On the Interoperability between Interval
Software

Evgenija D. Popova

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev str., block 8

1113 Sofia, Bulgaria
epopova@bio.bas.bg

Abstract. Building interval software interoperability can be a good so-
lution when re-using high-quality legacy code or when accessing func-
tionalities unavailable natively in one of the software. In this work we
demonstrate MathLink technology for integrating C-XSC functions into
Mathematica and present some of the benefits this approach could bring
to both environments.

Keywords. Software interoperability, interfacing, interval software,
C-XSC, MathLink, Mathematica, external programs

1 Introduction

As the numerical methods based on interval analysis expand in their range and
applications, the number and diversity of interval software increase rapidly. The
existing interval software ranges from libraries for application development to
fully interactive software systems [6]. However there are only a few interval
software comparing studies hampered by the diversity in the implementation
supporting environments and in the interval data representation. The provided
functionality also varies from fairly basic and general to highly specialized. Al-
though some specialized methods are brought to reliable, high-quality and fast
implementations, they remain isolated software systems. Some specific software
tools are built on the top of other more general interval software but there is no
single environment supporting all (or most) of the available interval methods.
Many problem solving routines require symbolic or structured input data and
building corresponding application programming interfaces (API) would facil-
itate their usage. On another side, most recent interval applications require a
combination of diverse methods. It is difficult for the end-users to combine and
manage the diversity of interval software tools, packages, and research codes,
even the latter being accessible. Two recent initiatives: [1], directed toward de-
veloping of a comprehensive full-featured library of validated routines, and [7],
intending to provide a general service framework for validated computing in het-
erogeneous environment, reflect the realized necessity for an integration of the
available methods and software tools.

Dagstuhl Seminar Proceedings 08021
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl .de/opus/vol ltexte/2008/1450

2 E. Popova

It is commonly understood that quality comprehensive libraries are not com-
piled by a single person or small group of people over a short time [1]. Therefore,
in this paper we present an alternative approach based on interval software in-
teroperability. In Section 2 we discuss some aspects concerning this approach
and outline its advantages. Since the general-purpose environments for scien-
tific/technical computing like Matlab, Mathematica, Maple, etc. possess several
features not attributable to the compiled languages from one side and on an-
other side most of the interval software is developed in some compiled language
for efficiency reasons, it is interesting to study the possibilities for interoperabil-
ity between these two kinds of interval supporting environments. In this work
we consider the interoperability between Mathematica [13] and external C-XSC
programs [5], via MathLink communication protocol [3]. The focus is on call-
ing external C-XSC functions from within a Mathematica session. The goal is
to demonstrate some advantages of interval software interoperability. Namely,
expanded functionality for both environments, exchanging numerical data with-
out using intermediate files and without any conversion but under dynamics
and interactivity in the communication, symbolic manipulation interfaces for
the compiled language interval software which often make access to the external
functionality from within Mathematica more convenient even than from its own
native environment.

2 Some Aspects of Interval Software Interoperability

Compiling a library of full-featured, high quality, portable and uniform interval-
based tools, as presented in [1], is an ambitious goal, requiring the work of many
people over many years. In contrast to this approach, providing interoperability
between the existing interval software may achieve similar goals at a consider-
ably lower price and development time. With respect to the development and
production process, the approach based on interval software interoperability has
the following advantages.

— When building software interoperability the usual tedious and error-prone
work of re-implementing an algorithm or a more complex software sys-
tem is removed providing in the same time a safeguard against the re-
implementation bugs.

— In this approach we are usually interested to connect interval software which
is already brought to a high quality and efficiency. Therefore, only the con-
nectivity and interoperability need to be tested but not the connected soft-
ware components. The team can concentrate on the overall concept and the
implementation of new algorithms.

— Thus, providing software interoperability requires considerably less develop-
ment time than building everything from scratch. This approach is especially
suitable for re-using complicated methods and large software systems which
are already brought to a high quality and efficiency.

