
Equilibrium Tracing in Bimatrix Games

Anne Balthasar?

Department of Mathematics, London School of Economics,
Houghton St, London WC2A 2AE, United Kingdom

A.V.Balthasar@lse.ac.uk

Abstract. We analyze the relations of the van den Elzen-Talman al-
gorithm, the Lemke-Howson algorithm and the global Newton method
introduced by Govindan and Wilson. It is known that the global Newton
method encompasses the Lemke-Howson algorithm; we prove that it also
comprises the van den Elzen-Talman algorithm, and more generally, the
linear tracing procedure, as a special case. This will lead us to a dis-
cussion of traceability of equilibria of index +1. We answer negatively
the open question of whether, generically, the van den Elzen-Talman
algorithm is flexible enough to trace all equilibria of index +1.

Keywords. Bimatrix games, Equilibrium computation, Homotopy meth-
ods, Index

1 Introduction

In this paper we investigate several algorithms for the computation of Nash equi-
libria in bimatrix games. The Lemke-Howson and the van den Elzen-Talman
algorithms are complementary pivoting methods; both have been studied exten-
sively. The difference between the two methods is that while the Lemke-Howson
method only allows for a restricted (finite) set of paths, the van den Elzen-
Talman algorithm can start at any mixed strategy pair, called prior, and hence
generates infinitely many paths. This implies that the van den Elzen-Talman
algorithm is more flexible than the Lemke-Howson method. An even more ver-
satile algorithm is the global Newton method [1]; it works for the more general
case of finite normal form games.

We investigate the relations between those three algorithms: We show that
the Lemke-Howson and van den Elzen-Talman algorithms differ substantially.
However, both can be understood as special cases of the global Newton method.
For the van den Elzen-Talman algorithm, this is a new result, which can be
generalized to the statement that for N -player games, the global Newton method
implements the linear tracing procedure introduced by Harsanyi [3].

As a special case of the global Newton method, the van den Elzen-Talman
algorithm can generically find only equilibria of index +1. This leads us to the
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issue of traceability of equilibria. Following Hofbauer [6], we call an equilibrium
traceable if it is found by the van den Elzen-Talman algorithm from an open
set of priors. As explained above, the van den Elzen-Talman algorithm allows
for much greater flexibility than the Lemke-Howson method. Hence one might
hope that, unlike the Lemke-Howson algorithm, it is powerful enough to find all
equilibria of index +1. This raises the until now open question if, generically,
all equilibria of index +1 are traceable. We answer this question by analyzing
traceability in coordination games.

If a 3× 3 coordination game has a completely mixed equilibrium, this equi-
librium is bound to have index +1. In addition, the game will have three pure
equilibria, also of index +1, and three equilibria of support size two, which have
index -1. Hofbauer [6] noted that in such a coordination game the completely
mixed equilibrium is not traceable. This is correct in certain cases, for example
when the payoff to each player is given by the identity matrix. However, we
show that the qualitative equilibrium structure, as described above, is not suffi-
cient to determine if the completely mixed equilibrium of a coordination game
is traceable. More precisely, its traceability depends on the specific geometry of
the best-reply regions.

We generalize this result to prove that there is an open set in the space of
3× 3 bimatrix games, such that all of these have an untraceable equilibrium of
index +1. This implies that the flexibility of the van den Elzen-Talman algo-
rithm does not ensure generic traceability of all equilibria of index +1, which in
turn has important consequences for the concept of sustainability. Myerson [9]
suggested to call an equilibrium sustainable if it can be reached by Harsanyi’s
and Selten’s tracing procedure from an open set of priors. Since the van den
Elzen-Talman algorithm implements the tracing procedure, this notion of sus-
tainability is equivalent to the concept of traceability. Hence the results of our
paper imply that not all equilibria of index +1 will be sustainable.

