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Abstract. From 06.01. to 11.01.2008, the Dagstuhl Seminar 08021 “Nu-
merical Validation in Current Hardware Architectures” was held in the
International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current research,
and ongoing work and open problems were discussed. Abstracts of the
presentations given during the seminar as well as abstracts of seminar re-
sults and ideas are put together in this paper. The first section describes
the seminar topics and goals in general. Links to extended abstracts or
full papers are provided, if available.
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metic standardization, language support, reliable libraries,high-precision
special functions, reliablealgorithms, reliable floating-point and interval
computing on different platforms
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Numerical validation in current hardware architectures - From embedded system
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SmartMOBILE and Its Applications to Biomechanics

Ekaterina Auer (Universitat Duisburg-Essen, D)

To automatize modeling and simulation of mechanical systems for industry and
research, a number of tools were developed, among which the program MOBILE
plays a considerable role. However, such tools cannot guarantee the correctness
of their results. Verified methods, for example, intervals and Taylor models, can
be used there to avoid numerical errors. In this talk, we present a modeling
and simulation tool Smart MOBILE based on MOBILE, which provides results
guaranteed to be correct within the constraints of the considered model of a
mechanical system. The use of verified methods there allows us additionally to
take into account the uncertainty in measurements and study its influence on
simulation. Moreover, the facility of verified sensitivity computation has been re-
cently added to SmartMOBILE, which provides a means for analyzing a model
with respect to its parameters. We focus on applications of SmartMOBILE to
biomechanics and the problem of identification of muscle activation profiles. In
particular, we analyze the given rough MOBILE model and the influence of small
changes in its parameters on simulation. The model’s sensitivity to several of its
parameters is obtained based on the adjustment of the extended version of the
verified initial value problem solver ValEncIA-IVP. Further steps toward verifi-
cation of the whole muscle activation process are outlined. In general, this talk
gives an insight into how various guaranteed methods can be applied to mechan-
ical modeling and simulation and point out the advantages and shortcomings of
these techniques with respect to this application area.

Numerical Verification Assessment in Computational
Biomechanics

Fkaterina Auer (Universitit Duisburg-Essen, D)

In this paper, we present several aspects of the recent project PROREOP, in
which a new prognosis system is developed for optimizing patient-specific preop-
erative surgical planning for the human skeletal system. We address verification
and validation assessment in PROREOP with special emphasis on numerical
accuracy and performance. To assess numerical accuracy, we propose to em-
ploy graded instruments, including accuracy tests and error analysis. The use of
such instruments is exemplified for the process of accurate femur reconstruction.
Moreover, we show how to verify the simulation results and take into account
measurement uncertainties for a part of this process using tools and techniques
developed in the project TellHIM&S.

Keywords:  Numerical verification assessment, validation, uncertainty, result
verification

Joint work of:  Auer, Ekaterina; Luther, Wolfram
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1437
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Improving the Performance of a Verified Linear
System Solver Using Optimized Libraries and Parallel
Computation

Gerd Bohlender (Universitit Karlsruhe, D)

A parallel version of the self-verified method for solving linear systems was pre-
sented on PARA and VECPAR conferences in 2006. In this research we propose
improvements aiming at a better performance. The idea is to implement an al-
gorithm that uses technologies as MPI communication primitives associated to
libraries as LAPACK, BLAS and C-XSC, aiming to provide both self-verification
and speed-up at the same time. The algorithms should find an enclosure even for
very ill-conditioned problems. In this scenario, a parallel version of a self-verified
solver for dense linear systems appears to be essential in order to solve bigger
problems. Moreover, the major goal of this research is to provide a free, fast,
reliable and accurate solver for dense linear systems.

Keywords: Linear systems, result verification, parallel computing
Joint work of: Kolberg, Mariana; Bohlender, Gerd; Claudio, Dalcidio
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1438

A Note on Some Applications of Interval Arithmetic in
Hierarchical Solid Modeling

Eva Dyllong (Universitit Duisburg-Essen, D)

Techniques of reliable computing like interval arithmetic can be used to guar-
antee a reliable solution even in the presence of numerical round-off errors. The
need to trace bounds for the error function separately can be eliminated us-
ing these techniques. In this talk, we focus on some demonstrations how the
techniques and algorithms of reliable computing can be applied to the construc-
tion and further processing of hierarchical solid representations using the octree
model as an example.

An octree is a common hierarchical data structure to represent 3D geomet-
rical objects in solid modeling systems or to reconstruct a real scene. The solid
representation is based on recursive cell decompositions of the space. Unfortu-
nately, the data structure may require a large amount of memory when it uses
a set of very small cubic nodes to approximate a solid.

In this talk, we present a novel generalization of the octree model created
from a CSG object that uses interval arithmetic and allows us to extend the
tests for classifying points in space as inside, on the boundary or outside the
object to handle whole sections of the space at once. Tree nodes with additional
information about relevant parts of the CSG object are introduced in order to
reduce the depth of the required subdivision.
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Furthermore, this talk is concerned with interval-based algorithms for reliable
proximity queries between the extended octrees and with further processing of
the structure. We conclude the talk with some examples of implementations.

Keywords: Reliable solid modeling, hierarchical data structure

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1440

Error bounds for rational matrix functions applied to a
vector

Andreas Frommer (Universitat Wuppertal, D)

Let A be a square matrix and r a rational function. We are interested in com-
puting approximations to the action of the matrix function r(A) on some vector
b, i.e. we want to compute r(A)b. Since A is usually sparse and large, we consider
a Krylov subspace framework. The function r is expressed as a partial fraction
expansion, and for each partial term we compute the FOM iterate of a given de-
gree. These iterates are then combined to yield the searched for approximation
for r(A)b. An important question is whether it is possible to assess the error
of the approximation by giving upper and lower bounds. We do so in the case
where A is hermitian by using the fact that all residuals of the FOM iterates are
then colinear. Bounds for the error can then be obtained by the minimization
and maximization of an a posteriorily computable new rational function over an
interval determined by the spectrum of A. Simple interval arithmetic optimza-
tion methods are perfectly suitable to solve these optimization problems and we
show that the error bounds obtained can very good. This is particularly so if the
rational function is itself an approximation to the exponential, a computation
which arises in important applications like exponential integration methods, We
also demonstrate the efficiency of our approach for the matrix sign function used
in lattice quantum chromodynamics.