Therefore, the overall cost of a software based on interoperability between ex-
isting software components is considerably less than a newly compiled software.

Interoperability between Interval Software 3

In the same time, a connectivity between two (or more) interval software envi-
ronments would provide:

expanded functionality

compatibility of interval representations

— increased possibility for comparison and testing

— accessibility by a wider range of users

— performance improvement in some cases considered below.

A possible drawback is that each of the software ingredients should be maintained
and ported to different platforms separately. In general, the problems that may
arise in providing interoperability depend on the software that is to be connected
and the purpose of the interoperability. For example, the details in connecting
C and Fortran programs will depend on the particular Fortran and C compilers
(their calling conventions) and the types of the parameters to pass.

It is well-known that the general-purpose and multi-platform environments
for scientific/technical computing like Matlab, Mathematica, Maple, etc. possess
several features not attributable to the compiled languages:

— dynamics and interactivity of the environment
— symbolic and algebraic computations

— numerics on all data types

— powerful graphics programming

— interfaces and connectivity, etc.

The killer applications of these also-called computer algebra environments are
symbolic manipulation, education and prototyping. Thus, the interoperability
between a computer algebra system and external compiled language software
would bring additional benefits. The former will get expanded functionality and
increased performance, while the external software could benefit from symbolic
manipulations, powerful graphics capabilities, suitable interfaces, etc. For many
years there is a considerable interaction between symbolic-algebraic and result-
verification methods. Embedding of interval data structures, hybrid and result-
verification methods in computer algebra systems turn the latter into valuable
tool for reliable scientific computing while by applying symbolic-algebraic meth-
ods interval computations expand their methodology tools.

There are two basic forms of communication between two software systems:
structured and unstructured. Unstructured communication is based on file read-
ing and writing operations to exchange ordinary text. This simplest form of com-
munication between two software systems has some important drawbacks with
respect to interval software systems. Namely, the necessity of avoiding inevitable
input/output roundoff errors. Here we explore and demonstrate interval software
interoperability via communication protocols. The idea of structured communi-
cation is to transfer data without using intermediate files, communicating with
external programs at a higher level and exchanging more structured data or
complete expressions with the external programs which are specially set up to
handle such objects.

4 E. Popova

3 MathLink Basics

Extensively used within the Mathematica system itself, MathLink is Mathemat-
ica’s unique high-level symbolic interface standard for interprogram communica-
tion [3], [11]-[13]. With convenient bindings for a variety of languages, MathLink
allows arbitrary symbolic objects — representing data, programs, or any other
construct — to be efficiently exchanged between programs, on one computer or
across a heterogeneous network. Some typical uses of MathLink are for

calling functions in an external program from within Mathematica,
calling Mathematica from within an external program,

setting up alternative front ends to Mathematica,

exchanging data between Mathematica and external programs,
exchanging data between concurrent Mathematica processes.

In this work we demonstrate one of the most common uses of MathLink: to allow
external functions written in some compiled language to be called from within
the Mathematica environment.

If there exists a function defined in an external program, then what is neces-
sary to do in order to make it possible to call the function from within Mathemat-
ica is to add appropriate MathLink code that passes arguments to the function,
and takes back the results it produces. The overall process consists of four steps:

1. giving an appropriate MathLink template for each external function;

2. combine the template with the actual external source code into a communi-
cation module;

3. process the MathLink template information and compile all the source code;

4. install the binary in the current Mathematica session.

The intent is that we take pre-existing routines and with as little effort as possible
(ideally with no source code changes to the routines themselves), package them
so they can be called from Mathematica.

