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Abstract. A so called staggered precision arithmetic is a special kind of a multi-
ple precision arithmetic based on the underlying floating point data format (typi-
cally IEEE double format) and fast floating point operations as well as exact dot
product computations. Due to floating point limitations it is not an arbitrary preci-
sion arithmetic. However, it typically allows computations using several hundred
mantissa digits.
A set of new modified staggered arithmetics for real and complex data as well
as for real interval and complex interval data with very wide exponent range is
presented. Some applications show the increased accuracy of computed results
compared to ordinary staggered interval computations. The very wide exponent
range of the new arithmetic operations allows computations far beyond the IEEE
data formats.
The new arithmetics would be extremly fast, if an exact dot product was available
in hardware (the fused accumulate and add instruction is only one step in this
direction).
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wide exponent range, reliable numerical computations, complex interval functions
AMS classification:65G20, 65G30, 65Y99, 37M99, 30-04

1 Introduction

Staggered correction arithmetics [1, 20, 21, 32, 28, 33, 4, 6] are based on exact dot prod-
uct computations of floating point vectors [10]. (Please refer to [28] for some historical
remarks on the implicit/explicit usage of staggered numbers [31, 9, 1, 18, 26, 27, 21]). A
staggered correction number is given as the (exact) sum of the components of a list of
floating point numbers (components of a floating point vector). Thus the maximum pre-
cision of arithmetical operations depends strongly on the exponent range of the floating-
point screen. Staggered correction numbers close to the underflow range are typically
not as accurate as numbers with larger exponents. For the IEEE double precision for-
mat [3] the range for positive numbers is about 4.9E-324 to 1.7E+308. Thus, up to 630
(decimal) mantissa digits may be handled using staggered precision variables.
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To get high accuracy in numerical calculations, (intermediate) underflow and/or
overflow situations must be avoided, i.e. an appropriate scaling of the operands of arith-
metic operations is necessary. To this end we represent our modified staggered number
as a pair(e, x). We refer to such pairs as extended staggered numbers. The integere
denotes an exponent with respect to the base 2 andx denotes an ordinary staggered
number (i. e. a vector of floating point numbers). The valuev of the modified staggered
variable(e, x) is v = (e, x) := 2e· sum(x). Here, sum(x) means the exact sum of
all floating point components of the staggered variablex. The pair-representation al-
lows the handling of very small and very large numbers: 1.3E-487564, 4.1E9999999,
or numbers with even larger exponents may be used in numerical calculations. We are
aware of several test cases, where multiple-precision calculations using computer al-
gebra packages like Maple and/or Mathematica fail, whereas our extended staggered
software returns the expected results, see e.g. Subsection 5.2.

Our new package [6] offers real interval and complex interval arithmetic opera-
tions and also a rather complete set of mathematical functions for the new data types
lx_interval (extended real staggered intervals) andlx_cinterval (extended
complex staggered intervals). The trigonometric functions, the inverse trigonometric
functions, the hyperbolic and the inverse hyperbolic functions as well as several other
functions are provided for (rectangular) extended complex staggered intervals.

Some details of the arithmetic operations as well as some details on the imple-
mentation of elementary transcendental mathematical functions will be discussed in
this paper. Applications (logistic equation, limit calculations, complex Interval New-
ton method) will be presented to demonstrate the ease of use and to show the superior
behavior of the new arithmetics over the more traditional one. We will also discuss
hardware requirements needed to get the staggered arithmetic working extremely fast.

The source code of the new package will be distributed under the GNU general
public license. Up to now, it is an independent supplement to our C-XSC library. The
source code will be made available online, see
http://www.math.uni-wuppertal.de/˜xsc/xsc/cxsc software.html

2 (Extended) Staggered Data Types

Real, complex, real interval and complex interval staggered data types are realized as
arrays of floating point numbers [20, 28, 6]. E.g. a real staggered variable is represented
by an array of floating point values. The (exact) sum of these floating point numbers
is the numerical value of the staggered number. The implementation of arithmetic op-
erations for staggered numbers uses extensively the possibility to compute the value
(the exact sum of its floating point components) of a staggered number error free. But
exact summation is a special case of exact dot product computations. As we will see in
a moment, this operation is also extensively used to implement staggered operations.

Some general remarks are appropriate: Accumulation of numbers is the most sen-
sitive operation in floating point arithmetic [10]. By this operation scalar products of
floating point vectors, matrix products etc. can be computed without any error in in-
finite precision arithmetic, making an error analysis for those operations superfluous.
Many algorithms applying this operation systematically have been developed. For oth-
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ers the limits of applicability are extended by using this additional operation. Further-
more, the exact dot product speeds up the convergence of iterative methods (cited from
[23, 24]). XSC languages (e.g. C-XSC [17, 16]) provide exact dot products via software
simulation (hardware support should increase the computation speed by 2 orders of
magnitude, again, see [24]). Computingx · y for floating point vectorsx, andy in C-
XSC results in the best possible floating point result (exact mathematical result rounded
to the nearest floating point number; correctly rounded result). Using the C-XSC data
typedotprecision (so called long accumulator), the user can even store the result
of dot products of floating point vectors with even quintillions of components without
any error.