Keywords: ~ Matrix functions, error bounds, iterative methods, Krylov sub-
spaces, matrix exponential, sign function

Joint work of: Frommer, Andreas; Simoncini, Valeria

Extending the Range of C-XSC: Some Tools and
Applications for the use in Parallel and other Environments

Markus Grimmer (Universitat Wuppertal, D)

There is a broad range of packages and libraries for verified numerical compu-
tation. C-XSC is a library combining one of the most extensive sets of functions
and operations on the one hand with a wide range of applications and special
features on the other hand.
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As such it is an important task both to make use of its existing capabilities in
applications and to develop further extensions giving access to additional areas
and environments.

In this talk, we present some examples of extensions for C-XSC that have
been developed lately. Among these are extensions that give access to further
hardware and software environments as well as applications making use of these
possibilities.

Software libraries for interval computation always imply great computation
effort: One way to reduce computation times is the development of parallel meth-
ods to make use of parallel hardware. For this, it is important that the features
and data types of the used library can be easily used in parallel programs. An
MPI package for C-XSC data types allows to easily use C-XSC in parallel pro-
grams without bothering about the internal structure of data types. Another
extension of C-XSC, the C-XSC Taylor arithmetic, is also covered by the MPI
package. Parallel verified linear system solvers based on the package are available
as well, and further development has been and is being done to integrate more
efficient methods for interval linear system solution.

One application making use of the mentioned extensions is a parallel verified
Fredholm integral equation solver. Some results are given to demonstrate the
reduction of computation time and, at the same time, the accuracy gain that
can be obtained using the increased computation power. Naturally, hardware
interval support would offer still more possibilities towards optimal performance
of verified numerical software.

Another possibility to extend the range of C-XSC is to make results available
for further computations in other software environments as, for example, com-
puter algebra packages. An example of this is presented for the Maple interval
package intpakX. This kind of interfaces also allows the user to get access to
further platforms like operating systems, compilers or even hardware.

References:
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Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1441

C-XSC: Highlights and new developments

Werner Hofschuster (Universitit Wuppertal, D)

C-XSC is one of the most sophisticated software libraries to facilitate the de-
velopment of reliable numerical methods. The source code of this C++ class
library (open source) is available free of charge. A lot of predefined numeric
data types (real, interval, complex, cinterval, dotprecision, idotprecision, cdot-
precision, cidotprecision, and correspondig matrix/vector types) as well as corre-
sponding arithmetic operators of maximum accuracy are provided. Additionally
some kinds of multiple precision data types are available: 1 _real, 1 interval,
L real,L interval, DotK, IDotK, ...

An extensive set of elementary mathematical functions for real and complex
interval arguments of high accuracy are available. This is true not only for the
basic interval types but also for the so called staggered correction (multiple
precision) formats. These formats rely heavily on the possibility to compute dot
products of vectors with floating point entries without loss of information (the
computed result is guaranteed to be error free i.e. no rounding errors occur).
This C-XSC operation is also used to realize the arithmetic operations in all
the matrix/vector spaces as semimorphisms, i.e. with only one final rounding.
Up to now this basic operation is realized by software. There is no hardware
suppport. Thus, the performance is still far away from being optimal. There are
several papers showing that hardware support would be possible by increasing
the complexity of current processors only a little bit. Thus, the community should
insist on getting this operation in hardware. The benefits would be great: best
possible matrix/vector operations outperforming traditional, not accurate dot
product computations via loops.

C-XSC also offers a lot of higher numerical routines and additional soft-
ware always providing validated results: global optimization, linear and nonlinear
systems with interval entries, parametric linear systems, numerical integration,
Cauchy principal values of improper integrals, multiple-precision computations,
computations with very wide exponent range, automatic differentiation, Taylor
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coefficients of analytic functions, Fredholm integral equations, MPI extension for
the use of C-XSC in parallel environments, ...

A first version of a new online api documentation generated by the documen-
tation system Doxygen is available. New high performance linear system solvers
based on BLAS and a (modified) DotK algorithm. The prototype of an efficient
parallel version for large matrices is also available. It has been tested successfully
on the supercomputer ALiCEnext as well as on a cluster of workstations at the
University of Wuppertal. Further development/discussions: Containment sets?
Parallel solvers for sparse matrices. Simplified output (like IntLab)?, complete
set of test cases, ... In the talk we will emphasize the most important features of
C-XSC by small programs or code snippets. Some time measurements will also
be given.

We feel it is appropriate to thank all friends/persons (see http://www.math.uni-
wuppertal.de/~xsc/xsc/history.html ) which have contributed and/or which are
still contributing to the development of C-XSC. Getting verified numerical re-
sults is a challenging and exciting task.
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C-XSC and Closely Related Software Packages

Werner Hofschuster (Universitit Wuppertal, D)

C-XSC and Closely Related Software Packages

Keywords: Mathematical software, reliable computing, C-XSC, CoStLy, AC-
ETAF

Joint work of: Hofschuster, Werner; Kramer, Walter; Neher, Markus

Full Paper: http://drops.dagstuhl.de/opus/volltexte /2008 /1442
Robustness of Boolean operations on subdivision-surface
models

Di Jiang (Université de Montréal, CA)

This work was presented in two parts at Dagstuhl seminar 08021. The two presen-
tations described work in progress, including a “backward bound” for a combined
backward /forward error analysis for the problem mentioned in the title.
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We seek rigorous proofs that representations of computed sets, produced by
algorithms to compute Boolean operations, are well formed, and that the al-
gorithms are correct. Such proofs should eventually take account of the use of
finite-precision arithmetic, although the proofs presented here do not. The rep-
resentations studied are based on subdivision surfaces. Such representations are
being used more and more frequently in place of trimmed NURBS representa-
tions, and the robustness analysis for these new representations is simpler than
for trimmed NURBS. The particular subdivision-surface representation used is
based on the Loop subdivision scheme. The analysis is broken into three parts.
First, it is established that the input operands are well-formed two-dimensional
manifolds without boundary. This can be done with existing methods.

