
Interval Arithmetic and Standardization

Jürgen Wolff von Gudenberg
University of Würzburg

Extended Abstract
Dagstuhl Seminar 08021, 2008

1

1 Introduction
Interval arithmetic is arithmetic for continuous sets. Floating-point intervals are in-
tervals of real numbers with floating-point bounds. Operations for intervals can be
efficiently implemented. Hence, the time is ripe for standardization. In this paper
we present an interval model that is mathematically sound and closed for the 4 basic
operations. The model allows for exception free interval arithmetic, if we carefully
distinguish between clean and reliable interval arithmetic on one side and rounded
floating-point arithmetic on the other side. Elementary functions for intervals can be
defined. In some application areas loose evaluation of functions, i.e. evaluation over
an interval which is not completely contained in the function domain, is recommended,
In this case, however, a discontinuity flag has to be set to inform that Brouwer’s fixed
point theorem is no longer applicable.

2 Real Interval Arithmetic

2.1 Real Interval Arithmetic
Real interval arithmetic is defined as arithmetic on continuous (in the sense of com-
plete, not discrete) sets.

Definition 1 For intervals A = [a1, a2] and B = [b1, b2] ∈ IR, arithmetic operations
are defined as set operations

A ◦B := {a ◦ b | a ∈ A, b ∈ B}

for operations ◦ ∈ {+,−, ·, /}, 0 /∈ B in case of division.

Remark 1 Since the operations are continuous, the result is an interval, A ◦B ∈ IR
1Thanks to Ulrich Kulisch, Gerd Bohlender, Rudi Klatte, John Pryce and all other paritcipants who helped

in the discussion.

1

Dagstuhl Seminar Proceedings 08021
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl.de/opus/volltexte/2008/1434

This definition can be extended to elementary functions.

Definition 2 f(X) = {f(x) | x ∈ X} denotes the range of values of the function
f : Df ⊆ R→ R over the interval X ⊆ Df .

Remark 2 If f is continuous, the range is an interval.

Remark 3 The range is independent from the specific expression that describes the
function. That is not the case for the interval evaluation.

Definition 3 The interval evaluation f : IR → IR (of a real function f over an in-
terval X) is defined as the function that is obtained by replacing every operator and
every elementary function by its interval arithmetic counterpart under the assumption
that all operations are executable without exceptions.

Remark 4 The variables in an interval evaluation now denote intervals.
An obvious generalisation for functions of multiple variables may be defined.

Two basic principles are mandatory for every definition of interval arithmetic.
The containment principle is known as the fundamental theorem of interval arithmetic
[1].

Principle 1 If the interval evaluation is defined, we have

f(X) ⊆ f(X)

The second priciple, the inclusion isotonicity is related.

Principle 2 If X ⊆ Y , we have

f(X) ⊆ f(Y)

3 Floating-point Interval Arithmetic
When we proceed to the set of floating-point intervals, our topic for standardization, we
are still talking about continuous sets, only the endpoints are floating-point numbers.
For the sake of clarity and to emphasize the difference, we introduce a separate notation
for floating-point interval arithmetic.

Definition 4 Let R denote the set of floating-point numbers, then IR ⊂ IR denotes the
set of floating-point intervals A = [a1, a2] where a1, a2 ∈ R and a1 ≤ a2

Remark 5 A = [a1, a2] = {a ∈ R | a1 ≤ a ≤ a2}

Definition 5 The floating-point interval evaluation �f : IR → IR of the function
expression f is defined as the function that is obtained by replacing every operator and
every elementary function by its floating-point interval arithmetic counterpart under
the assumption that all operations are executable without exceptions.

2

The containment principle guarantees that every real number in the original range of
values of a continuous function is contained in the result of the floating-point interval
evaluation of the same function over the same argument interval.

Principle 3 If the floating-point interval evaluation for f is defined, we have

f(x) ∈ �f(X), ∀x ∈ X ∩Df

Remark 6 The floating-point interval evaluation is defined, if f is continuous and
X ⊆ Df .

A clean semantics that respects the two basic principles of containment and inclusion
isotonicity is mandatory. It can be obtained when we implement the well-known for-
mulae involving only the endpoints and use directed roundings. In the following we
indicate rounding towards −∞ by a ◦̌ and rounding towards +∞ by a ◦̂ over the oper-
ator symbol ◦.

