The set of all points that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$, that have triangular order 5 whose representations have eigenvalues $-1,-2,-3,-4,-5$.

Figure 7: The set of all points that correspond to Coxian distributions of algebraic degree 3 with poles $-1,-2,-3$, that have triangular order 5 .

Figure 8: The set of all points that correspond to Coxian distributions of algebraic degree 4 with poles $-1,-1,-1,-1$, that have triangular order 5 with eigenvalues $-1,-1,-1,-1,-2$.

The procedure described in this research note enables us to describe the set of all Coxian distributions of algebraic degree q with real poles that have triangular order p with Coxian generators that have real eigenvalues. For some cases of low algebraic degree and low triangular order we are able to characterize the whole set of Coxian distributions with algebraic degree q and triangular order p. However, a general description eludes us because of the complexity of the algebra involved. However, given that the procedure only requires operations from linear algebra it seems plausible that such a description could be achieved entirely using the products and sums of matrices. This will be left to later work.

References

[1] Asmussen, S.; Bladt, M. Renewal theory and queueing algorithms for matrixexponential distributions. In Matrix-analytic Methods in Stochastic Models, Chakravarthy, S. R.; Alfa, A. S., editors; Lecture Notes in Pure and Applied Mathematics; Marcel Dekkar: New York, 1997; Volume 183, 313-341.
[2] Bean, N. G.; Fackrell, M.; Taylor, P. G. Characterization of matrix-exponential distributions. In final preparation, 2007.
[3] Cox, D. R. A use of complex probabilities in the theory of stochastic processes. Proceedings of The Cambridge Philosophical Society 1955, 51, 313-319.

Figure 9: The set of all points that correspond to Coxian distributions of algebraic degree 4 with poles $-1,-1,-1,-1$, that have triangular order 5 .
[4] Dehon, M,; Latouche, G. A geometric interpretation of the relations between the exponential and the generalized Erlang distributions. Advances in Applied Probability 1982, 14, 885-897.
[5] Fackrell, M. Characterization of Matrix-exponential Distributions. PhD thesis, School of Applied Mathematics, University of Adelaide, South Australia, 2003.
Available at http://thesis.library.adelaide.edu.au/public/adt-SUA20051207.123257/
[6] He, Q-M.; Zhang, H. Spectral polynomial algorithms for computing bi-diagonal representations for phase-type distributions and matrix exponential distributions. Stochastic Models 2006, 22, 289-317.
[7] He, Q-M.; Zhang, H. PH-majorization and Coxianization of PH-generators. Research note.
[8] Neuts, M. F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The John Hopkins University Press: Baltimore, 1981.
[9] O'Cinneide, C. A. Characterization of phase-type distributions. Communications in Statistics - Stochastic Models 1990, 6, 1-57.
[10] O'Cinneide, C. A. Phase-type distributions and invariant polytopes. Advances in Applied Probability 1991, 23, 515-535.
[11] O'Cinneide, C. A. Triangular order of triangular phase-type distributions. Communications in Statistics - Stochastic Models 1993, 9, 507-529