Secondly, we introduce the so-called “limit mesh”, and view the limit meshes
corresponding to the input sets as defining an approximate problem in the sense
of a backward error analysis. The presentations mentioned above described a
proof of the corresponding error bound. The third part of the analysis corre-
sponds to the “forward bound”: this remains to be done.

Keywords: Robustness, finite-precision arithmetic, Boolean operations, subdi-
vision surfaces

Joint work of:  Jiang, Di; Stewart, Neil
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1443

Issues for General Users of Automatically Verified
Optimization Software: What Does the Answer Mean?

R. Baker Kearfott (Univ. of Louisiana - Lafayette, USA)

With additional experience supporting users of GlobSol, several issues have be-
come apparent. In particular, we state that verified global optimization packages
"cannot lie" in the sense that the software always outputs all answers. However,
such software has tolerances dealing with the fineness of the domain resolution.

Because of these tolerances, the answers presented to the user can be mislead-
ing. Documentation for the software must therefore carefully define how users
should interpret the answers. Several examples will be given. These examples
are part of an updated User Guide for GlobSol.

Keywords:  Global optimization, automatic result verification
GlobSol User Guide

R. Baker Kearfott (Univ. of Louisiana - Lafayette, USA)

We explain installation and use of the GlobSol package for mathematically rigor-
ous bounds on all solutions to constrained and unconstrained global optimization
problems, as well as nonlinear systems of equations.
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This document should be of use both to people with optimization problems
to solve and to people incorporating GlobSol’s components into other systems
or providing interfaces to GlobSol.

Keywords:  Global optimization, automatic result verification

Efficient 16-bit Floating-Point Interval Processor for
Embedded Systems

Michel Kieffer (CWRS - Supélec - Université Paris-Sud, F)

In the last ten years, interval techniques have allowed original solutions for many
problems in engineering to be proposed. One of the main features of interval
techniques is their ability to provide guaranteed results, i.e., with a verified
accuracy or which are numerically proved. Consider for example, a bounded-
error parameter estimation problem: the value of some parameter vector has to
be estimated from measured data using a given model structure and bounded
measurement errors. In such a context, one may obtain a set which can be proved
to contain all values of the parameter vector that are consistent with the model
structure, the measured data, and the hypotheses on the noise. Nevertheless, the
application of interval techniques in embedded real-time applications is far less
developed. The lack of efficient interval hardware support may be a reason for
this slower development.

Hardware implementations of interval arithmetic have been mentioned twenty
years ago. Extension of existing hardware platforms have been proposed. Nev-
ertheless, chip builders were not yet convinced of the usefulness of performing
specific adaptation of chips to implement interval analysis. This is why interval
analysis is mainly performed by software implementations on general-purpose
processors. Interval computations are however quite inefficiently performed on
such processors, since the recurrent rounding mode switchings required by inter-
val computations results in recurrent flushes of the processor pipeline. This spe-
cific problem led people to study and design dedicated floating-point units (FPU)
well suited to double rounding modes (towards —oo and towards +o00). Moreover,
in many applications, 32-bit FPU are oversized. Measurements, corrupted by er-
rors, do not require to be processed with such an accuracy and in many cases,
smaller FPU with reduced precision may fit the application constraints and pro-
vide a satisfying accuracy. Thus, for example, 16-bit floating-point computations
is an efficient way to tackle both accuracy and dynamic problems encountered
in signal and image processing, for filtering and convolution-based algorithms.

This talk introduces 16-bit floating-point arithmetic adapted to interval com-
putations. The main idea is inspired by [Kolla99], which proposed to implement
two 32-bit FPU on the 64-bit FPU of a general-purpose processor. Here, sim-
ilarly, noticing that a 16-bit FPU is smaller than a 32-bit FPU, two 16-bit
FPU (managing the two rounding modes required for interval computations)
are shown not being much bigger than a single 32-bit FPU. The main advantage
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is that no rounding mode switching is required, preventing them from flushing
the processor pipeline. The implementation of such a 16-bit FPU is performed on
the FPGA based NIOS-II soft processor, which allows instructions to be added
to its instruction set. Customizable processors represent an opportunity to pro-
pose efficient and low-cost on-chip interval applications which may be used in
embedded applications.

To compare the performance of 16 and 32-bit FPUs, an example of source
localization using a network of acoustic or electromagnetic sensors is considered.
In such network of sensors, power consumption and computational complexity
are strong constraints when one is concerned with the increase of operability and
autonomy. Distributed interval constraint propagation has been proposed as an
efficient and low-complexity solution for source localization using a network of
wireless sensors.

The talk recalls first the distributed source localization problems and sketches
the solutions based on interval analysis. Then, the architecture of the 16-bit
FPU is presented. Attention is paid to accuracy and dynamic range. Results
provided by a 32-bit FPU are compared to those obtained with two 16-bit FPU
on realistic simulated data. The hardware implementation on the three targeted
architectures (Pentium4, Pentium 4-M, and NIOS-II) and provides benchmarks
for execution time and energy consumption.

Keywords:  Source localization, Interval analysis, Embedded applications, 16
bits floating-point Processor, FPGA

Joint work of: Piskorski, Stéphane; Kieffer, Michel; Lacassagne, Lionel; Etiem-
ble, Daniel

See also: S. Pikorski, L. Lacassagne, M. Kieffer and D. Etiemble, Efficient 16-bit
floating point interval processor for embedded systems and applications, 2006,
Duisburg, SCAN 2006

Distributed parameter and state estimation in a network
of sensors

Michel Kieffer (CWRS - Supélec - Université Paris-Sud, F)

In this paper, we have considered distributed bounded-error state estimation
applied to the problem of source tracking with a network of wireless sensors.
Estimation is performed in a distributed context, i.e., each sensor has only a
limited amount of measurements available. A guaranteed set estimator is put at
work. At each time instant, any sensor of the node has its own set estimate of
the location of the source.