Let us introduce staggered numbers in a more formal way [20, 28, 6]. An ordinary
staggered interval numberx is given by

x :=
n−1
∑

i=1

xi + [xn, xn+1] =
n−1
∑

i=1

xi + X.

Here, allxi are floating-point numbers. The lower boundx of x is given by

x :=

n−1
∑

i=1

xi + xn

and the upper boundx by

x :=

n−1
∑

i=1

xi + xn+1.

Thus, forn equal 1 the staggered intervalx collapses to the ordinary intervalX =
[x1, x2]. Because different staggered numbers usually have different numbers of floating
point components, we indicate their individual lengths bynx, ny and so on. For the
staggered numberx from above, its lengthnx is defined to be equaln. An extended
real staggered interval (with lengthn) is given by

v = (e, x) =

(

e,

n−1
∑

i=1

xi + [xn, xn+1]

)

:= 2e ·
n−1
∑

i=1

xi + [xn, xn+1].

To be more readable we avoid the explicit use of this representation whenever possible.
Instead we just give some hints, how (automatic) scalings are done.

In the following subsections we describe the realization of arithmetic operations
for (extended) staggered numbersx andy [28, 6]. The resulting (extended) staggered
number is denoted byz. To simplify our presentation we assume that both operands
x, y are aleady scaled properly. To simplify the presentation we omit the explicit use
of the scaling factor introduced for the extended staggered data types [6]. Only in the
case of division we add some remarks on an appropriate scaling of numerator and/or
denominator.

The operands of an arithmetic operation may have different staggered lengthnx,
ny, respectively. The staggered lengthnz of the resultz can be prescribed by the user
of the package using the global variablestagprec . The resulting staggered (interval)
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numberz has to be computed in such a way that it contains all corresponding point
results for arbitrary point arguments taken from the (staggered interval) operandsx and
y.

2.1 Addition/subtraction and multiplication

The (exact) result of these operations is always representable using two dotprecision
variables (lower and upper bound are computable as exact scalar products of floating
point vectors). Errors (overestimation) may only occur due to underflow situations when
the content of the dotprecision variables is converted back to an array of floating point
numbers (i.e. to a staggered interval number).

Let us consider the multiplicationx ∗ y of two real staggered numbersx =
∑

xi

andy =
∑

yi, xi, yi being floating point numbers. We have to computex ∗ y=
∑

xi ∗
∑

yi. Thus, the exact result can be written in the equivalent form
∑∑

xi · yj, i.e.
as a dot product of lengthnx · ny of two vectors with floating point components
∈ {x1, x2, . . . xnx

, y1, y2, . . . yny
}. This real number can be stored error free in a dot-

precision variable. To get the final result, this intermediate (exact) result is to be stored
as a sum of floating point values (i.e. as a staggered number). Please note that dotpreci-
sion values may or may not be representable as a sum of floating point numbers. This
is due to the fact that a dotprecision value may have a much larger or much smaller
exponent than ordinary floating point numbers allow. Thus, the resulting staggered rep-
resentationz of the productx ∗ y is in general only an approximation to the exact
intermediate value stored during the computation of the dot product. The accuracy of
z is limited by the exponent range of the underlying floating point number system. Of
course, when implementing staggered interval operations the errors introduced when
going from an exact intermediate result to a staggered representation has to be taken
into account. This can be done easily using directed rounded conversions whenever
the content of a dotprecision variable has to be converted to an ordinary floating point
number.

2.2 Division

Up to now, we are able to compute bounds for the results of our operations in two
dotprecision variables and then round these to an interval staggered format. This can no
longer be carried out conveniently in the case of thedivision of two staggered correction

intervalsx =
nx
∑

i=1

xi+X andy =
ny
∑

i=1

yi+Y . Rather, we will apply an iterative algorithm

computing successively thenz real componentszi of the quotientx/y.
In order to compute this approximation

∑nz

i=1 zi, we start withz1 = 2m(x)2/ 2m(y);
herem(a) represents a point selected ina, e.g. the midpoint and2 is the rounding to
the floating point screenS. Now, we proceed inductively: if we have an approximation
∑k

i=1 zi, we can compute a next summandzk+1 by use of

zk+1 = 2

(

nx
∑

i=1

xi −
ny
∑

i=1

k
∑

j=1

yizj

)

2/ 2(m(y)), (1)
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where the numerator is computed exactly using a dotprecision variable and is rounded
only once toS. The division is performed in ordinary floating point arithmetic.

As in the previous operations, this iteration guarantees that thezi do not overlap,
since the defect (i.e. the numerator in (1)) of each approximation

∑k

i=1 zi is computed
with only one rounding.