A MathLink template involves the following obligatory elements:

:Begin: begin the template for a particular function

:Function: the name of the function in the external program
:Pattern: the Mathematica pattern to be defined to call the function
:Arguments: the arguments to the function

:ArgumentTypes: the types of the arguments to the function
:ReturnType: the type of the value returned by the function
:End: end the template for a particular function

MathLink templates are conventionally put in files with names of the form
file.tm. Such files can also contain C source code, interspersed between the
templates for different functions. When a MathLink template file is processed,
two basic things are done. First, the :Pattern: and :Arguments: specifications
are used to generate a Mathematica definition that calls an external function
via MathLink . Second, the :Function:, :ArgumentTypes: and :ReturnType:

Interoperability between Interval Software 5

specifications are used to generate C source code that calls the desired function
within the external program. Both the :Pattern: and :Arguments: specifica-
tions in a MathLink template can be any Mathematica expressions. Whatever
is given as the :Arguments: specification will be evaluated every time the ex-
ternal function is called. The result of the evaluation will be used as the list of
arguments to pass to the function.

Sometimes it may be necessary to set up Mathematica expressions that should
be evaluated not when an external function is called, but instead only when the
external function is first installed. This can be done by inserting :Evaluate:
specifications in the corresponding MathLink template. Usually, an usage mes-
sage and/or error messages for the Mathematica functions are defined after
:Evaluate:. When an external program is installed, the specifications in its
MathLink template file are used in the order they were given. This means that
any expressions given in :Evaluate: specifications that appear before :Begin:
will have been evaluated before definitions for the external function are set up.

Once a MathLink template for a particular external function is constructed,
this template has to be combined with the actual source code for the function.
If the source code is written in the C programming language, all that should
be done is just adding a line to include the standard MathLink header file, and
then inserting a small main program which sets up the external program to be
ready to take requests from Mathematica. The form of main required on different
systems may be slightly different, the appropriate form is given in the MathLink
Developer Kit [13] for every particular computer system.

Once the couple of appropriate template file and C/C++ source files that
make MathLink function calls is set up, they should be processed to build a
MathLink-compatible program. The template file must first be processed into a
C source file using a program named mprep included in the MathLink Developer
Kit. mprep converts template entries into C functions, passes other text through
unmodified, and writes out additional C functions that implement a remote pro-
cedure call mechanism using MathLink. The result is a C source file file.tm.c
that is ready for compilation. All source files must be compiled and then the
resulting object code be linked with the 1ibML.a library and the libraries re-
quired by our C-XSC application. mcc is a script that preprocesses and compiles
MathLink source files. More information on how to compile and run MathLink
programs written in C on Unix systems can be found in [12].

Finally, the Install function is used to launch a MathLink-compatible pro-
gram and to make its functions available in a Mathematica session, as demon-
strated in the following section.

4 Communication Chain C-XSC — Mathematica— Web

4.1 Integrating C-XSC Programs into Mathematica

C-XSC is an open source C++ class library which facilitates the implementa-
tion of reliable numerical methods [2], [4], [5]. Beside a lot of predefined numeric

6 E. Popova

data types and the corresponding arithmetic of maximum accuracy for compu-
tations in most traditional numerical spaces, the C-XSC environment provides
also some dotprecision data types and several multiple precision data types. A
lot of problem-solving numerical routines providing validated results are involved
in the distribution of C-XSC (e.g. the former C++ Toolbox for Verified Com-
puting) or provided as external modules or additional software systems [2], [4].
For demonstrating the interoperability between Mathematica and C-XSC func-
tions, we have chosen the C-XSC module parlinsys.cpp for solving parametric
interval linear systems [10]. The same MathLink technology can be applied to
other C-XSC functions, e.g. for solving non-parametric (interval) linear systems.
The parametric solver was chosen to illustrate the benefit of the Mathematica
interface for symbolic preprocessing of input data.