Keywords: Parameter estimation, state estimation, bounded errors, nonlinear
estimation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1444
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A Modified Staggered Correction Arithmetic with
Enhanced Accuracy and Very Wide Exponent Range

Walter Kramer (Universitdt Wuppertal, D)

AMS classification: 65G20, 65G30, 65Y99, 37M99, 30-04

The staggered correction arithmetic is based on accurate scalar product com-
putations of floating point vectors.

A staggered correction number is given as the (exact) sum of the components
of a list of floating-point numbers (components of a floating-point vector).

Thus the maximum precision of arithmetical operations depends strongly on
the exponent range of the floating-point screen. Staggered correction numbers
close to the underflow range are typically not as accurate as numbers with larger
exponents. For the IEEE double precision format the range is about 4.9 10E-324
< |double| < 1.7 10E+4308. Thus, up to 630 (decimal) mantissa digits may be
handled using staggerd precision variables.

To get high accuracy in numerical calculations (intermediate) underflow
and/or overflow situations must be avoided, i.e. an appropriate scaling of the
operands of arithmetic operations is necessary. To this end we represent our
modified staggered number as a pair (e, x). We refer to such pairs as extended
staggered numbers.

The integer e denotes an exponent with repect to the base 2 and x de-
notes an ordinary staggerd number (i.e. a vector of floating-point numbers).
The value v of the modified staggered variable (e,x) is v = (e,x) := 2%*¥e *
sum(x). Here, sum(x) means the exact sum of all floating-point components of
the staggered variabe x. The pair-representation allows the handling of very
small and very large numbers: 1.3E-487564, 4.1E9999999, or numbers with even
larger exponents may be used in numerical calculations. We know several test
cases where multiple-precision calculations using computer algebra packages like
Maple and /or Mathematica fail whereas our extended staggered software returns
the expected result.

The new package offers real interval and complex interval arithmetic opera-
tions and also a rather complete set of mathematical functions for the new data
types L_interval (extended real staggered intervals) and L cinterval (extended
complex staggerd intervals). The trigonometric functions, the inverse trigono-
metric functions, the hyperbolic and the inverse hyperbolic functions as well as
several other functions are provided for (rectangular) extended complex stag-
gered intervals.

Some details of the arithmetic operations as well as some details on the
implementation of elementary mathematical functions will be discussed in the
talk.

Applications (logistic equation, limit calculations) will be presented to show
the superior behavior of the new arithmetic over the more traditional one. We
will also discuss hardware requirements to get the staggered arithmetic working
extremely fast.
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The source code of the new package will be distributed under the GNU
general public license. Up to now it is an independent supplement to our C-XSC
library. The source code will be made available within the next weeks.

See http://www.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html
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A Modified Staggered Correction Arithmetic with
Enhanced Accuracy and Very Wide Exponent Range

Walter Krimer (Universitdt Wuppertal, D)

A so called staggered precision arithmetic is a special kind of a multiple precision
arithmetic based on the underlying floating point data format (typically IEEE
double format) and fast floating point operations as well as exact dot product
computations.

Due to floating point limitations it is not an arbitrary precision arithmetic.
However, it typically allows computations using several hundred mantissa digits.
A set of new modified staggered arithmetics for real and complex data as well
as for real interval and complex interval data with very wide exponent range is
presented. Some applications show the increased accuracy of computed results
compared to ordinary staggered interval computations. The very wide exponent
range of the new arithmetic operations allows computations far beyond the IEEE
data formats.

The new arithmetics would be extremly fast, if an exact dot product was
available in hardware (the fused accumulate and add instruction is only one step
in this direction).

Keywords:  Staggered correction, multiple precision, C-XSC, interval compu-
tation, wide exponent range, reliable numerical computations, complex interval
functions

Joint work of: Blomquist, Frithjof; Hofschuster, Werner; Kramer, Walter
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008 /1445

A proposed standard for interval arithmetic and complete
arithmetic

Ulrich Kulisch (Universitat Karlsruhe, D)

Based on a new book entitled "Computer Arithmetic and Validity" (to be pub-
lished this year) the talk will discuss some background material that led to a
proposal of the IFIP Working Group 2.5 to add Interval Arithmetic and Com-
plete Arithmetic to the proposed IEEE Arithmetic Standard P754.

Complete Interval Arithmetic and its Implementation on
the Computer

Ulrich Kulisch (Universitdt Karlsruhe, D)

A Complete Interval Arithmetic and its Implementation is discussed.
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Extended precision on the CELL processor

Jean-Luc Lamotte (Université Pierre et Marie Curie, F)

The CELL processor, jointly developed by a Sony, Toshiba, and IBM, provides
great potential for scientific computing with a peak performance in single preci-
sion over 200 Gflop/s. But, this performance is obtained with an SIMD proces-
sor which is not fully IEEE compliant. For example, the single precision floating
operations are performed with the rounding mode toward zero. There is no
denormalized number, etc. The first part of the talk is devoted to the CELL
architecture.

In the second part, we will explain how to implement the double working
precision library, named double-single on the SPEs (Synergistic Processing Ele-
ment) which are the workhorse processors of the CELL. The approach is close
to those used in [2] for quad-double precision arithmetic. Firstly, algorithms
based on error free transformations for the operators (+,-,*%,/) are proposed for
the rounding mode toward zero. We also prove their exactitude and we provide
error bounds on the precision of the double-single floating-point arithmetic.

The third part focuses on implementation on the SIMD processor, taking
into account the advantages of the characteristics of the SPE processor, among
which the fully pipelined set of instructions in single precision and the FMA
(Fused Multiplier-Add) operator are the most important. We have managed
to implement the error-free transformations very efficiently. The performances
of our implementation are presented. The theoretical peak performance of the
library is much less than the performance of the double precision of the machine,
which is about 2.7 Gflop/s in comparison with the 14.4 Gflop/s of the double
precision. The results of our test show that it is not so bad. When 8 SPE are used
to compute operations on very large vectors, the performance of the double-single
and the true double floating point numbers are nearly equal.