Now, the interval componentZ of the resultz may be computed as follows:

Z = 3

(

nx
∑

i=1

xi −
ny
∑

i=1

nz
∑

j=1

yizj + X −
nz
∑

j=1

zjY
)

3/ 3(y), (2)

where3 is the rounding to an enclosing interval inIS.
It is not difficult to see thatz =

∑nz

i=1 zi + Z as computed from (1) and (2) is a
superset of the exact range{ξ/η | ξ ∈ x, η ∈ y}; in fact, for allα ∈ X, β ∈ Y we have
the identity:

nx
∑

i=1

xi + α

ny
∑

i=1

yi + β

=

nz
∑

j=1

zi +

nx
∑

i=1

xi + α −
ny
∑

i=1

nz
∑

j=1

yizj −
nz
∑

j=1

zjβ

ny
∑

i=1

yi + β

.

An interval evaluation of this expression forα ∈ X andβ ∈ Y shows immediately that
the exact range ofx/y is contained in

∑nz

j=1 zj + Z, which is computed using (1) and
(2).

Now, it is clear how to get the resultz for the division of two staggered interval
variablesx/y by the following three computation steps:

1. z1 := m(x) 2/ m(y)
2. compute real partszk+1 from (1) fork = 0, . . . , nz − 1
3. compute interval part Z according to (2)

(3)

At this point we will discuss a proper scaling of the numeratorx and/or denominator
y (see [6] for more details). Let us assume for a moment thatx andy are both very close
to the overflow threshold (about 1e300 for double numbers). Then the resultz of the
division would be close to1. Thus, the exponent of the leading term of the staggered
numberz would be zero. In this case only about the first 300 decimal digits of the
exact result can be stored in an array of floating point numbers. Digits to the right of
this leading part can not be accessed by floating point numbers due to underflow. Thus,
even if numerator and denominator are point intervals we can not expect more than
about 320 correct digits of the staggered result.

But we can do better. The general procedure is: Scale the numerator to be close to
the overflow threshold maxreal and scale the denominator to be close to the square root
of maxreal (about 1E150 for double numbers). Denote the scaled numbers byx andy,
respectively. If so, the quotient of the scaled numbers will also be close to the square
root of maxreal, i.e. its exponent will be close to 150. In this way we obviously can
convert about 300 + 150, i.e. about 450 leading digits to floating point numbers. The
correct scale factor of the result can be computed easily by integer addition/subtraction
from the scale factors used to scale the numerator and denominator.
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An algorithm for thesquare root can be obtained analogously as in the case of the
division. We compute iteratively as follows thezi, i = 1, . . . , nz of the approximation
part:

z1 =
√

2(x)

zk+1 = 2

(

nx
∑

i=1

xi −
k
∑

i,j=1

zizj

)

2/ (2z1).
(4)

This guarantees again that thezi do not overlap since in the numerator of (4) the defect
of the approximation

∑k

i=1 zi is computed with one rounding only. Now, the interval
partZ is computed by use of

Z =

3

( nx
∑

i=1

xi −
nz
∑

i,j=1

zizj + X
)

√

3(x) + 3

( nz
∑

i=1

zi

)

. (5)

As in the case of the division, it is easy to see that
∑nz

i=1 zi + Z as computed from (4)
and (5) is a superset of the exact range{

√
ξ | ξ ∈ x}; in fact, for allγ ∈ X we have the

identity:

√

√

√

√

nx
∑

i=1

xi + γ =

nz
∑

j=1

zj +

nx
∑

i=1

xi + γ −
nz
∑

i,j=1

zizj

√

nx
∑

i=1

xi + γ +
nz
∑

j=1

zj

.

Now, we see that the square rootz of a staggered intervalx can be computed by the
following three steps very similar to the case of division:

1. z1 :=
√

2x
2. compute real partszk+1 from (4) fork = 0, . . . , nz − 1
3. compute interval part Z according to (5)

(6)

Before computing the square root as described above, the argument is scaled in the
following way: Multiply the original argument by an even power of two, say by22n,
such that the scaled argumentx comes close to maxreal. The correct scaling factor of
the computed result then is2n. For a point interval argument we may expect up to about
450 correct digits.

3 Some Transcendental Elementary Functions

In this section we first give an overview to the implementation of the exponential func-
tion exp(x). The implementation of the natural logaritmln(x) is described in more
detail.
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3.1 Exponential function

We only give an overview how the exponential function is realized [30]. The reader may
refer to the source code to see the details.

The domain of the exponential using ordinary staggered intervals is only|x| <
709.7, whereas in case of the extended staggered interval data type is|x| < 1488521882.0.