The function ParLinSolve() from the C-XSC module parlinsys.cpp com-
pute guaranteed outer (and inner) inclusions for the exact hull of the united
solution set of a parametric linear system involving affine-linear dependencies
between interval parameters. Although solving parametric systems, the function
requires only numerical input data, namely corresponding sequences of numer-
ical matrices/vectors representing the coefficients for each of the parameters
involved, for more details see [10]. We assume that C-XSC module parlinsys
was successfully compiled and is part of the corresponding include directory
of the C-XSC environment. Following the MathLink technology for building a
MathLink - and C-XSC-compatible program, let us consider the template file
ParLinSys.tm.

:Evaluate: ParLinSolveTB::usage = "ParLinSolveTB[p, SharpC, Ap, bp, pvall
computes verified enclosure for the solution set of a square parametric
linear system by a C-XSC module."

:Evaluate: ParLinSolveTB::mlink = "Low-level MathLink error: ‘1°."

:Evaluate: ParLinSolveTB::data = "Incompatible input data."

:Evaluate: ParLinSolveTB::cond = "Verification failed, system is probably
ill-conditioned."

:Function: ParLinSolveML
:Pattern: ParLinSolveTB[p_Integer, flag_Integer, ap_7MatrixQ,
bp_?MatrixQ, ip_?MatrixQ]

:Arguments: {p, flag, ap, bp, ip}
:ArgumentTypes: {Manual}
:ReturnType: Manual

The :Function: line specifies the name of the external C routine ParLinSolveML.
The :Pattern: line shows how the routine will be called from within Mathemat-
ica. The names of the two routines do not have to be identical. The template
file establishes a correspondence between these two functions, see Fig. 1. Note
that the arguments in the Mathematica function pattern are restricted: the first
two to be integers and the next to be matrices. The :Arguments: line spec-
ifies the expressions to be passed to the external program. In our case these
expressions are the same as the variable names on the :Pattern: line. The

Interoperability between Interval Software 7

:ArgumentTypes: and :ReturnType: lines contain special keywords used by
mprep to create the appropriate MathLink function calls that transfer data across
the link. There are six keywords (Integer, Real, IntegerList, Reallist,
String, Symbol) for some more common types of data. For example, the key-
word Integer on the :ArgumentTypes: causes mprep to create a call to Math-
Link function MLGetInteger which transfers C ints. If the external function
needs to receive or return expression types that are not among the set handled
automatically by mprep, or if the function returns different types of results (such
as an integer or the symbol $Failed) in different situations, then the keyword
Manual can be included on the :ArgumentTypes: lines to inform mprep that
we will write our own calls to get the arguments or (as in our case) on the
:ReturnType: line to put the results ourselves.

Now, we consider the communication module ParLinSys. cpp whose file must
be named the same way as the corresponding template file. The program in-
cludes both libraries and several functions. The function ParLinSolveML() ac-
tually communicates the data between Mathematica and the C-XSC function
ParLinSolve(). By the MathLink communication protocol the external pro-
grams send and receive Mathematica expressions using the fundamental C data
types. The external programs should not modify the arrays generated by the
MathLink functions MLGetRealList (), MLGetRealArray(), etc. Since the ex-
ternal library C-XSC we connect to Mathematica use special data types for rep-
resenting intervals, the main purpose of the communication module is to read
the input data from Mathematica via variables of fundamental C data types, to
initialize new variables having the specific C-XSC data types with the incoming
data, then to call the C-XSC function ParLinSolve () and then to transform the
computed results into variables of fundamental C data types that will be passed
back to Mathematica. Since our external function will need to receive expression
types that are not among the the set handled automatically by mprep, and the
function will return different types of results, we write our own calls to get the
arguments. For example, by the following code we get an array of floating-point
numbers.