In the future, with the same approach, we will continue our work to quad-
single precision. With the next CELL processor which will provide a double
precision fully-pipelined SIMD processor on SPE, we will modify slightly our
code to reach double-double precision and the quad double precision.
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Verified Computation of Spherical t-Designs - Challenges,
Approaches, and Current Limitations

Bruno Lang (Universitit Wuppertal, D)

We present result-verifying methods for computing spherical ¢-designs. A spher-
ical t-design is a set of IV points on the unit sphere, such that the integral of
each polynomial of degree < ¢ over the sphere is obtained by just adding the
polynomial values at these points. We treat two particular cases, which require
completely different approaches and pose different computational challenges, also
w.r.t. the underlying hardware. In the “small ¢’ case we are considering cases
(t, N), for which it is not known whether an N-point spherical ¢t-design does
exist. Here we were able to prove that a 7-point spherical 3-design does not ex-
ist. In the “large t” case we are constructing (¢ 4+ 1)2-point spherical t-designs,
where the number of points is one order of magnitude smaller than in a known
approach, and only by a factor of 4 above a theoretical lower bound. We were
able to verify the existence of such ¢-designs up to ¢t = 60.
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Searching for Some Worst Cases for the Correct Rounding
of the Power Functions in Double Precision

Vincent Lefévre (ENS - Lyon, F)

I’ll present an efficient algorithm to search for the worst cases of a numerically
regular unary function. Obtaining complete results for the power function x¥
is out of reach. But interesting partial results could be obtained. I'll briefly
talk about the case of the integer power function ™ (see Jean-Michel Muller’s
presentation) and give the current results. I'll also present the application to the
detection of the exact cases of 2¥ (joint work with Christoph Lauter).

Keywords:  Floating-point arithmetic, correct rounding, power function

Compensated Horner scheme in k times the working
precision

Nicolas Louvet (ENS - Lyon, F)

The backward stability of the Horner scheme when evaluating a given polyno-
mial p at the point x justifies its practical interest. Nevertheless, the computed
result can be arbitrarily less accurate than the working precision v when the
evaluation of p(z) is ill-conditioned. This is the case for example in the neigh-
borhood of multiple roots where all the digits or even the order of the computed
value of p(x) can be false. Several techniques and softwares intend to improve
the accuracy of results computed in floating point arithmetic. When an IEEE-
754 floating point arithmetic is available, “double-double” and “quad-double”
software libraries are effective solutions to simulate respectively twice our four
times the working precision [1].

In [2], we have already described a compensated Horner scheme: with this
scheme, the result is of the same quality as if computed in doubled working
precision. We present here another compensated algorithm that computes an
approximate r of p(z) of the same quality as if computed in k times the working
precision (k > 2). More exactly, this means that r satisfies

r — p(z)|

k
o Ut O, )
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where (p,x) is the classical condition number that describes the sensitivity of
the polynomial evaluation. This algorithm only requires an IEEE-754 floating
point arithmetic with rounding to the nearest.

Our main tool to improve the accuracy of the computed result is an “error-
free transformation” [3] (EFT) for the polynomial evaluation with the Horner
scheme. We prove that recursive application of this EFT allows us to compute
an approximate that satisfies the previous inequality.

Experimental results show that the time penalty due to the improvement of
the accuracy is very reasonable for k < 4. In particular, our routine runs about
40% faster than the corresponding routine based on the quad-double library.
This justifies the practical interest of the method when only a small increase of
the working precision is needed.
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Verification and Validation Assessment in Computational
Biomechanics

Wolfram Luther (Universitit Duisburg-Essen, D)

In a recent project, PROREOP (development of a new prognosis system to opti-
mize patient-specific preoperative surgical planning for the human skeletal sys-
tem), we address V&V assessment with special emphasis on numerical accuracy
and performance.

Keywords:  Verification, validation, assessment

A Note on Solving Problem 7 of the STAM 100-Digit
Challenge Using C-XSC

Mariana Lideritz Kolberg (Faculdade de Informdtica PUCRS - Porto Alegre,
BR)

C-XSC is a powerful C++ class library which simplifies the development of
selfverifying numerical software.
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But C-XSC is not only a development tool, it also provides a lot of predefined
highly accurate routines to compute reliable bounds for the solution to standard
numerical problems.

In this note we discuss the usage of a reliable linear system solver to compute
the solution of problem 7 of the STAM 100-digit challenge. To get the result
we have to solve a 20 000 (E 20 000 system of linear equations using interval
computations. To perform this task we run our software on the advanced Linux
cluster engine ALiCEnext located at the University of Wuppertal and on the high
performance computer HP XC6000 at the computing center of the University of
Karlsruhe.

The main purpose of this note is to demonstrate the power/weakness of our
approach to solve linear interval systems with a large dense system matrix using
C-XSC and to get feedback from other research groups all over the world con-
cerned with the topic described. We are very much interested to see comparisons
concerning different methods/algorithms, timings, memory consumptions, and
different hardware/software environments. It should be easy to adapt our main
routine (see Section 3 below) to other programming languages, and different
computing environments. Changing just one variable allows the generation of
arbitrary large system matrices making it easy to do sound (reproducible and
comparable) timings and to check for the largest possible system size that can
be handled successfully by a specific package/environment.

Keywords: C-XSC, reliable computing, 100-digit challenge, reliable linear sys-
tem solver, high performance computing, large dense linear systems
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The New IEEE-754 Standard for Floating Point Arithmetic

Peter Markstein (HP - Palo Alto, USA)

The current IEEE-754 floating point standard was adopted 23 years ago. IEEE
chartered a committee to revise the standard to include new common practice in
floating point arithmetic, to incorporate decimal floating point into the standard,
and to address the issue of reproducible results. This talk will visit these issues,
based on the current work of the IEEE-754 revisions committee, which expects
that a new standard will be adopted sometime in 2008.