To implement the exponential we use the relationex ≡
(

ex·2−n
)2n

. More pre-

cisely we do the following:

– Choosen such that |x| · 2−n ∼ 10−9

– Perform a Taylor approximation: ex·2−n ≈ TN(x · 2−n)

– Take into account absolute approximation error:ex·2−n ⊂ U(x, N)

– Perform a result adaptation:ex ⊂ U(x, N)2
n

:
for (int k=1; k<=n; k++) U = sqr(U);

3.2 The Natural Logarithm

Let us now present the implementation of the natural logarithmln(x) in more details.
There are two cases to be considered:X is close to the zerox0 = 1 of the logarithm

or x is sufficiently far away from this zero.
By calculating the logarithm function near the zerox0 = 1, the problem arises that

due to cancellation effects the rather small function values can only be included with a
few correct decimal digits. To avoid this problem, we introduce the auxiliary function
ln1p(t) := ln(1 + t) .

lx interval Lnp1(const lx interval& x)

is implemented in order to include the function valuesln(1 + x), x ≈ 0, of type
lx interval with sufficient accuracy. The algorithm is based on the well-known
series expansion

ln(1 + x) = ζ ·
∞
∑

k=0

2

2k + 1
· (ζ2)k, ζ :=

x

2 + x
, x > −1, |ζ| < 1. (7)

With the definitions P (ζ) :=

∞
∑

k=0

2

2k + 1
·(ζ2)k, PN (ζ) :=

N
∑

k=0

2

2k + 1
·(ζ2)k, N ≥ 0

ln(1 + x) is approximated by

ln(1 + x) ≈ ζ · PN (ζ), N ≥ 0. (8)

The absolute approximation errorδ is defined by

δ := |P (ζ) − PN (ζ)| =

∞
∑

k=N+1

2

2k + 1
· (ζ2)k =

∞
∑

n=0

2

2n + 2N + 3
· (ζ2)n+N+1

= (ζ2)N+1 ·
∞
∑

n=0

2

2n + 2N + 3
· (ζ2)n ≤ (ζ2)N+1 · 2

2N + 3
· 1

1 − ζ2
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and the last upper bound can further be estimated by

δ := |P (ζ) − PN (ζ)| ≤ (ζ2)N+1

N + 1
, (9)

using the following inequalities:

2

2N + 3
· 1

1 − ζ2
<

1

N + 1
⇐⇒ ζ2 <

1

2N + 3
.

The last one is guaranteed in all practical cases, because with e.g.,|x| ∼ 10−7 also|ζ| ∼
10−7 is valid. As we shall see, the maximum polynomial degree is aboutNmax = 42,
so that the upper bound1/(2N + 3) cannot become smaller than1/(2Nmax + 3) =
1.14 . . . · 10−2, i.e.1/(2N + 3) is surely greater thanζ2 ∼ 10−14.

We now consider an intervalxxx with1 |xxx| ≪ 1. UsingR := |xxx/(2 + xxx)| = |ζ|, the
absolute errorδ is bounded by∆

δ = |P (ζ) − PN (ζ)| ≤ R2N+2

N + 1
=: ∆, ∀ζ ∈ ζ :=

xxx

2 + xxx
. (10)

Concerning the approximation in (8) the next step is to determine an appropriate poly-
nomial degreeN . For |ζ| ≪ 1 it holdsP (ζ) ≈ PN (ζ) ≈ 2 and with a given precision
p := stagprec the absolute approximation error should be of order21−53·p. Thus,
together with (10) we require

R2N+2

N + 1
= 21−53·p ⇐⇒ R2N+2 = (N + 1) · 21−53·p. (11)

For a facile calculation ofN , the right-hand side in (11) must be simplified futhermore.
Together withxi = li part(x); ex = expo gr(xi) we have

|xxx| ≈ 2ex+expo(xxx) = 2m, i.e. m := ex + expo(xxx).

Furthermore it holds: R ≈ |xxx|/2 = 2m−1 with the consequence

2(m−1)·(2N+2) = (N + 1) · 21−53·p,

and due to(N + 1) = 2log2(N+1) it follows

(m − 1) · (2N + 2) = log2(N + 1) + 1 − 53 · p

2N + 2 =
53 · p − 1 − log2(N + 1)

1 − m
, m 6= 1.

Caused by the requirement|xxx| ≪ 1, the conditionm 6= 1 is surely complied. For the
range0 ≤ N ≤ 42 it holds0 ≤ log2(N + 1) < 5.43, so that, withp ≥ 2,

53 · p − 1 − log2(N + 1) ≈ 53 · p − 4

1 |xxx| := max
r∈xxx

{|r|}
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is a good approximation for calculatingN . So we get

2N + 2 =
53 · p − 4

1 − m
⇐⇒ N =

53 · p − 4

2 · (1 − m)
− 1.

To realizeN ≥ 0, the polynomial degreeN is additionally increased by 1, and thus, for
calculatingN , we get the quite simple formula:

N =
53 · p − 4

2 · (1 − m)
, m := ex + expo(xxx), N ≥ 0. (12)

The C-XSC functionexpo(xxx) returns the exponent of the scaling factor of the extended
staggered quantity of typelx interval .