The structure of our paper is as follows: In section 2 we give a short review
of the van den Elzen-Talman method and analyze its relations to the Lemke-
Howson algorithm. We assume the reader to be familiar with the latter method
and abstain from outlining it. Detailed descriptions can be found in [8], [17]
or [5]. In section 3, we give a brief introduction to the global Newton method,
before showing that it encompasses the van den Elzen-Talman algorithm and,
more generally, the linear tracing procedure, as a special case. Section 4 contains
a discussion of traceability of equilibria.

2 Van den Elzen-Talman versus Lemke-Howson

2.1 The van den Elzen-Talman algorithm

The van den Elzen-Talman algorithm was introduced in [14]. It is a homotopy
method that finds equilibria by starting at an arbitrary prior and adjusting the
players’ replies.

Let (A,B) be a non-degenerate m × n bimatrix game. Denote by ∆m and
∆n the strategy simplices of players one and two, respectively, and the strategy
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space by ∆ := ∆m ×∆n. Take an arbitrary starting point (x, y) ∈ ∆. The van
den Elzen-Talman algorithm traces equilibria of the game (A,B) in the restricted
strategy space

∆t := (1− t)(x, y) + t ·∆
for t ∈ [0, 1], where t ·∆ = {tx | x ∈ ∆}. The algorithm starts in (x, y) at t = 0
and reaches an equilibrium of (A,B) at t = 1. In general, degeneracies can occur
along the path, a discussion on how to resolve these can be found in [16].

The van den Elzen-Talman algorithm can also be described as a comple-
mentary pivoting procedure: A point (x, y) ∈ t ·∆ yields an equilibrium in the
restricted strategy space ∆t if and only if there are suitable vectors w,z and real
numbers u, v such that the following equations and inequalities hold:

A · ((1− t)y + y) + w = u1

BT · ((1− t)x + x) + z = v1

xT1 = t, yT1 = t (1)

xT w = 0, yT z = 0
x,w, y, z ≥ 0

where 1 is a vector of 1’s of suitable length. The vectors x and y indicate how
much weight is put on each strategy in addition to that given by (1 − t)x and
(1− t)y. The slack variables w and z show how far from being optimal a strat-
egy is against the other player’s strategy. The real numbers u and v track the
equilibrium payoff during the computation.

The van den Elzen-Talman algorithm can also be understood geometrically
as a completely labeled path in the strategy space ∆. Assume that the players’
pure strategies are numbered 1, . . . ,m for player one and m + 1, . . . ,m + n for
player two. Define the best reply region for a pure strategy j of player two to be

B(j) := {x ∈ ∆m | j is a best reply to x}
Now, for a point p := (1− t) · x + t · x ∈ ∆m define its labels at time t to be

{j | p ∈ B(j)} ∪ {i | xi = 0}
and similarly for the other player. Then a point in the restricted strategy space
∆t is an equilibrium of the game (A,B) restricted to ∆t if and only if it is
completely labeled at time t. This follows directly from the description of the
algorithm in (1). The pivoting steps of the algorithm occur where one of the
players picks up a new label, which then the other player can drop. An analogous
description of the Lemke-Howson algorithm can be found in [17]. For further
details on the van den Elzen-Talman algorithm we refer the reader to [5], [17] or
the original papers [14] and [15].

2.2 A comparison of the Lemke-Howson algorithm and the van den
Elzen-Talman method

What happens in the van den Elzen-Talman algorithm if we take the prior x to
be any pure strategy vector and y its unique best reply? This would correspond
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to a starting point of the Lemke-Howson algorithm, and one might expect the
two algorithms to find the same equilibrium.

However, this is not true. An example where the van den Elzen-Talman and
Lemke-Howson paths lead to different equilibria is given by the 3 × 3 bimatrix
game 