Keywords:  Floating point arithmetic, standards

Eaxtended Abstract: http://drops.dagstuhl.de/opus/volltexte /2008 /1448
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Certifying numerical programs

Guillaume Melquiond (INRIA-MSR - Orsay, F)

This talk will present Gappa, a tool designed to help users to formally certify that
clever floating-point and fixed-point applications are correct. The mechanisms
of Gappa will be described, as well as its use on a few examples, including the
proof of an elementary function of the CRlibm library.

Keywords:  Floating-point arithmetic, program certification, formal proof

Some algorithmic improvements due to the availability of
an FMA

Jean-Michel Muller (ENS - Lyon, F)

We give some examples (correctly-rounded multiplication by an "exact" constant
such as 7, computation of integer powers) of functions that can be computed
easily and accurately when an FMA instruction becomes available.

Keywords:  Floating-point arithmetic, fused multiply-add instruction, fma

Complex Inclusion Functions in the CoStLy C++ Library

Markus Neher (Universitit Karlsruhe, D)

In this talk, we report on the C++ class library CoStLy (Complex Standard
Functions Library) for the rigorous computation of complex function values or
ranges. Rectangular complex interval arithmetic is used for the computations.
The set of all rectangular complex intervals is denoted by IC in the following. In
the CoStLy procedures, all truncation and roundoff errors are calculated during
the course of the floating-point computation and enclosed into the result.

The library contains procedures for root and power functions, the exponen-
tial, trigonometric and hyperbolic functions, their inverse functions, and some
auxiliary functions, such as the absolute value or the argument function.

The design of the respective inclusion functions has been guided by the
paradigm that range bounds must be valid in any circumstance. For a single-
valued complex function f, its inclusion function F' : IC— > IC, and a given
rectangular complex interval Z, this means that F(Z) must contain the set
f(2)|zinZ. For a multi-valued complex function, the meaning of a valid enclosure
is less obvious. For example, the definition of sqrt(—1) depends very much on
the context of the computation. Possible values include +i, —i, +i, —i, i [—1, 1],
or the empty set.

For each multi-valued function f in the library, CoStLy contains an inclusion
function F'_s for the single-valued principal branch of f. Usually, F'_s is only
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defined on a subset of IC. Some alternative types of inclusion functions for multi-
valued functions have also been implemented. These include inclusion functions
F_cthat are defined on IC, but enclose function values of different branches of
f. For this type of inclusion function, the user of the software much check that
the respective calculation is justified by theory.

Where applicable, inclusion functions F'_a containing all function values of
f have been implemented. For example, such inclusion functions are available
for roots. For some multi-valued complex functions, however, the set of all func-
tion values is generally unbounded. In this case, no such inclusion functions are
available.

For all inclusion functions in the CoStLy library, optimal range bounds are
computed in exact arithmetic. The implementation of the algorithms in float-
ing point arithmetic is generally obstructed by overflow, underflow or cancella-
tion (OUC) in intermediate expressions. Avoiding OUC exceptions often requires
many case distinctions. In the CoStLy library, all expression subject to potential
overflow have been removed to avoid program abortion or invalid results. For the
sake of accuracy, most of the cancellation and underflow exceptions have also
been treated, even though these often only produce overestimations for argu-
ments that are unlikely to appear in applications, such as arguments with very
large or very small absolute values. All OUC exceptions are documented in the
CoStLy source code.

The CoStLy library has been extensively tested for arguments with absolute
values ranging from 1.0E-300 to 1.0E+300. For most arguments, the computed
bounds for function values are highly accurate. In many test cases, the observed
precision of the result was about 50 correct bits (out of the 53 bits available in
IEEE 754 floating point arithmetic) for point arguments.

Numerical examples are presented in the talk.

The CoStLy C++ Class Library

Markus Neher (Universitit Karlsruhe, D)

CoStLy Complex Standard Functions Library) has been developed as a C+-+
class library for the validated computation of function values and of ranges
of complex standard functions. If performed in exact arithmetic, the inclusion
functions for principal branches compute optimal range bounds. For the sake of
accuracy, a major effort has been made in the implementation of the algorithms
in floating point arithmetic to eliminate all intermediate expressions subject to
numerical overflow, underflow, or cancellation. The CoStLy library has been
extensively tested for arguments with absolute values ranging from 1.0E-300 to
1.0E+300. For most arguments, the computed bounds for function values are
highly accurate. In many test cases, the observed precision of the result was
about 50 correct bits (out of the 53 bits available in IEEE 754 floating point
arithmetic) for point arguments.
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Iterative Refinement for Ill-Conditioned Linear Systems
Shin’ichi Oishi (Waseda Univ. / JST - Tokyo, J)

In this talk, we will consider the convergence of iterative refinement for a linear
equation:
Az = b, (2)

where A is a floating point n x n matrix and b is a floating point n dimensional
vector.

Let u be the unit round-off of the working precision and «(A) be the condition
number of the problem.

For well posed problems, i.e., in case of ux(A) < 1, it has been shown that
the iterative refinement improve the forward and backward errors of computed
solutions provided that the residuals are evaluated by extended precision, in
which the unit round off % is the order of u?, then the result is rounded to the
working precision. In this talk, we will treat ill-conditioned problems with

1 < uk(A) < oo. (3)

Keywords:  Accurate Dot Product Algorithm, Convergence Theorem

On the Interoperability between Interval Software

Evgenija D. Popova (Bulgarian Academy of Sciences, BG)

The increased appreciation of interval analysis as a powerful tool for controlling
round-off errors and modelling with uncertain data leads to a growing number
of diverse interval software. Beside in some other aspects, the available interval
software differs with respect to the environment in which it operates and the
provided functionality. Some specific software tools are built on the top of other
more general interval software but there is no single environment supporting all
(or most) of the available interval methods. On another side, most recent interval
applications require a combination of diverse methods. It is difficult for the end-
users to combine and manage the diversity of interval software tools, packages,
and research codes, even the latter being accessible. Two recent initiatives: [1],
directed toward developing of a comprehensive full-featured library of validated
routines, and [3] intending to provide a general service framework for validated


http://drops.dagstuhl.de/opus/volltexte/2008/1449

Numerical Validation in Current Hardware Architectures 23

computing in heterogeneous environment, reflect the realized necessity for an
integration of the available methods and software tools.

