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1 Introduction

Markovian models provide a convenient way of evaluating the performance of
network traffic since their queueing analysis enjoys established theoretical results
and efficient solution algorithms [1]. Although unable to directly generate traffic
with long-range dependent (LRD) behavior, Markovian models can approximate
accurately LRD traffic in several ways, e.g., by superposition of flows with short-
range dependent (SRD) behavior over many time scales. This is known to be
sufficient for the evaluation of real systems since the performance effects of LRD
traffic becomes nil beyond a finite number of time scales [2].

One of the main obstacles to the Markovian analysis of network traffic is
model parameterization, which often involves describing the interaction of sev-
eral tens or hundreds of states. Even for basic Markov Modulated Poisson pro-
cesses (MMPP) or phase-type renewal processes (PH), few results exist for exact
parameterization and they are restricted to models of two or three states [3–7].
Due to the lack of characterization results for larger-state-space models, some
earlier works have focused on fitting network traffic models by parameteriz-
ing Markovian Arrival Processes (MAPs) or MMPPs with exactly two or three
states [4–8]. The small state space minimizes the costs of queueing analysis, but
places significant assumptions on the form of the autocorrelations.

In [9] Andersen and Nielsen develop a general fitting algorithm to model LRD
traffic traces by superposition of several MMPP(2) sources [10]. The algorithm
has low computational costs but only matches first and second order descriptors
of the counting process. Following a different approach, Horváth and Telek [11]
consider the multifractal traffic model of Riedi et al. [12], and obtain a class
of MMPPs which exhibits multifractal behavior [13]. Simulation results on the
Bellcore Aug89 trace show that this algorithm achieves better accuracy than the
superposition method in [9], but at the expense of a larger state space.

To tackle the above issues, we develop new characterization and fitting meth-
ods for MAPs. We first characterize the general properties of interarrival time
(IAT) processes using a spectral approach. Based on this characterization, we
show how different MAP processes can be combined together using Kronecker
products to produce a larger MAP with predefined properties of interarrival
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times. We then devise an algorithm based on this Kronecker composition method,
which can be customized to fit an arbitrary number of moments and to meet the
desired cost-accuracy tradeoff.

This paper is a concise version of a longer one [14] under submission. It
is organized as follows. Section 2 gives the definition and spectral properties
of interarrival times in MAPs. Exploiting the results in Section 3, we propose
the Kronecker composition method and develop the general fitting algorithm in
Section 3. The conclusions are drawn in Section 4.

2 IAT Processes in MAPs

2.1 Definitions

A MAP(n) is specified by two n×n matrices: a stable matrix D0 and a nonneg-
ative matrix D1 that describe transition rates between n states. Each transition
in D1 produces a job arrival; D0 describes instead background transitions not
associated with arrivals. The matrix Q = D0 +D1 is the infinitesimal generator
of the underlying Markov process.

We focus on the interval stationary process that describes the interarrival
times. For a MAP(n), this is described by the embedded discrete-time chain
with irreducible stochastic matrix P = (−D0)

−1D1, and probability vector πe,
where πee = 1 and e is a column vector of 1’s of the appropriate dimension.
Then, its IAT is phase-type distributed with k-th moment

E[Xk] = k!πe(−D0)
−ke, k ≥ 0. (1)

The lag-k autocorrelation coefficient is

ρk = (E[X ]−2πe(−D0)
−1P k(−D0)

−1e − 1)/CV
2. (2)

Higher order moments of the IAT process can also be described as special
cases of joint moments. Let Xi be the i-th IAT from an arbitrary starting epoch
i0 = 0, and consider a sequence Xi1 , Xi2 , . . . , XiL

, where 0 ≤ i1 < i2 < . . . < iL.
The moments of L consecutive IATs are given by

H(i, k ) = E[Xk1

i1
Xk2

i2
· · ·XkL

iL
],

where i = (i1, i2, . . . , iL) and k = (k1, k2, . . . , kL). The moments H(i, k ) cap-
ture nonlinear temporal relations between samples and are known to completely
characterize a MAP [15,16].