4 4 4
0 0 6
5 0 0


 ,




6 12 0
0 4 0
8 0 13


 (2)

and starting points x = (0, 0, 1), y = (0, 0, 1). The Lemke-Howson algorithm from
this starting point (i.e. with missing label 3) finds the equilibrium (5/11, 0, 6/11),
(4/5, 0, 1/5), whereas the van den Elzen-Talman algorithm finds the pure strat-
egy equilibrium (1, 0, 0), (0, 1, 0). A graphical description of the van den Elzen-
Talman path for our example can be found in Figure 1. A further discussion of
the relations between the two algorithms will be provided at the end of the next
section.
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Fig. 1. The van den Elzen-Talman-path for example (2). The left simplex is player
one’s, the right one player two’s. The labels in the simplex mark the players’ best reply
regions, the labels outside mark the edges of the simplex where the corresponding strat-
egy is unplayed. The square dot is the equilibrium that is found by the Lemke-Howson
algorithm. The black arrows give the path of the van den Elzen-Talman algorithm
starting at (0, 0, 1), (0, 0, 1), and are numbered in the order in which they occur. The
dotted lines trace the restricted strategy space ∆t after step 5 (upper line) and step 7
(lower line).

3 Relations to the global Newton method

3.1 A short review of the global Newton method

The global Newton method was introduced by Govindan and Wilson [1]; it is a
homotopy method for the computation of Nash equilibria in finite normal form
games. However, for simplicity we will keep our description of the algorithm to
the case of non-degenerate bimatrix games.

First we need to introduce a procedure of creating new games from old ones
that goes back to [7]: Starting from an m × n bimatrix game (A,B) and direc-
tional (column) vectors a ∈ Rm, b ∈ Rn, define a new game (A,B) ⊕ (a, b) by
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adding the vector a to each column of A, and the vector bT to each row of B.
Hence the game (A,B)⊕ (a, b) is given by the matrices

A +




a1 . . . a1

...
...

am . . . am


 , B +




b1 . . . bn

. . .
b1 . . . bn


 (3)

Note that in general this procedure changes the equilibria of the game.
The idea of the global Newton method is as follows: Assume we would like to

calculate an equilibrium of a non-degenerate bimatrix game (A,B). For any pair
of directional vectors (a, b) as above, consider the ray {(A,B)⊕ λ · (a, b) | λ ≥ 0}
in the space of games. Take the graph of the equilibrium correspondence over that
ray, i.e. the correspondence that maps each game to the set of its equilibria. The
structure theorem of Kohlberg and Mertens [7] implies that for (a, b) outside a
lower-dimensional set, this graph will be a semi-algebraic one-dimensional mani-
fold with boundary (where boundary points are equilibria of the game (A,B)). If
we can find an equilibrium somewhere “far out” and trace it along that manifold,
we arrive at an equilibrium of the original game.

Although the idea is conceptually straightforward, its implementation is tech-
nically demanding. Govindan and Wilson take advantage of the differentiable
structure which is implicit in the structure theorem. They convert the problem
of tracing equilibria over a ray to one of calculating zeros of piecewise differ-
entiable functions, and for this they use an approach due to [13]. For further
details we refer the reader to the original paper [1].

For our purpose, all we need to know is that for a non-degenerate bimatrix
game (A,B) and a pair of directional vectors (a, b) in suitable Euclidean space,
the global Newton method traces equilibria along the graph of the equilibrium
correspondence over the ray {(A, B)⊕ λ · (a, b) | λ ≥ 0}. In other words, for E
the graph of the equilibrium correspondence, the global Newton method traces
equilibria along the set

{((A,B)⊕ λ · (a, b), (x, y)) ∈ E | λ ≥ 0}
A crucial condition for the algorithm to work is that this set is non-degenerate,
in the sense that its one-point compactification is a one-dimensional manifold
without branch points. Generically, however, this is the case.

3.2 The van den Elzen-Talman algorithm as a special case of the
global Newton method

We would now like to prove that the van den Elzen-Talman algorithm is a special
case of the global Newton method. Let (A, B) be a non-degenerate m×n bimatrix
game. Choose a starting point (x, y) ∈ ∆m × ∆n. The van den Elzen-Talman
algorithm traces the set

PET ((A,B), (x, y)) :=
{

(t, (x, y)) ∈ [0, 1] ×∆m ×∆n | (x, y) ∈ ∆t and (x, y)
is an equilibrium for the game (A,B) restricted to ∆t