With a sufficient small|xxx| resp. with a sufficient great value−m the evaluation of
2 · (1 −m) in (12) will generate an overflow, which in case of2 · (1 −m) > 53 · p− 4
can be avoided by settingN = 0.

Since the evaluation of2 · (1 − m) can possibly produce an overflow, the last con-
dition 2 · (1 − m) > 53 · p − 4 must further be transformed. It holds

2 · (1 − m) > 53 · p − 4 ⇐⇒ 2m < 6 − 53 · p resp.

2 · (ex + expo(xxx)) < 6 − 53 · p ⇐⇒ expo(xxx) < 3 − 53 · p
2

− ex.

The last inequality is valid, if

expo(xxx) < 3 − 27 · p − ex. (13)

Thus, if (13) is realized,N is set to zero, and otherwiseN is calculated by (12). In
either case an overflow is avoided.

The next step is to calculate the upper bound∆ of the absolute approximation error
in (10), where∆ is defined as follows

∆ =







R2, N = 0,

R2N+2

N + 1
, N ≥ 1.

(14)

The functionLnp1(...) ist implemented by:

lx_interval Lnp1(const lx_interval &x) throw()
// Calculating an inclusion of ln(1+x) for
// not too wide intervals, |x| <= 1e-7;
{

lx_interval res(0),z2,zeta,Ri,Two;
l_interval xli;
int N,ex,p;
real m,expox;

p = stagprec;
xli = li_part(x);
ex = expo_gr(xli);
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i f (ex>-100000) // x <> 0
{

expox = expo(x);
if (expox < 3-27 * p-ex) N = 0;
else
{

m = ex + expox; // m = ex + expo(x);
N = (int) _double( (53 * p-4)/(2 * (1-m)) );

}
// N: Polynomial degree, 0<=N<=42;
zeta = x / (2+x);
Two = lx_interval(2);
Ri = lx_interval( Sup(abs(zeta)) );
Ri = sqr(Ri);
if (N==0)

res = Two;
else // N >= 1:
{

z2 = sqr(zeta); // z2 = zetaˆ2
// Evaluating the polynomial:
res = Two / (2 * N+1); // res = a_(N)
for (int i=N-1; i>=0; --i)

res = res * z2 + Two/(2 * i+1);
// Calculating the absolute approximation error:
Ri = power(Ri,N+1)/(N+1);

}
// Implementing the approximation error:
res += lx_interval(lx_real(0),Sup(Ri));
res * = zeta;

} // x <> 0;

return res;
} // Lnp1(...)

Remarks:

1. Please note that due to the definition of the absolute approximation errorδ in (9),
the addition of its upper bound2 ∆ has to be donebeforethe multiplication withζ.

2. Due toPN (ζ) < P (ζ) the absolute approximation error is not included by
lx interval(-Sup(Ri),+Sup(Ri)) ,but, coupled with a more less interval
inflation, bylx interval(lx real(0),Sup(Ri)) instead.

With the help of theLnp1 function the logarithm function

lx interval ln(const lx interval &x);

2 in the source code:∆ := Sup(Ri) .
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can now be implemented. In case ofx ≈ 1, i.e. |x − 1| ≤ 10−7, ln(x) is included by
ln(x) ⊆ Lnp1 (x 3− 1) and in case of|x − 1| > 10−7 the following identity is used

ln(x) = ln
(

(x · 2−n) · 2n
)

, x ∈ R, n ∈ Z,

= ln(t) + n · ln(2); t := x · 2−n ∈ R.

Concerning the first reduced argumentt := x · 2−n, n ∈ Z is calculated to realize
t ≈ 1 as well as possible, in order to evaluateln(t) with an accuracy as high as possible
by using functionLnp1() : ln(t) = Lnp1 (t − 1). Please keep in mind that the
multiplication in t = x · 2−n can be calculated error-free and quite effectively in the
classlx_interval .

For a further improvement oft ≈ 1 we use [30]

ln(t) = 2k · ln
(

2k√
t
)

, with lim
k→∞

2k√
t = 1.

Thus, for a sufficient largek ∈ N, the 2nd reduced argumentu := 2k√
t lies sufficiently

close to 1. However, for e.g.k = 22, the calculation ofu, using the2k-th root function,
is quite expensive. A much more efficient method is to evaluate the loop

u = t;
for (int j=1; j<=22; j++)

u = sqrt(u);

where the last valueu is a quite good approximation of2
k√

t ≈ u. For the calculation
of k, the exponentm of x = M · 2m, 0.5 ≤ M < 1 has to be specified first.

Now choosingn := m, we gett = M , and, definingt := 1−ε, it holds0 < ε ≤ 0.5
and we get the quite good approximation

u =
2k√

t = 2k√
1 − ε ≈ 1 − ε

2k
.

For an efffective evaluation ofln(u) ≈ ln(1 − ε/2k) we require

ε

2k
≤ 10−6 ⇐⇒ ε ≤ 2k · 10−6

⇐⇒ k ≥ ln(ε) + 6 · ln(10)

ln(2)
.