It is commonly understood that quality comprehensive libraries are not com-
piled by a single person or small group of people over a short time [1]. Therefore,
in this work we present an alternative approach based on interval software in-
teroperability.

While the simplest form of interoperability is the exchange of data files, we
will focus on the ability to run a particular routine executable in one environment
from within another software environment, and vice-versa, via communication
protocols. We discuss the motivation, advantages and some problems that may
appear in providing interoperability between the existing interval software.

Since the general-purpose environments for scientific/technical computing
like Matlab, Mathematica, Maple, etc. have several features not attributable
to the compiled languages from one side and on another side most problem
solving tools are developed in some compiled language for efficiency reasons, it
is interesting to study the possibilities for interoperability between these two
kinds of interval supporting environments.

More specifically, we base our presentation on the interoperability between
Mathematica [5] and external C-XSC programs [2] via MathLink communication
protocol [4]. First, we discuss the portability and reliability of interval arithmetic
in Mathematica. Then, we present MathLink technology for building external
MathLink-compatible programs. On the example of a C-XSC function for solv-
ing parametric linear systems, called from within a Mathematica session, we
demonstrate some advantages of interval software interoperability.

Namely, expanded functionality for both environments, exchanging data with-
out using intermediate files and without any conversion but under dynamics and
interactivity in the communication, symbolic manipulation interfaces for the
compiled language software that often make access to the external functionality
from within Mathematica more convenient even than from its own native envi-
ronment. Once established, MathLink connection to external interval libraries
or problem-solving software opens up an array on new possibilities for the latter.
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Second note on basic interval arithmetic for IEEE754R

John D. Pryce (Cranfield University, GB)

The IFIP Working Group 2.5 on Numerical Software (IFIPWG2.5) wrote on 5th
Septem- ber 2007 to the IEEE Standards Committee concerned with revising the
IEEE Floating- Point Arithmetic Standards 754 and 854 (IEEE754R), expressing
the unanimous request of IFIPWG2.5 that the following requirement be included
in the future computer arithmetic standard:

For the data format double precision, interval arithmetic should be made
available at the speed of simple floating-point arithmetic.

IEEE754R (we believe) welcomed this development. They had before them
a document defining interval arithmetic operations but, to be the basis of a
standards document, it needed more detail. Members of the Interval Subroutine
Library (ISL) team were asked to comment, in an email from Ulrich Kulisch
that enclosed one from Jim Demmel to Van Snyder raising the issue. This paper
provides ISL’s comments.

Keywords:  Interval arithmetic, validated computation, floating point, stan-
dards, exceptions, not an interval
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Towards the Development of an Interval Arithmetic
Environment for Validated Computer-Aided Design and
Verification of Systems in Control Engineering

Andreas Rauh (Universitit Ulm, D)

Modern techniques for the design and analysis of control strategies for nonlin-
ear dynamical systems are often based on the simulation of the open-loop as
well as the closed-loop dynamical behavior of suitable mathematical models. In
control engineering, continuous-time and discrete-time state-space representa-
tions are widely used which are given by sets of ordinary differential equations
and difference equations, respectively. In addition to these representations, sets
of differential algebraic equations are commonly used. Since we will focus on
computational techniques which are applied for the design and mathematical
verification of controllers for lumped parameter systems, i.e., systems which do
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not contain elements with distributed parameters, partial differential equations
will not be considered in this talk.

The prerequisite for the design and robustness analysis of each control system
is the identification of mathematical models which describe the dynamics of
the plant to be controlled as well as the available measurement devices with
a sufficient accuracy. The model identification task comprises the derivation of
physically motivated state equations, their parameterization based on measured
data, as well as simplifications to apply specific approaches for controller design.

In the design stage, both open-loop and closed-loop control strategies can
be considered. Since dynamical system models are subject to uncertain param-
eters and uncertain initial conditions in most practical applications, detailed
mathematical formulations of the desired dynamics of the controlled system are
necessary. These specifications involve the definition of robustness with respect
to the above-mentioned uncertainties. For linear system representations, robust-
ness is commonly specified in terms of regions in the complex domain containing
all admissible poles of the closed-loop transfer functions (I-stability) or in terms
of specifications of worst-case bounds for the frequency response (B-stability) [1].

However, these specifications do not allow for inclusion of bounds for the state
variables which are often available in the time domain if controllers are designed
for safety critical applications. Especially for nonlinear dynamical systems, pole
assignment based on the linearization of nonlinear mathematical models gener-
ally leads to the necessity for the analysis of asymptotic stability of the resulting
closed-loop dynamics.

In this presentation, we will give an overview of the potential use of validated
techniques for the analysis and design of controllers for nonlinear dynamical sys-
tems with uncertainties, where the systems under consideration will be subject
to constraints for both state and control variables.

As an application scenario the design of robust control strategies for a bi-
ological wastewater treatment process will be discussed. In the design and the
verification process, constraints for both state and control variables which are
given by guaranteed interval bounds in the time domain are taken into account.
Suitable computational techniques are, for example, based on an extension of the
validated initial value problem solver VALENCIA-IVP [2,6]. For that purpose,
differential sensitivities of the trajectories of all state variables with respect to
variations of the parameters of the mathematical system model as well as the
adaptation of controller parameters are computed. This information can then
be used for online identification and adaptation of parameters during the op-
eration of a closed-loop controller as well as in offline design, verification, and
optimization. Here, the interval arithmetic routines for sensitivity analysis allow
to compute guaranteed differential sensitivity measures for system models with
both nominal parameters and interval uncertainties.

The presented interval arithmetic techniques are the basis for a general pur-
pose tool for the analysis and the design of robust and optimal control strategies
for uncertain dynamical systems. The presentation is concluded with an out-
look on the formulation of control problems using sets of differential algebraic
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equations. Possibilities for the extension of VALENCIA-IVP to this type of sys-
tem representation will be summarized. Relations between the presented interval
arithmetic approach and methods for stabilizing control of nonlinear dynamical
systems which make use of structural system properties such as differential flat-
ness [3] and exact feedback linearization are highlighted [4,5]. In the latter case,
input-output linearization as well as (in special cases) input-to-state linearization
are of practical importance.
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Automatic adaptation of the computing precision

Nathalie Revol (ENS - Lyon, F)

When a given computation does not yield the required accuracy, the computa-
tion can be done (either restarted or continued) using an increasing computing
precision.