}
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for ∆t the restricted strategy space defined in section 2.1.
For λ ∈ R, define the game

(A,B)x,y(λ) := (A,B)⊕ λ · (Ay, BT x
)

where⊕ is defined as in (3). Let E be the graph of the equilibrium correspondence
over the space of games Rm×n × Rm×n, and

PGNM ((A,B), (x, y)) :=
{
((A,B)x,y(λ), (x, y)) ∈ E | λ ≥ 0

}

the set of equilibria over the ray of games {(A,B)x,y(λ) | λ ≥ 0}. This is
the set traced by the global Newton method, when choosing as directional
vector

(
Ay,BT x

)
. The following theorem states that it is homeomorphic to

PET ((A,B), (x, y)), after removing the starting point (0, (x, y)) from the latter.
This is the central result of this section; it establishes the van den Elzen-Talman
algorithm as a special case of the global Newton method.

Theorem 1. Let (A,B) be a non-degenerate m × n bimatrix game. Choose a
starting point (x, y) ∈ ∆m×∆n. Let λ : (0, 1] → R≥0, t 7→ 1

t −1. Then the map

PET ((A,B), (x, y)) \ {(0, (x, y))} → PGNM ((A,B), (x, y))(
t, (1− t)x + tx, (1− t)y + ty

)
7→

(
(A,B)x,y(λ(t)), (x, y)

)

is a homeomorphism.

Proof. In the game (A,B), the payoff vector for player one against a strategy
(1− t) · y + t · y for y ∈ ∆n is

(1− t)Ay + tAy =
(
(1− t)(Ay, . . . , Ay) + tA

)
y

where we exploit the fact that yT1 = 1. Similarly the payoff vector for player
two against a strategy (1− t) · x + t · x ∈ ∆m is

(1− t)BT x + tBT x =
(
(1− t)(BT x, . . . , BT x) + tBT

)
x

=
(
(1− t)




xT ·B
...

xT ·B


 + tB

)T
x.

Hence ((1−t) ·x+t ·x, (1−t) ·y+t ·y) ∈ ∆t is an equilibrium of (A,B) restricted
to ∆t if and only if (x, y) is an equilibrium of t · (A,B)⊕ (1− t) · (Ay,BT x

)
.

Since the equilibria of a game remain unchanged by multiplication of the
payoffs by a positive constant, we get that the set PET ((A,B), (x, y)) is given
by

{(0, (x, y))} ∪
{

(t, (1− t) · x + t · x, (1− t) · y + t · y) | t ∈ (0, 1], (x, y) is
an equilibrium of the game (A,B)⊕ ( 1

t − 1) · (Ay, BT x
)
}

,
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which ensures that our map maps indeed to PGNM ((A,B), (x, y)). Since it is
obviously continuous, we just need to find a continuous inverse. This can be easily
done by taking the inverse map to λ and taking the corresponding continuous
map PGNM ((A,B), (x, y)) → PET ((A,B), (x, y))\ {(0, (x, y))}, which yields the
inverse. ut

The map from Theorem 1 can easily be extended to the point (0, (x, y)) by
taking the one-point-compactification of PGNM ((A,B), (x, y)). As an immediate
consequence we get that a van den Elzen-Talman path as in Theorem 1 is a one-
dimensional manifold without branch points if and only if the corresponding
(compactified) path of the global Newton method is. If this is the case, both
algorithms have non-degenerate paths and will find the same equilibrium.

Theorem 1 can be generalized to N -player games as follows: It has been
proved in [15] that the van den Elzen-Talman algorithm implements the linear
tracing procedure, which was introduced in [3]. The linear tracing procedure is a
method for selecting a Nash equilibrium in an N -player game; it plays a key role
in the equilibrium selection theory developed by Harsanyi and Selten [4]. For
any prior (i.e. mixed strategy combination), the linear tracing procedure traces
equilibria over a set of games whose payoffs are given as a convex combination
of the original payoffs and payoffs against the prior. To make this more precise,
choose an N -player normal form game Γ and a prior p, and denote by Γn(σ)
the payoff of player n against a mixed strategy combination σ. For 0 ≤ t ≤ 1,
define a game Γ t, which has the same sets of players and strategies as Γ , but
the payoff in Γ t to player n from a strategy combination σ is defined as