In case ofε ≪ 1, the above fraction becomes negative andk = 0 is set, i.e., the second
argument reduction will fall away. In case ofk ≥ 1 it holds

ln(x) = n · ln(2) + 2k · ln(u), t = x · 2−n, u =
2k√

t, k = 1, 2, 3, . . . (15)

andln(u) = ln(1 + (u − 1)). In order to includeln(x), the right-hand side of (15) has
to be evaluated by using intervals:

ln(x) ∈ n 3· < ln(2)> 3+ 2k
3· Lnp1 (u 3− 1), ∀x ∈ x .
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< ln(2) > denotes a guaranteed enclosure ofln(2) in high accuracy. It is predefined
as a C-XSC staggered interval constantLn2_lx_interval() . u is the result of the
abovefor loop performed by an interval evaluation, and before this loopt ∈ R has to
be substituted byx 3· 2−n. The multiplication with2k can be realized effectively and
error-free by use of the functiontimes2pown(...) .

4 Complex Staggered (Interval) Operations and Complex
Elementary Transcendental Functions

Extended complex staggered (interval) numbers are formed as pairs of two real ex-
tended staggered (interval) numbers in an obvious way (real and imaginary part, respec-
tively). An extended complex staggered interval represents a rectangle in the complex
plane with sides parallel to the axes. All basic operations as well as a large set of ele-
mentary transcendental functions are available for the new extended complex staggered
interval data type [6]. More about complex interval functions may be found in [11, 12,
5, 7, 29].

4.1 Remark on Complex Division

By considering complex division we demonstrate the gain in accuracy when replacing
the ordinary staggered arithmetic by the new extended staggered arithmeic. We restrict
ourselves to the evaluation of the real part formula of a complex division. With

x= Rex + i Imx
y= Rey + i Imy

we have to compute

Re(x/y)= (Rex * Rey+Imx * Imy)/(Rey * Rey + Imy * Imy).

We perform this computation using ordinary staggered intervals and using extended
staggered intervals.

In the following code snippetl_interval variables are ordinary staggered inter-
val numbers:

stagprec= 30;

l_interval Rex, Imx, Rey, Imy, q; //ordinary!
Rex= 1e150; Imx= 1e150; //x= 1e150 + 1e150 i
Rey= 1e-150; Imy=1e-150; //y= 1e-150 + 1e-150 i

q= (Rex * Rey + Imx * Imy) / (Rey * Rey+Imy * Imy); //Re(x/y)

cout << "Re(x/y) ) = " << q << endl;
cout << RelDiam(q) << endl;

Output:
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Re(x/y) ) = [9.999999999999999745402366E+299,
9.999999999999999745402415E+299]

RelDiam(q): 4.94...e-24

Let us now perform the same computation using extended staggered intervals:

lx_interval Rex, Imx, Rey, Imy, q; //extended!
Rex= 1e150; Imx= 1e150;
Rey= 1e-150; Imy= 1e-150;

q= (Rex * Rey + Imx * Imy) / (Rey * Rey+Imy * Imy);

cout << RelDiam(q) << endl;

Output:
RelDiam(q): {-487, [ 1.1491393399, 1.1491393400]}
More than 480 correct decimal digits!

We see that in he first case only about 24 digits are correct, whereas in the second
case (using the new data typelx_interval ) we get more than 480 correct decimals.
This very strong improvement is due to new operations performing optimal scalings
automatically.

4.2 Complex Transcendental Functions

Availabe are the trigonometric functions, the inverse trigonometric functions, the hy-
perbolic functions and the inverse hyperbolic functions. For multivalued functions the
principal branch is realized [11, 12, 7, 29]. Table 1 shows some further transcendental
functions available for extended complex staggered intervals. For more details see [6].

5 Applications

In this section we demonstrate the ease of use and the power of staggered intervals
delivering a special kind of a multiple precision arithmetic.

5.1 Dynamical System

Let us consider the simple dynamical system as given by the logistic equation:

xn+1 = a · xn · (1 − xn) , n ≥ 0 (16)

for somea ∈ [0, 4] andx0 ∈ (0, 1).

Its Mean Value Form [28] (capital characters denote interval quantities) is:

Xn+1 = a · (yn(1 − yn) + (1 − 2Xn) · (Xn − yn))

with yn ≈ midpoint of Xn.
(17)
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Table 1.Additional complex extended staggered interval functions

Complex Standard Functions of Typelx cinterval

Function Term C-XSC Name Informations

|z| =
p

(z.re)2 + (z.im)2 abs(z) |z| ⊆ abs(z)

z2 sqr(z) Inclusion of the squares
√

z sqrt(z) Calculating the main branch

n
√

z sqrt(z, n) 2 ≤ n ≤ +2147483647

arg(z) Arg(z) Analytic argument function

arg(z) arg(z) Not analytic function

ln(z) Ln(z) Analytic logarithm

ln(z) ln(z) Not analytic function

zn power fast(z, n) Fast power function

zn power(z, n) Slower power function

zp pow(z, p) lx cintervalz; lx intervalp;

zw pow(z, w) lx cintervalz, w

ez exp(z) lx cintervalz

For parametera close to 4 this system exhibits chaotic behavior. Ordinary floating point
computations will deliver results which are completely wrong quantitatively, when
compared with the true trajectory on which the computation began.