3.1 Representation
A finite floating-point interval is represented by two floating-point numbers, the first
a1 denotes the lower bound, the second a2 the upper bound. For a valid interval we
have a1 ≤ a2.
An infinite interval has its lower bound set to −∞ or its upper bound set to +∞.
The empty set is denoted by [+∞,−∞]
All other representations, in particular two valid numbers with a1 > a2, denote invalid
intervals.

3.2 Arithmetic Operations
The operations addition, subtraction, multiplication, and division by an interval which
does not contain zero are defined as usual. The division by an interval containing zero
raises an exception.

4 Infinite Intervals and Division by Zero

4.1 The Set Approach
In section 3.1 we introduced intervals with one endpoint +∞ or −∞. ∞ is not a valid
point in the interval, it just states that the interval is unbounded [6]. We do not allow
intervals with lower bound +∞ or upper bound −∞.
We now define division by an interval containing zero. Rewriting the definition, we
obtain:

A/B := {a/b | a ∈ A, b ∈ B} = {x | bx = a ∧ a ∈ A ∧ b ∈ B}

Applying this formula eight distinct cases can be set out. In the following table in
column 3 we display the 2 bounds, that are returned by the operation. Since no valid

3

case A = [a1, a2] B = [b1, b2] result A/B
1 0 ∈ A 0 ∈ B −∞, +∞ (−∞, +∞)
2 0 /∈ A B = [0, 0] +∞,−∞ ∅
3 a2 < 0 b1 < b2 = 0 a2/̌b1, +∞ [a2/̌b1, +∞)
4 a2 < 0 b1 < 0 < b2 a2/̌b1, a2/̂b2 (−∞, a2/̂b2] ∪ [a2/̌b1, +∞)
5 a2 < 0 0 = b1 < b2 −∞, a2/̂b2 (−∞, a2/̂b2]
6 a1 > 0 b1 < b2 = 0 −∞, a1/̂b1 (−∞, a1/̂b1]
7 a1 > 0 b1 < 0 < b2 a1/̌b2, a1/̂b1 (−∞, a1/̂b1] ∪ [a1/̌b2, +∞)
8 a1 > 0 0 = b1 < b2 a1/̌b2, +∞ [a1/̌b2, +∞)

Table 1: The eight cases of interval division with A, B ∈ IS, and 0 ∈ B.

intervals are returned, if 0 is in the interior of B, we add a 4-th column with a set
interpretation.
Since, in case 1, 0 ∈ A and 0 · x = 0,∀x ∈ R we have R = [−∞,∞] as the solution
set, whereas in case 2 there is no x ∈ R with 0 · x = a for a ∈ A. The other cases are
derived by limit processes, or by the arithmetic conventions for infinities.

Remark 7

• If 0 is in the interior of B, the solution set consists of 2 infinite intervals.

• Alternatively the whole line R can be returned, but that would loose valuable
information.

4.2 Discussion
Let us further discuss the 2 alternatives. The former is consistent with the definition of
interval arithmetic as set arithmetic. The subintervals are used in the interval Newton
method as 2 sets possibly containing zeros. The middle part (a1/̌b1, a1/̂b2) is cut out,
since it cannot contain a zero. Hence, the process proceeds, whereas the whole R,
swollows this information and the process stops.
The latter solution has two obvious advantages. The system is closed, i.e. in any case
a valid interval is returned, and the containment principle also holds for floating-point
results, that are no real numbers, but the symbols ±∞. In this case we have to replace
the empty set in row 2 by the whole set, again a huge oversetimation.
As a conclusion of our discussion, we favor the closed, simple approach.

5 The Closed, Simple Approach
We discard the containment of floating-point symbols in case 2, but we tolerate an
overestimation in cases 4 or 7. We can simplify the table.

4

case A = [a1, a2] B = [b1, b2] A/B
1 0 ∈ A 0 ∈ B (−∞, +∞)
2 0 /∈ A B = [0, 0] ∅
3 a2 < 0 b1 < b2 = 0 [a2/̌b1, +∞)
4 a2 < 0 b1 < 0 < b2 (−∞, +∞)
5 a2 < 0 0 = b1 < b2 (−∞, a2/̂b2]
6 a1 > 0 b1 < b2 = 0 (−∞, a1/̂b1]
7 a1 > 0 b1 < 0 < b2 (−∞+∞)
8 a1 > 0 0 = b1 < b2 [a1/̌b2, +∞)

Table 2: The eight cases of closed interval division with A, B ∈ IR, and 0 ∈ B.

