
The CoStLy C++ Class Library

Markus Neher
Universität Karlsruhe

Institut für Angewandte und Numerische Mathematik
76128 Karlsruhe, Germany

April 21, 2008

1 Introduction

CoStLy (Complex Standard Functions Library) has been developed as a
C++ class library for the validated computation of function values and of
ranges of the complex standard functions in

SF = {exp, ln, arg, sqr, sqrt, power, pow, root, cos, sin, tan, cot, cosh,
sinh, tanh, coth, acos, asin, atan, acot, acosh, asinh, atanh, acoth},

where power(z, n) is the power function for integer exponents, pow(z, p) is
the power function for real or complex exponents, and root(z, n) denotes the
nth root function.

An interval library for the real standard functions in SF is required by
CoStLy, for evaluating the compositions of real functions that make up the
real and imaginary parts of the complex functions in SF . CoStLy has been
programmed such that either C-XSC [3, 4] or filib++ [6, 7] can be used for
this purpose. Today, CoStLy it is also integrated in the C-XSC library.

CoStLy is distributed under the terms of the GNU General Public Li-
cense. The software is currently available at the following sites:

http://www.xsc.de

http://iamlasun8.mathematik.uni-karlsruhe.de/˜ae16/CoStLy.html

2 Notation and Preliminary Remarks

2.1 Rectangular Complex Interval Arithmetic

The set of compact real intervals is defined by

IR = {x = [x, x] | x, x ∈ R, x ≤ x }.

1

Dagstuhl Seminar Proceedings 08021
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl.de/opus/volltexte/2008/1449

A real number x is identified with a point interval x = [x, x]. Throughout
this paper, intervals are denoted by boldface.

A rectangular complex interval z is defined by a pair of two real intervals
x and y:

z = x+ ıy, z = {z = x+ ıy | x ∈ x, y ∈ y}.

The set of all complex rectangular intervals is denoted by IC. For a bounded
subset M of C, the interval hull 2M of M is the smallest rectangular interval
that contains M . We have

2M = [inf
z∈M

Re z, sup
z∈M

Re z] + ı[inf
z∈M

Im z, sup
z∈M

Im z].

2.2 Inclusion Functions

For D ⊆ C, the range {f(z) : z ∈ D} of a function f : D −→ C is denoted
by Rg(f,D). An inclusion function F of a given function f : C → C is an
interval function F : IC → IC that encloses the range of f on all intervals
z ⊆ D:

F (z) ⊇ Rg(f, z) for all z ⊆ D.

If F (z) = 2Rg(f, z) holds for all z ⊆ D, then F is called optimal.
The real and imaginary parts of any function in SF can be expressed

as compositions of real standard functions. Optimal inclusion functions are
obtained by determining the extremal values of these compositions [1, 2, 5,
8].

2.3 The CoStLy Library Functions

The design of inclusion functions for the functions in SF has been guided
by the paradigm that range bounds must be valid in any circumstance. For
a single-valued complex function f , its inclusion function F : IC→ IC, and
some given rectangular complex interval z, validity means only that F (z)
must contain the set {f(z)|z ∈ z}. The functions exp, sqr, power, cos,
sin, tan, cot, cosh, sinh, tanh, and coth are single-valued and analytic on
their respective domain. CoStLy contains optimal inclusion functions for
these functions (where optimal refers to the accuracy of the implemented
algorithms, if performed in exact arithmetic).

The meaning of a valid enclosure is less obvious for a multi-valued func-
tion. For example, the definition of

√
−1 depends very much on the context

of the computation. Possible values include +ı, −ı, {+ı,−ı}, ı · [−1, 1], or
the empty set. Three types of inclusion functions have been implemented in
CoStLy to accommodate varied demands.

Each multi-valued function f in SF has analytic branches on appropriate
subsets of the complex plane. The CoStLy library contains an inclusion
function Fp for the single-valued principal branch of f . Usually, Fp is defined

2

on a subset of IC. If z is not in the domain of definition of f , the computation
is aborted throwing an exception and issuing a warning message.