The naive interval approach resuts in the following source code:

stagprec = 39;
lx_interval a(3.75);
lx_interval x;

x= 0.5;
for (int k=1;;k++) {

x= a * x* (1-x);
if (Sup(x) > 1) break; //x must lie in [0, 1]
if (k%50 == 0) cout << "x_" << k <<": " << x << endl;

}

Last output:
x_800: {-1, [ 4.3447661328, 4.3447661330]}
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The source code for using the more sophisticated Mean Value form [28] is as fol-
lows:

//mean value form:
x= 0.5;
lx_interval y;
for (int k=1;;k++) {

y= mid(x);
x= a * ( y * (1-y) + (1-2 * x) * (x-y) );
if (Sup(x) > 1) break;
if (k%50 == 0) cout << "x_" << k <<": " << x << endl;

}

The last row of the generated output is
x_2750: {-1, [ 6.4898891410, 6.4898898170]}

Note that using ordinary intervals not even
100 time steps can be performed!

These computations show clearly that using the extended staggered operations, the
number of time steps can be increased considerably (from about 100 to about 2750).

5.2 Limit calculation, powers with very high exponents

Let us try to compute some approximation to the Euler numbere. More precisely, let us
compute an enclosure of the approximation

(1 +
1

n
)n with n = 10600000000

and let us see, how far

(1 +
1

n
)n with n = 400

is apart from the limit

e = lim
n→∞

(1 +
1

n
)n .

Note that in the first calculation the exponentn, written as a decimal number, has six-
hundred million and one decimals. The following source code does the job:

#include "../lx_imath.hpp"
using namespace std;
using namespace cxsc;

int main() {
stagprec= 5;
int sixHundredMillion(600000000);
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l x_interval n, r;
n= lx_interval(sixHundredMillion,"[1,1]");
//n now equals 10ˆ600.000.000

r= xp1_pow_y(1/n,n);
cout << "(1+1/n)ˆn: " << r << endl;
cout << "with Relative diameter: " << RelDiam(r) << endl;

stagprec= 39;
//use predefined constant E_lx_interval() for e
lx_interval EulerNumber(E_lx_interval());

n= lx_interval(300, "[1,1]"); //10ˆ300
r= pow(1+1/n, n);
cout << "Enclosure of displacement e-r: ";
cout << EulerNumber-r << endl;
return 0;

}

The output produced by this C-XSC program is

(1+1/n)ˆn: {-1, [ 27.1828182845, 27.1828182846]}
with Relative diameter: 3.4128669415E-0080

Enclosure of displacement e-r:
{-300, [ 1.3591409142, 1.3591409143]}

Thus, usingstagprec = 5 gives an enclosure of the result accurate to about 80 dec-
imal digits. The functionxp1Pow(x, n) computes(x + 1)n. It should be used ifx
is very close to 1. Increasing the length of the staggered numbers involved (i.e. simply
increasing the value of the variablestagprec ) increases the accuracy of the enclo-
sure to a several hundred correct digits. Note that a corresponding calculation cannot
be done using the computer algebra systems Mathematica or Maple. Both systems will
fail!

We can also see from the output that, as expected, the value of(1 + 1
1e300 )1e300

is smaller than the Euler number and that more than 300 leading digits agree in both
numbers.

5.3 Verified Root Enclosures of Complex Functions

We consider a complex (interval) function. Finding its roots is a non trivial problem
in numerical mathematics. Most algorithms deliver only an approximation to the exact
zero without or with only a weak statement concerning its accuracy.

In this section, we describe an algorithm which allows the computation of verified
enclosures of a root starting with an appropriate approximation. The algorithm used
is based on the following Theorem 1 [9, 19], where∪ denotes the convex hull of two

complex sets,A
◦⊂ B means thatA is fully contained in the interior ofB, and[S] is the

interval hull of a bounded complex setS.



Extended staggered arithmetics 17

Theorem 1.Let Z be a complex interval,z ∈ C, 0 6= c ∈ C, and letf : C → C be an
analytic function in the convex regionR ⊃ z ∪ (z + Z). If

−c · f (z) + [(1 − c · f ′(z ∪ (z + Z))) · Z]
◦⊂ Z (18)

holds true, then there exists a unique zeroz0 of f (z), with z0 ∈ z + Z.
The proof of this theorem is given in the appendix on page 20 (see also [19]). In practice,
the constantc 6= 0 is often set toc = 1/f ′(z).