MLGetDoubleArray(stdlink, &data, &dimensions, &heads, &depth)
...... // Allocation C-XSC data types & filling up matrix Ap
MLDisownDoubleArray(stdlink, data, dimensions, heads, depth);

When an external program gets data from Mathematica, it must set up a place to
store the data. The first ML function above will automatically do this allocation,
storing the array in (double* data), its dimensions in (long* dimensions) and
its depth in (long depth). After processing these data in the second line above,
the memory used to store the array must be released, as in the third code line
above. All the input and output data for the external function ParLinSolveML ()
are processed this way. Therefore the : ArgumentTypes: and :ReturnType: lines
in the corresponding template file ParLinSys.tm involve the keyword Manual.
Fig. 1 illustrates the interaction between Mathematica and the external program
via MathLink technology.

The source code ParLinSys.cpp involves also a main function (standard for
the Linux environment we use) and some functions for triggering error mes-
sages which will be discussed latter on. More details about the implementation

8 E. Popova

Mathematica session Template file Communication module
— ParLinSys.tm “-— ParLinSys.cpp
"""" Begin #include "mathlink k"'
:Function: ParLinSolveML

#include <parlinsys. hpp>

"""" —*Pattern
In[8]:= ParLinSolveTB[2. 1. Ap. bp. ip] ParLinSolveTB[p_Integer,
T flag_Integer, ap_?MarixQ, void ParLinSolveML(void)
Out[6]={{1.79796, 2.7576}, bp_?MatrixQ, ip_?MatrixQ]
{1.80551, 2.75005)} // getting Mma data

Arguments: {p, flag, ap, bp, ip}
ArgumentTypes: {Manual}

ReturnType Manual ParLinSolve(Ap, bp, ip, flag, xx, Err);
:End:

Jfwriting into C-XSC variables

I converting into C data typles

C++ Toolbox

C-Xsc <:::> PaerSo\v:a

C-XSC Environment

Fig.1. Correspondence between function names and their environments
in a MathLink connection between Mathematica and the C-XSC function
ParLinSolve().

can be found in the corresponding source files involved in the electronic sup-
plement cxscMathLink.zip. Since the MathLink connection was built in 2003,
some source code may seem old fashioned but it is compatible to and works
with the latest software versions. The archive involves also a Mathematica note-
book cxscML.nb demonstrating the execution of the MathLink-compatible pro-
grams from within a Mathematica session. A printable version of this notebook
cxscML.pdf is provided for non-Mathematica users.

After developing and compiling the external MathLink -compatible program,
it can be installed in any Mathematica session and the function, defined in the
communication module, can be called with appropriate input data. The Install
function launches the program and opens a link through which the external
function can be called from Mathematica. The program sends to Mathematica
the definitions for its functions specified in the template file along with whatever
code is given on the :Evaluate: lines.

In[1] := 1lnk = Install["ParLinSys"]
Out[1]= LinkObject["./ParLinSys", 2, 2]

Now, the Mathematica function, defined in the template file ParLinSys.tm, is
ready to be called with appropriate arguments satisfying the corresponding func-
tion specification. Although solving parametric systems, the function requires
only numerical input data. For the end-users, it is usually more convenient to
define parametric matrices and parametric vectors symbolically as below.

In[3] := mat = {{3, p1}, {p1, 3}}; vec = {p2, p2};

http://www.math.bas.bg/~epopova/papers/08021.cxscMathLink.zip
http://www.math.bas.bg/~epopova/papers/08021.cxscML.pdf

Interoperability between Interval Software 9

Therefore, the Mathematica interface will be used for symbolic preprocessing the
parametric system data. A newly developed Mathematica function
parToNumMLData is defined in the Mathematica notebook cxscML.nb.
parToNumMLData transforms a parametric matrix, or a parametric vector, whose
elements depend affine-linearly on given parameters into a numeric matrix suit-
able for input for the C-XSC function ParLinSolve(), respectively for the
external function called by ParLinSolveTB. Transforming our symbolic data
we get the numerical input form of the parametric matrix/vector required by
ParLinSolveTB.