Inclusion functions that are defined for all z ∈ IC, for which at least
one branch of f is bounded on z, are denoted by Fc. Depending on the
location of z in the complex plane, Fc(z) returns function values belonging
to different branches of f . As an immediate consequence, there are regions
in C where inclusion isotonicity is lost.

Where applicable, an inclusion function Fa enclosing all function values
of f has also been implemented. For example, it is available for roots. For
some multi-valued complex functions, however, the set of all function values
is unbounded in general. In this case, no such inclusion function is available.

We refer to [8] for a detailed description of all inclusion functions con-
tained in CoStLy. The implementation is also extensively commented in the
CoStLy source code.

3 Numerical Examples

If performed in exact arithmetic, the inclusion functions of type Fp compute
optimal range bounds. For the sake of accuracy, a major effort has been
made in the implementation of the algorithms in floating point arithmetic
to eliminate all intermediate expressions subject to numerical overflow, un-
derflow, or cancellation. The CoStLy library has been extensively tested for
arguments with absolute values ranging from 1.0E-300 to 1.0E+300. For
most arguments, the computed bounds for function values are highly accu-
rate. In many test cases, the observed precision of the result was about 50
correct bits (out of the 53 bits available in IEEE 754 floating point arith-
metic) for point arguments.

Example 1: Function Values for Point Intervals

In Table 1, we list results for point intervals for selected library functions.
The following arguments were chosen:

z1 = 1.0−300 + ı 1.0−300, z2 = 1.0300 + ı 1.0.

Here and in the following, a short notation for numbers is used. a.bc means
a.b× 10c.

In the execution of CoStLy, the arguments were entered as real con-
stants, so that their IEEE 754 best approximations were actually used in
the computation. In the second and the fourth column of Table 1, the ap-
proximate principal value of each function at the respective argument is
given. In columns three and five, a pair of positive numbers denotes the
number of correct bits for the real/imaginary part of the computed function

3

f f(z1) Correct bits f(z2) Correct bits

sqrt 1.1−150 + ı 4.6−151 51.0 / 50.9 1.0150 + ı 5.0−151 51.7 / 51.7
ln −6.92 + ı 7.9−1 49.9 / 48.7 6.92 + ı 1.0−300 49.9 / 52.4

asin 1.0−300 + ı 1.0−300 51.0 / 50.2 1.6 + ı 6.92 52.6 / 48.6
acos 1.6− ı 1.0−300 52.6 / 50.2 1.0−300− ı 6.92 49.9 / 48.6

atan 1.0−300 + ı 1.0−300 51.4 / 49.5 1.6 + ı 0.0 52.6 / %
acot 1.6− ı 1.0−300 52.6 / 49.5 1.0−300 + ı 0.0 50.8 / %

Table 1: Function values for selected inclusion functions for point intervals.

value bounds. % is used if the IEEE 754 best approximation of the func-
tion value is zero. In this case, the relative accuracy of the function value
enclosure is undefined.

For brevity, we show only results for one argument with a very small
absolute value and one argument with a very large absolute value. For
arguments with absolute values in between, similar accuracy of the computed
function values was observed in many test cases.

Example 2: Range Bounds for Interval Arguments

Range bounds for

z3 = [0.1, 2.1] + ı[0.1, 2.1], z4 = [1.020, 9.020] + ı [1.020, 9.020].

are shown in Table 2 for selected inclusion functions. For clarity, the range
bounds are displayed rounded. As in Example 1, the observed accuracy of
the computed bounds was about 50 bits with respect to the optimal bounds
in exact arithmetic.

Example 3: Root Functions

For complex roots of integral orders, an inclusion function of type Fa is
included in CoStLy. It is implemented as a set function root all(z, n), which
computes a list of n intervals that contain all n-th roots of z:

root all(z, n) ⊇ {w : wn = z, z ∈ z}.