Γ t
n(σ) = tΓn(σ) + (1− t)Γn(σn, p−n) (4)

where (σn, p−n) is the strategy combination that results from p by replacing
player n’s strategy pn by σn. The linear tracing procedure traces the graph of
the equilibrium correspondence over the set of games {Γt | t ∈ [0, 1]}, which in
almost all cases will be a one-dimensional manifold. For t > 0 we can divide
the payoffs given in (4) by t without changing the equilibria of the game, and
as in the proof of Theorem 1 we can conclude that the global Newton method
implements the linear tracing procedure.1 Since there is nothing new to the line
of argument we omit the details.

It has been proved in [2] that the global Newton method also comprises the
Lemke-Howson algorithm. Theorem 1 then raises the question of how the latter
algorithm as a special case of the global Newton method differs from the van
den Elzen-Talman algorithm. If we take the ith unit vector ei for some pure
strategy i of player one, the global Newton method for the ray (A,B)⊕λ · (ei, 0)
corresponds to the Lemke-Howson algorithm with missing label i. An analogous
statement holds for missing labels of player two; for further details we refer the
reader to [2]. So the Lemke-Howson algorithm corresponds to taking unit vectors
as directional vectors for the global Newton method, whereas the van den Elzen-
Talman algorithm is based on directional vectors (Ay, BT x). Further differences
1 We have only outlined the global Newton method for bimatrix games. However, the

definition for N -player games works analogously; details can be found in [1].
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between the two algorithms will emerge in the analysis of coordination games in
the next section: We will see that in this type of game, the Lemke-Howson al-
gorithm only finds the pure strategy equilibria, whereas for certain coordination
games, the van den Elzen-Talman method can also find the completely mixed
equilibrium.

4 Traceability and the index of equilibria

4.1 Traceability

In this section we would like to discuss which equilibria can be traced by the
van den Elzen-Talman algorithm. Of course every equilibrium can be found by
taking it as starting point; however we are only interested in those that are
found generically. As suggested by Hofbauer [6], we call an equilibrium of a non-
degenerate bimatrix game traceable if it can be reached by the van den Elzen-
Talman algorithm from an open set of priors. As explained in the introduction,
traceability in this sense corresponds to a notion of sustainability suggested by
Myerson [9]. Govindan and Wilson [1] state that, generically, every equilibrium
found by the global Newton method has index +1. Theorem 1 then implies that
only equilibria of index +1 are traceable.

The reverse question is if, generically, every equilibrium of index +1 is trace-
able. This question has been discussed in [6] in the context of sustainability.
We answer it by giving an analysis of coordination games. Following Hofbauer
[6], we define a coordination game to be a symmetric game (A,AT ), where the
matrix A has 1’s on the diagonal and entries strictly smaller than 1 outside the
diagonal. Results from [10] imply that a non-degenerate 3×3 coordination game
can have up to seven equilibria. However, we are only interested in those games
that have exactly seven equilibria, in which case there are three pure strategy
equilibria, which have index +1, three equilibria with two strategies as support,
which have index -1, and one completely mixed equilibrium, which in turn has
index +1. From now on, whenever we use the term coordination game we mean
a non-degenerate 3× 3 coordination game with seven equilibria.

It is straightforward that in such a game, the Lemke-Howson algorithm only
finds the pure strategy equilibria. Those equilibria are traced by the van den
Elzen-Talman method as well, by starting from any prior nearby. However, com-
pared to the Lemke-Howson method, the van den Elzen-Talman algorithm allows
for a vast variety of starting points. The question is if this increased flexibility
suffices to make the completely mixed equilibrium traceable as well. Hofbauer [6]
answered this question negatively, which is correct in certain cases, for example
when the payoff to each player is given by the identity matrix. However, in the
next section, we show that the traceability of the completely mixed equilibrium
depends on the type of coordination game at hand. On the one hand, we prove
that there are coordination games for which the completely mixed equilibrium
can indeed be traced. Hence for this class of games, the van den Elzen-Talman
algorithm is stronger than the Lemke-Howson method, in the sense that the
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equilibria found by the latter method are a proper subset of the traceable equi-
libria.