Remark 8 The C++ proposal [2] uses the same division table. The approach replaces
the interval evaluation by the so-called range closure.

5.1 Exception-free Arithmetic
As we stated above a floating-point interval is a set of real numbers where the endpoints
are floating-point numbers. A floating-point interval thus is completely different from a
floating-point number that usually denotes a more or less crude approximation of a real
number. We interpret the bounds of an interval as sharp in the sense that lower or upper
bounds are true bounds and do not carry some rounding noise in the relevant direction.
Therefore it is not recommended to provide mixed operations between floating-point
numbers and intervals. A sophisticated user, however, may define those operations,
either by overloading the operators or, preferably, by explicitly invoking a constructor.
If we follow these rules, we can show that NaNs or signed zeros do not need a special
treatment, since they will never occur and the infinity symbols are only used to describe
sets, i.e. intervals.

Definition 6 We consider the system of (extended) floating-point intervals IR := {[a1, a2] |
a1 ≤ a2}∪{[a1, +∞) | a1 < +∞}∪{(−∞, a2] | a2 > −∞}∪{(−∞, +∞)}∪{∅}
Note that a1, a2 are floating-point numbers but the set definitions are to be read for all
real numbers.

Theorem 4 The system IR is closed under the 4 basic operations given by the follow-
ing tables.

The proof of the theorem may be picked from the tables, see also [5, 6],

6 Elementary Functions
Interval versions of elementary functions must deliver an enclosure of the real range.
Least bit accurate versions have been proposed in [2]. The rely on the same functions
as those floating-point functions in the IEEE-754 arithmetic standard.

5

Definition 7 A function f is loosely evaluated over an interval X , if f(X) := f(X ∩
Df) where Df is the domain of f .

Remark 9 A discontinuousIntervalFunction exception has to be raised, if a function f
is loosely evaluated over an interval X with X 6⊆ Df . A corresponding flag [7] has to
be set.

• The default handling in this case should be to terminate.

• There is an instruction to read that flag. Hence, user defined actions can be
executed.

• An alternative may be to ignore the exception.

The flag indicates that applications which rely on the continuity of the functions like
verification algorithms using Brouwer’s fixed-point theorem are not allowed.

7 Conclusion and Further Topics
The closed definition of interval operations is mathematically sound and fulfills the
priciples of containment and inclusion isotonicity. Under the assumption that no exter-
nal (hardware) event changes the data, we can guarantee that all intervals produced are
valid intervals.
One may argue that we loose information, when we overstimate the union of 2 infinite
intervals by the whole line, but this information can always be explicitly computed by
2 floating-point divisions. The interval newton method needs an a priori test whether
the denominator contains zero, and then the finite bounds of the 2 infinite interval can
be determined. When, on the other hand, we deliver the 2 quotients as an improper
interval, we have to check for this situation after the division and produce the 2 subin-
tervals.
We see that programming the interval Newton method needs specific operation in any
case.
In this position paper we, therefore, propose a definition of extended interval arithmetic
that is closed and mathematically sound. It should be taken as the core of the coming
interval arithmetic standard.
The standard should also specify set operations and comparisons as well as elementary
functions. For the latter a discontinuity flag shall be defined that supports the loose
evaluation.
Further topics of the standard shall be complete arithmetic including an optimal dot-
product.

References
[1] Alefeld, g. and Herzberger J. Introduction to Interval Computation, Academic

Press 1983

6

[2] Brönnimann, H., Melquiond, G., Pion, S. A Proposal to add
Interval Arithmetic to the C++ Standard Library (revision 2)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2137.pdf

[3] Lerch,M. Hofschuster, W. et al FILIB++, a Fast Interval Library Supporting Con-
tainment Computations, ACM TOMS Vol 32 No 2, pp.299 - 324, 2006

[4] Kulisch, U: Advanced Arithmetic for the Digital Computer, Interval Arithmetic
Revisited, Jan 2001

[5] Kulisch, U: Computer Arithmetic in Theory and Practice, new edition, to be pub-
lished, 2008

[6] Kulisch, U: Letter to the IEEE-754 committee concerning Interval Arithmetic ,
Jan 2008

[7] Pryyce, J. Project Authorisation Request for an Interval Standard Study Group,
Feb 2008

[8] Pryyce, J., Corliss, G. Interval Arithmetic with Containment Sets Computing 4,
2005

[9] Walster, G.W. et al.: The "Simple" Closed Interval System, Sun Microsystems,
Feb 2000

7