For some interval z ⊂ C − {0} with sufficiently small width, the optimal
interval enclosure for all n-th roots consists of n distinct intervals. While
these could be computed (in exact arithmetic), such a procedure would
be computationally expensive, especially for large values of n. We use

4

f F (z3) F (z4)

sqrt [3.4−1, 1.6] + ı [3.4−2, 1.1] [1.010, 3.310] + ı [1.69, 2.110]

ln [−2.0, 1.1] + ı [4.7−2, 1.6] [4.61, 4.91] + ı [1.1−1, 1.5]

tan [−5.0, 5.0] + ı [1.0−1, 1.11] [−1.2−308, 1.2−308] + ı [9.9−1, 1.1]

cot [−5.8−1, 5.0] + ı [−5.1,−1.0−1] [−1.2−308, 1.2−308] + ı [−1.1,−9.9−1]

asin [4.2−2, 1.6] + ı [1.0−1, 1.8] [1.1−1, 1.5] + ı [4.71, 5.01]

acos [5.4−2, 1.6] + ı [−1.8,−1.0−1] [1.1−1, 1.5] + ı [−5.01,−4.71]

atan [1.0−1, 1.6] + ı [1.8−2, 1.6] [1.5, 1.6] + ı [1.2−22, 5.1−21]

Table 2: Range bounds for interval arguments.

the following strategy instead: z is enclosed in the polar interval (r,φ) =
([r, r], [ϕ,ϕ]) = (abs(z), arg z). All n-th roots of z are then contained in the
union ∪n−1

k=0(rk,φk), where

rk = [r(1/n), r(1/n)], φk = (φ+ 2kπ)/n, k = 0, 1, . . . , n− 1.

Finally, (rk,φk) is enclosed in a rectangular intervalwk, such that root all(z, n) =
∪n−1

k=0wk (Figure 1).

Figure 1: Inclusion sets for root all(z, 3) for two different intervals z.

z

w0

w1

w2

z

w0w1

w2

References

[1] K. Braune. Hochgenaue Standardfunktionen für reelle und komplexe
Punkte und Intervalle in beliebigen Gleitpunktrastern. PhD thesis, Uni-

5

versität Karlsruhe, 1987.

[2] K. Braune and W. Krämer. High-accuracy standard functions for real
and complex intervals. In E. Kaucher, U. Kulisch, and Ch. Ullrich,
editors, Computerarithmetic: Scientific Computation and Programming
Languages, pages 81–114. Teubner, Stuttgart, 1987.

[3] W. Hofschuster and W. Krämer. C-XSC 2.0: A C++ library for
extended scientific computing. In R. Alt, A. Frommer, R. B. Kear-
fott, and W. Luther, editors, Numerical Software with Result Verifica-
tion, Springer Lecture Notes in Computer Science 2991, pages 15–35.
Springer, Berlin, 2004.

[4] R. Klatte, U. Kulisch, Ch. Lawo, M. Rauch, and A. Wiethoff. C-XSC: A
C++ Class Library for Extended Scientific Computing. Springer, Berlin,
1993.

[5] W. Krämer. Inverse Standardfunktionen für reelle und komplexe Inter-
vallargumente mit a priori Fehlerabschätzungen für beliebige Datenfor-
mate. PhD thesis, Universität Karlsruhe, 1987.

[6] M. Lerch, G. Tischler, and J. Wolff von Gudenberg. filib++ - Inter-
val library specification and reference manual. Technical Report 279,
Universität Würzburg, 2001.

[7] M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster, and
W. Krämer. The interval library filib++ 2.0. Design, features and sample
programs. Preprint 2001/4, Universität Wuppertal, Wissenschaftliches
Rechnen/Softwaretechnologie, 2001.

[8] M. Neher. Complex standard functions and their implementation in the
CoStLy library. ACM TOMS, 33:20–46, 2007.

6