2.2 Spectral Characterization of Moments

We obtain a spectral representation of moments for MAPs, a simple scalar repre-
sentation of (1) based on spectral properties of (−D0)

−1. This allows to represent
the MAP moments in terms of few scalar parameters, rather than by formulas



IAT Characterization and Fitting for MAPs 3

using matrices. We begin by describing the moments (1) in terms of the spec-
trum of (−D0)

−1. Recall that the characteristic polynomial of a n × n matrix
A is

φ(A) = sn + α1s
n−1 + . . . + αn−1s + αn,

which is a polynomial in s with roots si equal to the eigenvalues of A. Consider
the Cayley-Hamilton theorem [17], by which the powers of A satisfy Ak =
−

∑

j=1...n αjA
k−j for k ≥ n that is, matrix powers are linearly dependent.

Because MAP moments are computed in (1) from powers of (−D0)
−1, they are

linearly dependent.

Lemma 1. In a MAP(n), any n+1 consecutive moments are linearly dependent
according to the relation

E[Xk] = −
∑

j=1...n

bjE[Xk−j ], E[X0] = 1, k ≥ n, (3)

where bj = mjk!/(k − j)!, and mj is the coefficient of sn−j in φ((−D0)
−1).

Observing that (3) is an homogeneous linear recurrence of order n in E[Xk]/k!
with constant coefficients mj, and mj are functions of the eigenvalues of (−D0)

−1,
we can derive a closed-form formula for E[Xk] (see proof in [14]).

Theorem 1. Let (−D0)
−1 have m ≤ n distinct eigenvalues θt ∈ C, 1 ≤ t ≤ m.

Let qt be the algebraic multiplicity of θt,
∑

t=1...m qt = n. Then the IAT moments
are given by

E[Xk] =
∑

t=1...m

k! θk
t

∑

j=1...qt

Mt,jk
j−1, (4)

E[X0] =
∑

t=1...m

Mt,1 = 1, (5)

where the constants Mt,j’s are independent of k. In particular,

Mt,1 = πe(−D0)
−1
t e, (6)

where (−D0)
−1
t is the t-th spectral projector of (−D0)

−1, i.e., the product of the
right and left eigenvectors for θt.

2.3 Spectral Characterization of Autorrelations

The spectral characterization can be extended to autocorrelations using the
properties of the powers P k in (2). Analogous to the procedures obtaining spec-
tral representation of moments, we first establish a linear recurrence formula for
n + 1 consecutive autocorrelations. Then a closed form formula for ρk can be
obtained.
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Theorem 2. Let γt ∈ C, 1 ≤ t ≤ m, be an eigenvalue of P with algebraic
multiplicity rt. If γt = 0 assume that its geometric multiplicity equals its algebraic
multiplicity, i.e., the rt associated Jordan blocks have all order one. Then the
autocorrelation function of a MAP is

ρk =
∑

t=2...m

γk
t

∑

j=1...rt

At,jk
j−1, k ≥ 1 (7)

ρ0 =
∑

t=2...m

At,1 = (1 − 1/CV
2)/2, (8)

where the At,j’s constants are independent of k. In particular,

At,1 = E[X ]−2πe(−D0)
−1P t(−D0)

−1e/CV
2, (9)

in which P t is the t-th spectral projector of P , that is, the product of the right
and left eigenvectors associated to γt.

2.4 Compositional Properties of Moments and Autocorrelations

We define a new composition method for combining two MAPs into one larger
MAP. Using this method, the moments and autocorrelations of the newly com-
posed MAP can be readily computed from formulas involving only the moments
and autocorrelations of the composition MAPs. This essentially facilitates the
composition of small processes for a larger process with predefined moments and
autocorrelations in all orders.

The new composition method is based on the Kronecker product of matrices
and since it applies to the operation of MAPs, we call it the Kronecker product
of MAPs. Let MAPa = {Da

0 , D
a
1} and MAPb = {Db

0, D
b
1} be MAPs of order na

and nb, respectively, and assume at least one of the two MAPs has a diagonalized
D0, without loss of generality, assume Db

0 is a diagonal matrix. The Kronecker
Product of MAPa and MAPb is defined as

MAPa ⊗ MAPb = {−Da
0 ⊗ Db

0, D
a
1 ⊗ Db

1},

which has been proved to be a valid MAP of order nanb in [14]. Theorem 3
provides formulas relating the statistics of the composed process and composition
processes, provable via the basic eigenvalue properties of Kronecker product and
the spectral characterization of MAPs.