In[4] := Ap
bp

parToNumMLData[mat, {p1l, p2}];
parToNumMLDatal[vec, {pl, p2}];

For the parameter interval values, we just specify a list of interval end-points
in the same parameter order {p1l, p2} as specified by the second argument
of parToNumMLData. This is because the interval constructors in C-XSC pro-
vide directed outward rounding for the interval end-points and the Mathematica
function Interval, if applied, would introduce extra rounding.

In[6] := pVals = {{1, 2}, {10, 10.5}};

Now, we are ready to call our external function. Mathematica function InputForm
is used to show all the digits of the result.

In[7] := ParLinSolveTB[2, 1, Ap, bp, pVals] //InputForm
Out[7] {{1.792638317329675, 2.762917238225881},
{1.8018848752730778, 2.753670680282478}}

The result of ParLinSolveTB is not a list of Mathematica intervals but a list
involving just the interval end-points, corresponding to the interval vector gen-
erated by the C-XSC function. The goal is the same as for the input intervals:
to avoid an extra outward rounding introduced by the Mathematica function
Interval.

4.2 Communicating Error Messages

Most of the argument-checking for the external function can be done by, as well
as most of the error messages for this function can be issued by the Mathematica
code. Some errors, however, can only be detected inside the external functions.
Such errors include out-of-memory situations, failed MathLink calls, and so on.
The external program also can issue some errors that are informative for and
should be communicated to the user. The discussion of our MathLink-compatible
program so far was missing an extremely important aspect of MathLink program-
ming: error-checking, which we present in this section.

MathLink is independent of the transport medium and supports a number
of different transport mechanisms that have different properties. In addition,
MathLink can transmit out-of-band data such as exceptions [3], [11]-[13]. Most
MathLink functions return 0 to indicate an error has occurred, and it is possible
to check their return values. If MathLink calls are issued after an error has
occurred, without clearing the error, the link will probably die. Checking for

10 E. Popova

MLGet errors is handled automatically by the code that mprep writes for any
arguments that are read automatically.

For MLGet calls written by ourselves, it is up to us. If an MLGet call fails, the
easiest thing to do is simply to abandon the external function call completely
and return the symbol $Failed. However, it would be more informative to trig-
ger some kind of diagnostic message. The MathLink function MLErrorMessage
returns a string describing the current error and this string is a good candidate
for use in an error message to be seen by the user. The following fragment from
the communication module ParLinSys.cpp detects an error

if (!MLGetInteger(stdlink, &p)) PrintMLErrorMessage();

and calls the function PrintMLErrorMessage () which issues an useful message,
then safely bail out of the function call.

void PrintMLErrorMessage(void)

{ char err_msg[100];
sprintf (err_msg, "%s\"%.76s\"is",

"Message [ParLinSolveTB: :mlink,", MLErrorMessage(stdlink), "I");

MLClearError(stdlink);
MLNewPacket (stdlink) ;
MLEvaluate(stdlink, err_msg);
MLNextPacket (stdlink) ;
MLNewPacket (stdlink) ;
MLPutSymbol(stdlink, "$Failed");

}

Upon detecting the error, the first thing we do is call MLClearError to attempt
to remove the error condition, and then MLNewPacket to abandon the rest of
the packet containing the original inputs to the function (in case it hasn’t been
completely read yet). The sprintf is used to construct a string of the form:

"Message [ParLinSolveTB: :mlink, "the text returned by MLErrorMessage"]"

which is what is sent to MLEvaluate. The message triggered here,
ParLinSolveTB: :mlink, needs to be defined in an :Evaluate: line in the tem-
plate file ParLinSys.tm as follows:

:Evaluate: ParLinSolveTB::mlink = "Low-level MathLink error: ‘1°¢."

After the call to MLEvaluate, Mathematica will send back a ReturnPacket con-
taining the return value of the Message function (which is simply the symbol
Null). We need to drain this packet off the link, so we call MLNextPacket and
then MLNewPacket to discard the contents. Since we have several MLGet calls in
our external code, the collection of the above actions is implemented as a sep-
arate function PrintMLErrorMessage() transferring the communication error
messages.