A natural question is how to increase the computing precision in order to
minimize the time overhead, compared to the case where the optimal computing
precision is known in advance and used for the computation.

Kreinovich and Rump have proven that when the computation must be
restarted from scratch, then the minimal overhead is a factor 4.

In this presentation, we study the case where the computation can benefit
from results obtained with a lower precision and thus is not restarted but rather
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continued. Our first main contribution is to show that in such cases, the overhead
is less than 4: for instance the minimal overhead is 2 for the Newton algorithm.

Then we present our second main contribution, an asymptotically optimal
strategy for adapting the computing precision, which has an overhead tending
to 1 when the optimal (unknown) precision tends to infinity.
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Interval Arithmetic and Standardization

Jiirgen Wolff von Gudenberg (Universitiat Wiirzburg, D)

Interval arithmetic is arithmetic for continuous sets. Floating-point intervals are
intervals of real numbers with floating-point bounds.

Operations for intervals can be efficiently implemented. There is an unani-
mous agreement, how to define the basic operations, if we exclude division by
an interval containing zero. Hence, it should be standardized. For division by
zero, two options are possible, the clean exception free interval arithmetic or the
containment arithmetic. They can be standardized as options.

Elementary functions for intervals can be defined. In some application areas
loose evaluation of functions, i.e. evaluation over an interval which is not com-
pletely contained in the function domain, is recommended, In this case, however,
a discontinuity flag has to be set to inform that Brouwer’s fixed point theorem
is no longer applicable in that case.
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Implementation of the reciprocal square root in MPFR

Paul Zimmermann (INRIA Lorraine, F)

We describe the implementation of the reciprocal square root — also called
inverse square root — as a native function in the MPFR library. The difficulty is
to implement Newton’s iteration for the reciprocal square root on top’s of GNU
MP’s MPN layer, while guaranteeing a rigorous 1/2 ulp bound on the roundoff
error.

Keywords: Multiple precision, floating-point, inverse square root, correct round-
ing, MPFR library
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Full Paper:
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Fast (parallel) Dense Linear Interval Systems Solving in
C-XSC Using Error Free Transformations and BLAS

Michael Zimmer (Universitit Wuppertal, D)

The traditional solver for linear interval systems available in C-XSC [6,1] is math-
ematically based on the Krawczyk[12] operator and modifications introduced by
Rump[17]. The Krawczyk operator is composed of matrix/vector operations.
These operations are realized in C-XSC with higest accuracy (only one final
rounding) using a so called long accumulator (dotprecision variable). C-XSC
dotprecision variables allow the error free computation of sums of floating point
numbers as well as the error free computation of scalar products of floating point
vectors. Thus, from a mathematical point of view these operations are perfect.
Because actual hardware does not support these perfect scalar products all op-
erations have to be realized by software. This fact leads to a tremendous time
penalty (note: it has been shown that with modest additional hardware costs
perfect scalar products can be made as fast as simple floating-point loops).

To speed up the C-XSC scalar product software-operations we adapt the so
called DotK algorithm as published in [14]. Error free transformations[14,3,4,10]
are used as basic building blocks to develop summation and scalar product algo-
rithms simulating a K-fold precision. Compared to the perfect C-XSC operations
these operations are fast. They are more accurate than simple floating-point
loops (but of course no longer perfect in the mathematical sense). The fast op-
erations are available in C-XSC via the new data types DotK, IDotK, CDotk
and CIDotK. These new data types are composed in such a way that traditional
C-XSC code using dotprecision variables can be adapted with minimal effort. It
is possible to switch (at runtime!) from perfect computations to fast operations
using K-fold precision (K equal 0 means traditional dotprecision computations)
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and it is possible to hold intermediate results with corresponding error bounds
for further summations or scalar product updates. The details are described in
[19].

Additionaly, based on similar algorithms used in Intlab[16], BLAS and LA-
PACK libraries [2] are used in the O(n?®) parts of the linear system solver. For
matrix-matrix products, manipulation of the rounding mode of the processor is
used to compute enclosures of the correct result.

Comparing the traditional solver with the new version shows that the class
of problems which are solvable with the new version is smaller than the class
of problems which can be solved using the solver based on perfect operations.
But it seems that for real world problems also the new solver is appropriate.
Using the new solver based on BLAS and simulating a quadrupel precision (i.e.
k==2) the speedup comes close to 200(!). The new solver is nearly as fast as
the corresponding IntLab[16] solver verifylss. Solving a real linaer system of
dimension 1000 on a Pentium 4 with 3.2GHz takes about 2.8 seconds. In all cases
tested the accuracy of our new solver was better and in some cases significantly
better than the accuracy of the corresponding IntLab results. The new solver
also allows solving larger (dense) problems than its IntLab counterpart. We also
show some examples where IntLab falls down whereas our new solver still works.

A parallel version of this solver, based on ScaLAPACK, is also available.
Unlike the previous parallel solver in C-XSC[5], this new solver does not depend
on a root-node, which makes it possible to compute a verified solution even of
very large linear systems.

In the talk we will discuss the new data types in more detail, we will empha-
size our modifications to the DotK algorithm taken from the literature [14,15], we
will show time measurements and we will present results concerning the accuracy
of the computed enclosures. Our results will also be compared to corresponding
results computed with the IntLab package. We also will comment on hardware
features and compiler options which can/should be used to get reliable results
on different platforms efficiently.
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A Software Library for Reliable Online-Arithmetic with
Rational Numbers

Gregorio de Miguel Casado (University of Zaragoza, E)

An overview of a novel calculation framework for scientific computing in inte-
grable spaces is introduced. This paper discusses some implementation issues
adopted for a software library devoted to exact rational online-arithmetic op-
erators for periodic rational operands codified in fractional positional notation.
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