Theorem 3. Moments and autocorrelations of MAPa ⊗ MAPb, where at least
one of the MAPa and MAPb has diagonalized D0, satisfy

E[Xk] = E[Xk
a ]E[Xk

b ]/k!, (10)

CV 2ρk = (CV 2
a )ρa

k + (CV 2
b )ρb

k + (CV 2
a CV 2

b )ρa
kρb

k, (11)

where the quantities in the right-hand side refer to MAPa and MAPb. In partic-
ular the relation for E[Xk] immediately implies

1 + CV 2 = (1 + CV 2
a )(1 + CV 2

b )/2. (12)
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The relationship between moments of the composed MAP process and the
composition MAP processes generalizes in the similar fashion to the joint mo-
ments.

Theorem 4. The joint moments of MAPa ⊗ MAPb,where at least one of the
MAPa and MAPb has diagonalized D0, satisfy

H(i, k ) =
Ha(i, k )Hb(i, k )

k1!k2! · · · kL!
, (13)

being Ha(i, k ) and Ha(i, k ) the joint moments of {Da
0 , D

a
1} and {Db

0, D
b
1},

respectively.

Example 1. It is known that MAP(2) and MMPP(2) processes have IAT auto-
correlation ρk that cannot be greater than 0.5, see [7]. The fitting of real traces
requires to address this problem, but to the best of our knowledge no examples of
MAP(n)s with large ρ1 have been given in the literature. An example can be eas-
ily generated by Kronecker product of two MAPs. Consider a process {Da

0 , D
a
1}

with quite large autocorrelation, e.g., the MAP

Da
0 =

[

−10001 0
0 −101

]

, Da
1 =

[

10000 1
1 100

]

,

which has lag-1 autocorrelation ρ1 = 0.485 and CV 2
a = 49.5. We seek for a

MAPb {Db
0, D

b
1} which may produce ρ1 ≥ 0.5 by Kronecker product method, and

we focus on the case where this process is PH-type renewal, thus ρa
k ≡ 0, for all

k. From (11)-(12) we have

ρk =

(

CV 2
a

CV 2

)

ρa
k =

(

CV 2
a

(1 + CV 2
a )(1 + CV 2

b )/2 − 1

)

ρa
k,

and to increase the autocorrelation it is sufficient to select a process with CV 2
b

such that CV 2
a > CV 2. For instance,

Db
0 =





−5 5 0
1 −2.5 1
0 0 −1



 , Db
1 =





0 0 0
0.5 0 0
1 0 0



 ,

is PH-type renewal with CV
2
b = 0.584, and from (12) we have CV

2 = 39.0 <
CV

2
a. As expected the Kronecker product of the two MAPs yields a MAP(6) with

ρ1 = 0.616 which addresses the MAP(2) limit ρk ≤ 0.5. Processes with even
larger autocorrelation can be obtained with a similar approach.

3 Application of IAT Properties in MAP Process Design

Based on the compositional IAT properties, we propose a general process com-
position method called Kronecker Product Composition (KPC), which aims at
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integrating more than two MAPs into one large MAP. Given J MAPs {Dj
0, D

j
1},

we define the KPC process as MAP = MAP 1 ⊗ MAP 2 ⊗ · · · ⊗ MAP J , where
D0 and D1 are specifically

{Dkpc
0 , Dkpc

1 } = {(−1)J−1D1
0 ⊗ · · · ⊗ DJ

0 , D1
1 ⊗ · · · ⊗ DJ

1 }.

To generate a valid MAP from KPC composition, we require at least J − 1
composing processes have diagonalized D

j
0. Nevertheless, because one MAP can

be arbitrary, the KPC does not place modeling restrictions. Since every basic
step of KPC composition is Kronecker product of two MAPs, Theorem 3 can
be applied recursively to obtain the compositional properties of J MAPs (J>2).
For instance, the k-th moment of the composed MAP is computed as:

E[Xk] = k!