On the other hand, we also give a class of coordination games for which the
completely mixed equilibrium is not traceable. An immediate consequence of
our analysis is that there is an open set in the space of 3 × 3 games, such that
every game in that set has an equilibrium of index +1 that is not traceable.
This implies that the flexibility of the van den Elzen-Talman algorithm does not
ensure generic traceability of all equilibria of index +1.

We are not going to give an introduction to the index since the literature on
this topic is very rich. The definition goes back to [12]; an overview can be found
in [11]. All we need in the course of this paper is the fact that in a coordination
game, the completely mixed equilibrium has index +1.

4.2 Traceability for coordination games

For the coordination game given by

A =




1 0 0
0 1 0
0 0 1


 = BT (5)

it is easy to see that the completely mixed equilibrium is not traceable. The
van den Elzen-Talman paths in this example are quite simple; as soon as a path
arrives in the “same” best reply regions for both players, the corresponding pure
strategy equilibrium is found, as depicted in Figure 2.
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Fig. 2. A van den Elzen-Talman-path for example (5). The black arrows give the path
of the algorithm; the dotted triangles trace the value of the restricted strategy space
∆t.

A very similar, if less degenerate version of the coordination game is given
by

A =




1 0 −1
−1 1 0
0 −1 1


 = BT (6)
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The edges between best reply regions for this game are given by the points
(0, 1/3, 2/3), (2/3, 0, 1/3) and (1/3, 2/3, 0), each connected to (1/3, 1/3, 1/3).
Hence those edges are each parallel to one of the edges of the strategy simplex.
Again for this game, the completely mixed equilibrium is not traceable.

Consider a (possibly non-symmetric) perturbation of the coordination game
(5), such that the perturbed game still has a completely mixed equilibrium. We
say that this perturbed game has a nasty best reply structure if the following
two conditions hold:

– The completely mixed equilibrium may be anywhere in the strategy space,
as long as the first player’s ith strategy is still a best reply to the second
player’s ith strategy, and vice versa.

– We restrict the slopes of the edges between best reply regions: We only
allow slopes that are between the slopes in game (5) and game (6). More
precisely, connect the completely mixed equilibrium vertically to the edges
of the simplex. Then the allowed range of slopes is given by rotating any of
those lines counter-clockwise, until the angle between the rotated line and
the edge of the simplex becomes 60◦. This is illustrated in Figure 3.
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Fig. 3. The shaded areas depict the allowed range for edges between best reply regions
in the definition of nasty best reply structures.

Theorem 2. For any perturbation of game (5) that has a nasty best reply struc-
ture, the completely mixed equilibrium is not traceable.

Proof. We only give the proof for the case where the slopes between best reply
regions are strictly between those in game (5) and game (6). The borderline cases
can be proved similarly. We have to analyze the different cases that can happen;
our proof is best understood by following the different paths geometrically. For
illustration we have done this for the last case in Figure 4. Recall that B(i)
denotes the ith best reply region. We can assume without loss of generality
that x ∈ B(4). As always in a coordination game, if y ∈ B(1), the equilibrium
(1, 0, 0), (1, 0, 0) is found straight away. Next, let us assume that y ∈ B(2), and
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look at the different cases that may happen. The case of y ∈ B(3) is symmetric,
hence there is no need to discuss it.

The first part of the van den Elzen-Talman path is given by ((1 − t) · x +
(0, t, 0), (1− t) ·y +(t, 0, 0)). This path is followed until it hits another best reply
region.

– If it hits B(5) or B(1) first, the corresponding pure equilibrium is found
straight away.