Now, we demonstrate triggering MathLink communication error messages,
by calling the function ParLinSolveTB with a very big value for the first integer
argument.

Interoperability between Interval Software 11

In[7] := ParLinSolveTB[27100, 1, Ap, bp, pVals]
ParLinSolveTB::mlink : Low-level MathLink error: machine number overflow.
Out[7]= $Failed

Any subsequent call of the external function, even with correct data, returns a
communication error

In[8] := ParLinSolveTB[2, 1, Ap, bp, pVals]
ParLinSolveTB::mlink : Low-level MathLink error: MLGet out of sequence.
Out [8]= $Failed

until the external program be installed again.

In[9] := Install["ParLinSys"]
Out[9]= LinkObject["./ParLinSys", 9, 9]

The same external program can be installed arbitrary many times within a

Mathematica session. Each installation creates a separate LinkObject.
Looking at the code of the external function ParLinSolveML() it can be

noticed the extensive check of the input data for consistency, e.g.

if (dimensions[0] != p+1) PrintErrorMessage(1);

if (dimensions[1] != n) PrintErrorMessage(1);

if (int_arr[0] > int_arr[1]) PrintErrorMessage(5);

Most important is, however, that C-XSC function ParLinSolve () returns also
an integer error code. All messages for inconsistent data and computational
error messages are passed to Mathematica analogously to the communication
error messages but by another function PrintErrorMessage (). Of course, the
different message strings are defined in separate :Evaluate: lines in the template
file ParLinSys.tm.

In order to demonstrate the computational error messages in action, we call
the function ParLinSolveTB with a large interval for the first interval parameter.
In[7] := ParLinSolveTB[2, 1, Ap, bp, {{1, 20}, {10, 10.5}}]

ParLinSolveTB::cond: Verification failed, system is probably ill

conditioned.
Out[7]= $Failed

The ParLinSolveTB: : cond error is triggered whenever the verification iteration
is not convergent and the fixed-point parametric iteration fails.

4.3 Web Interface for MathLink-Compatible Programs

Once provided, Mathematica connectivity to external interval libraries or prob-
lem-solving software opens up an array on new possibilities for the latter. A
webMathematica technology, that integrates Mathematica into a web server and
allows generating of dynamic web content, is utilized for providing dynamic web
access to the C-XSC interval linear solvers, see Fig. 2. Since this is not a subject
of this work, we refer to [8], [9] for more details. The important consequences and
benefits from such a dynamic web interface concern the development of frame-
work and platforms for distant interval learning and/or remote demonstrative
problem solving.

12 E. Popova

Interval Linear System Solver
webmpang by MathLink connection lo
a C-ASC Program Module
oy . P
TVRAT11.3, L.11, ERURTVALEI-1, GI1))
(Itervilio, B1]. TMARVAI[13. 3.80])
t ST ey 3
L]
results
(Interval[{-0,921628, 1.89153)], Imterval[(-0.842937, 1.26167)])
Contition Nusber: 2.81271
e MCTTENTE & e ey TP 3
LE— | ¥
"l] 138 N of [RIsE

Fig. 2. Screen-shot of a dynamic and interactive web interface for the C-XSC
interval system solver called from Mathematica.

5 Conclusion

It is a relatively simple matter to incorporate C-XSC routines into Mathematica
without any change in the original C-XSC external code. Instead a MathLink
-compatible C/C++ program should be developed, where MathLink functions
transmit to and back Mathematica expressions via fundamental C data types.
The incoming data should initialize new variables of data types specific for the
particular external interval environment and after calling the actual computa-
tions the computed results should be transformed into variables of fundamental
C data types that will be passed back to Mathematica. MathLink protocol allows
transparent communication of numerical data without conversion when commu-
nicating with external programs that run on the same computer or when the
computers are sufficiently compatible. By MathLink we use the C-XSC func-
tions in a way completely integrated into Mathematica taking advantage of the
good properties of both environments, as demonstrated above. We believe that
providing interoperability between the existing interval software will bring a de-
sired impact faster than some traditional approaches.