J
∏

j=1

(E[Xk
j ]/k!), (14)

Using KPC, we define a general-purpose fitting algorithm for network traffic.
We illustrate the algorithm in the case where the J composing MAPs used in the
KPC are an arbitrary MAP(2) and J − 1 MAP(2)s with diagonal D0, but the
method works with minor modifications also with MAPs of larger phases, like
MAP(3). The algorithm proceeds in three steps: (1) Step 1-We fit autocorrela-
tions and CV

2 of J MAPs by a least square optimization algorithm constrained
to the properties of the KPC; (2) Step 2-Given fixed autocorrelation and CV

2

there exist many possible valid processes; we thus solve a new nonlinear opti-
mization program to select E[X ] and E[X3] that results in better fitting of higher
order properties of IATs on a set of sample joint moments; (3) Step 3-Given the
target optimal values for the E[X ](j),CV

2(j), E[X3](j), γ2(j) we generate the
J feasible MAPs and compute the final process by KPC.

We show the effectiveness of our KPC fitting algorithm using the Bellcore
Aug89 trace on a first-come-first-served queue with deterministic service and
different utilization levels. This is the standard case for evaluating the quality of
LRD trace fitting, e.g., [9, 11, 18]. The traffic trace consists of 106 IAT samples
collected in 1989 at the Bellcore Morristown Research and Engineering facility
and shows a clear LRD behavior [19]. We present a comparison of our algorithm
with the best-available algorithms for Markovian analysis of LRD traffic, that is,
the method of Andersen and Nielsen (A&N) in [9] and the multifractal approach
of Horvath and Telek (H&T) in [11].

We run the KPC fitting program described above and determine a MAP(16)
which accurately fits the trace. The size of this MAP is similar to those employed
in previous work, which are composed by 16 states (A&N) or 32 states (H&T).
The values of the first three moments of the MAP(16) are given in Table 1.
We compare the queueing prediction of the three models for utilization levels
of 20%, 50%, and 80%. In Figure 1 we plot the complementary cdf (ccdf) of
queue-length probabilities Pr(queue ≥ x), which accounts also for the residual
queueing probability mass and thus shows the impact of the tail probability.

At 20% utilization, our method gives almost the same results of the multifrac-
tal technique, while the method of A&N seems to underestimate the queueing
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Table 1. MAP(16) fitting of the Bellcore Aug89 Trace using the KPC algorithm

BC-Aug89 Trace MAP(16)

E[X] 3.1428 · 10−3 3.1428 · 10−3

CV
2 3.2236 · 100 3.2235 · 100

E[X3] 2.0104 · 10−6 1.1763 · 10−5

γ2 n/a 9.9995 · 10−1
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Fig. 1. Queueing predictions for the Bellcore Aug89 trace on a queue with de-
terministic service.

probability for the smallest values of x. The intermediate case for 50% utilization
is generally difficult to capture, since the network is approaching heavy traffic,
but the dependence effects are still not as strong as in slightly higher utilization
values, i.e., for 60% − 70% utilization (see, e.g., [9]). All methods initially over-
estimate the real probability, but for higher values of x our method is closer to
the trace values than A&N and H&T which predict a large probability mass also
after x = 103. In the case of 80% utilization all three methods perform well, with
our algorithm and the H&T being more precise than A&N. The final decay of
the curve is again similar, but the KPC method resembles better the simulated
trace.

Overall, the result of this trace indicates that the KPC approach seems more
effective than both H&T and the A&N methods, while preserving the smallest
representation (16 states) of the A&N method. It also interesting to point out
that the fitting leaves room for further improvements, especially in the 50% case
which is difficult to approximate. This may indicate that significant information
about the IAT process may be captured by statistics of higher order than the
bispectrum.

4 Conclusion

We have presented several contributions to the Markovian traffic analysis. First,
a spectral characterization of moments and autocorrelation has been obtained to
simplify the analysis of MAP processes. Then we have studied the definition of
large MAPs by Kronecker Product Composition (KPC), and show that this pro-
vides a simple way to create processes with predefined moments and correlations



8 G. Casale, E.Z. Zhang, E. Smirni

at all orders. Detailed comparisons with other state-of-the-art fitting methods
based on the counting-process show that KPC provides improved fitting of LRD
traces such as the challenging BC-Aug89 trace of the Internet Traffic Archive.
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