– If it hits B(6) first (this might be possible if the mixed equilibrium is no
longer (1/3, 1/3, 1/3)), player two starts putting weight on his third strategy
until
(i) the path hits B(3) first. In this case, the homotopy parameter t starts

shrinking until either of the upper vertices of the small triangle ∆t hits
the boundary between the relevant best reply regions. Then the other
player leaves the corresponding best reply region and walks towards his
upper vertex, while the homotopy parameter stalls. In any case, the
equilibrium (0, 0, 1), (0, 0, 1) is found.

(ii) the path stays in B(2)2, until player two plays (1− t) · y + (0, 0, t). The
homotopy parameter starts growing again, until either B(3) or B(5) are
hit. In the first case, the equilibrium (0, 0, 1), (0, 0, 1) is found, in the
second case (0, 1, 0), (0, 1, 0).

– The most complex case is when the path hits B(3) first. What happens
then is that player one starts putting more weight on his third strategy,
while the homotopy parameter t remains constant. Due to the structure of
the best reply regions, the path cannot hit B(5) during this process. If the
path hits B(6), then the equilibrium (0, 0, 1), (0, 0, 1) is found: The homotopy
parameter t starts shrinking, until either of the players reaches the upper
vertex of the small triangle ∆t. In either case, the other player can leave
the boundary between the best reply regions, and walks towards the upper
vertex of his small triangle (while the homotopy parameter stalls). From
there (0, 0, 1), (0, 0, 1) is found straight away.
The only remaining case is for the first player’s path to remain in B(4) until
he reaches the upper vertex (1 − t) · x + (0, 0, t) of his small triangle. Then
the homotopy parameter starts growing again until one of the following cases
occur:
(i) If the path hits B(1) first, then the equilibrium (1, 0, 0), (1, 0, 0) is found.
(ii) If the path hits B(6) first, then the equilibrium (0, 0, 1), (0, 0, 1) is found.
(iii) If the path hits B(5) first, then the homotopy parameter stalls while

player two puts more weight on his second strategy. At some point he
arrives at B(2) again. The homotopy parameter starts shrinking until
player one reaches the right vertex of his small triangle.3 Player two

2 This is the only other case that can occur; due to the structure of the best reply
regions the path cannot hit B(1) first.

3 This is bound to happen before player two reaches the left vertex of his small triangle:
Due to the history of the algorithm we can see that player two’s relevant vertex is
further away (in terms of the homotopy parameter) from the relevant boundary
between best reply regions, than player one’s.
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can leave B(3), and (0, 1, 0), (0, 1, 0) is found. For visualization, we have
provided a graphic description of the last case in Figure 4. ut
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Fig. 4. A van den Elzen-Talman-path as in the proof of Theorem 2. The black arrows
give the path of the algorithm, the dotted triangles trace the restricted strategy space
∆t. The upper figure contains the first four steps of the algorithm, the lower one traces
the whole path in greater detail.

If we perturb game (5) slightly towards (6), any game in a neighborhood
of that perturbation will have a nasty best reply structure. As an immediate
consequence, we get the central result of this section:

Corollary 1. There is an open set in the space of 3 × 3 bimatrix games, such
that every game in that set has an equilibrium of index +1 that is not traceable.

We would like to conclude this section by proving that the mixed equilibrium
of a coordination game is traceable as soon as one of the edges between best
reply regions becomes steeper4 than assumed in Theorem 2. The difference is
that where t used to shrink before, now it starts growing, which enables us to
find the completely mixed equilibrium. We only give the proof for the following
example; however a general proof can easily be derived.

Proposition 1. Take the coordination game

A =




1 0 −2
−2 1 0
0 −2 1


 = BT

4 By steeper we mean that in Figure 3, the corresponding angle becomes strictly
smaller than 60◦.
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The completely mixed equilibrium in this game is traceable.

Proof. Starting from x = (45/100, 35/100, 20/100), y = (15/100, 40/100, 45/100)
we find the completely mixed equilibrium. Careful inspection of the path shows
that the same holds for any prior nearby, which gives us an open set from which
the completely mixed equilibrium is reached. ut
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