Interoperability between Interval Software 13

References

10.

11.

12.

13.

. Corliss, G.F., Kearfott, R.B., Nedialkov, N.; Pryce, J.D., Smith, S.: Inter-

val subroutine library mission. In Hertling, P., Hoffmann, C.M., Luther, W
Revol, N.; eds.: Reliable Implementation of Real Number Algorithms: The-
ory and Practice. Number 06021 in Dagstuhl Seminar Proceedings, Interna-
tionales Begegnungs- und Forschungszentrum fiir Informatik, Schloss Dagstuhl,
Germany (2006) <http://drops.dagstuhl.de/opus/volltexte/2006/712> [date of ci-
tation: 2008-02-01].

C-XSC library, downloads:

http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc_new.html,

solvers: http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc_software.html

Gayley, T.: A MathLink Tutorial. Wolfram Research, 2002.
http://library.wolfram.com/infocenter /TechNotes/174/

Hofschuster, W.: C-XSC: Highlights and new developments. In: Numerical Valida-
tion in Current Hardware Architectures. Number 08021 Dagstuhl Seminar, Inter-
nationales Begegnungs- und Forschungszentrum fiir Informatik, Schloss Dagstuhl,
Germany (2008) <http://kathrin.dagstuhl.de/08021/Materials2/>

Hofschuster, W., Kraemer, W.: C-XSC 2.0: A C++ Library for Extended Scien-
tific Computing. In Alt, R., Frommer, A., Kearfott, B., Luther, W. (eds.): Numer-
ical Software with Result Verification, Lecture Notes in Computer Science 2991,
Springer-Verlag, Heidelberg, pp. 15-35, 2004. Also appeared as Preprint BUW-
WRSWT 2003/5, Univ. Wuppertal, 2003.

Kreinovich, V.: Interval Computations website, Interval and Related Software.
http://www.cs.utep.edu/interval-comp /intsoft.html

Luther, W., Kramer, W.: Accurate Grid Computing, 12th GAMM-IMACS Int.
Symposium on Scientific Computing, Computer Arithmetic and Validated Numer-
ics (SCAN 2006), Duisburg, Sept. 26-29, 2006.

Popova, E.: Web-Accessible Tools for Interval Linear Systems. Proceedings in Ap-
plied Mathematics & Mechanics (PAMM) 5, issue 1, 2005, pp. 713-714.

Popova, E.: WebComputing Service Framework. Int. Journal Information Theories
& Applications 13(3) 2006, pp. 246—-254.

Popova, E.D., Kramer, W.: Parametric Fixed-Point Iteration Implemented in C-
XSC. Preprint BUW-WRSWT 2003/3, Universitdt Wuppertal, 2003. Software
download: http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc_software.htmlfplss
Wolfram Research, Inc.: MathLink Reference Guide, Version 2.2., Wolfram Re-
search Inc., Champaign, IL, 2003.

Wolfram Research, Inc.: MathLink for UNIX Developer Guide, Version 4, Revision
14, Wolfram Research Inc., Champaign, IL, December 15, 2004.

Wolfram Research Inc.: Mathematica, Version 5.2, WRI, Champaign, IL, 2005.

http://drops.dagstuhl.de/opus/volltexte/2006/712
http://www.math.uni-wuppertal.de/~xsc/xsc/cxsc_new.html
http://www.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html
http://library.wolfram.com/infocenter/TechNotes/174/
http://kathrin.dagstuhl.de/08021/Materials2/
http://www.cs.utep.edu/interval-comp/intsoft.html
http://www.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#plss

	On the Interoperability between Interval Software
	Evgenija D. Popova