In the following example we have calculatedf ′(Z) by symbolic differentiation.
This sometimes tedious procedure can be replaced by using automatic differentiation,
which delivers enclosuresf(Z) as well asf ′(Z) simultaneously (see [14, 13]).
The following numerical example is taken from [19]. We consider the function

f(z) = arctan
(

(z − a) · ln(z2 − 5 · z + 8 + i)
)

with first derivative

f ′(z) =
ln(z2 − 5 · z + 8 + i) +

(z − a) · (2 · z − 5)

z2 − 5 · z + 8 + i
1 + (z − a)2 · (ln(z2 − 5 · z + 8 + i))2.

Then, settinga = 4i the zeros off(z) are

z0 = 2 + i, z1 = 3 − i, z2 = 4i.

With a close enough approximation toz0 the following C-XSC program calculates guar-
anteed enclosures of the rootz0.

#include <iostream>
using namespace std;

#include "../lx_cimath.hpp" //extended staggered complex intervals
using namespace cxsc;

static const lx_cinterval c(8,1); // constant value 8+i
static const lx_cinterval a(0,4); // parameter value a = 4 * i

//complex function f(z) to be considered
//(its zeros are a, 2+i, and 3-i):
lx_cinterval f(const lx_cinterval &z) {

return atan( (z-a) * ln(sqr(z)-5 * z+c) );
}

//derivative df(z) of the function f(z):
lx_cinterval df(const lx_cinterval &z) {

lx_cinterval y, w;
y= ln(sqr(z)-5 * z+c);
w= y + (z-a) * (2 * z-5)/( sqr(z)-5 * z+c );
w= w/( 1 + sqr(z-a) * sqr(y) );
return w;
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}

i nt main() {

stagprec = 2;

//conrol output format
cout << SetDotPrecision(11 * stagprec+4,11 * stagprec);
cout << boolalpha;

//extended complex staggered interval variable
lx_cinterval xk;

//let us see whether we can compute a verified enclosure
//for the zero 2+i of f(z) with high accuracy.
//Take as complex starting interval xk a wide enclosure of 2+i
xk= lx_cinterval(interval(1.997,2.007),interval(0.996,1.0091));
cout << "Iterate " << 0 << ": " << xk << endl;

lx_cinterval m, dfxk, Nxk, xkp1;
bool verified(false);

for (int i=1; i<7; i++) {
m= mid(xk); //midpoint
dfxk= df(xk); //derivative evaluated over xk

Nxk= m - f(m)/dfxk; //Newton operator is applied

//compute new iterate as the intersection of the result of the
//inteval Newton operator and the former iterate:
xkp1= Nxk & xk; //new iterate
cout << "Iterate " << i << ": " << xkp1 << endl;
verified|= (Nxk < xk);
cout << "Verification successful: " << verified << endl;

if (xk == xkp1) break; //no further improvment
xk= xkp1; //replace old iterate by new iterate

}

return 0;
}

/ * Generated output:

Iterate 0: ({-1, [ 19.96999999999999886313162278,
20.07000000000000383693077311]},

{-1, [ 9.95999999999999907629444351,
10.09100000000000285638179776]})

Iterate 1: ({-1, [ 19.96999999999999886313162278,
20.05343561736236424053458905]},
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{ -1, [ 9.95999999999999907629444351,
10.02395086899697496107819462]})

Verification successful: false
Iterate 2: ({-1, [ 19.97181867684503586701794120,

20.00826596837999815647890501]},
{-1, [ 9.99327987289646024748890340,

10.02383131624564427397672262]})
Verification successful: true
Iterate 3: ({-1, [ 19.99677979348013678873030585,

20.00471667293638944329359220]},
{-1, [ 9.99541643106646127137082658,

10.00306264985216309071347496]})
Verification successful: true
Iterate 4: ({-1, [ 19.99995051088503572600529878,

20.00004615150148978841571080]},
{-1, [ 9.99995043206047995454355259,

10.00005271746818813483059785]})
Verification successful: true
Iterate 5: ({-1, [ 19.99999999880470014090860786,

20.00000000119496945671926369]},
{-1, [ 9.99999999878747303228010423,

10.00000000121111654038941197]})
Verification successful: true
Iterate 6: ({-1, [ 19.99999999999999999999411052,

20.00000000000000000000588949]},
{-1, [ 9.99999999999999999998803765,

10.00000000000000000001196248]})
Verification successful: true

The progress concerning the accuracy from iterate 5 to
iterate 6 shows the expected quadratic convergence rate
of Newton’s method. Increasing stagprec and performing
some more iteration steps gives an enclosure of the
zero accurate to several hundred digits.

* /

The algorithm works well with a sufficiently good approximation to the root. Thus, it
is advisable to perform some Newton steps to get an approximation even closer to the
zero. For simplicity, we omit this step. If the inclusion relation (18) is valid, further
Interval-Newton steps may improve a possibble wide enclosing interval. This may be
seen from the output produced by the given program.

6 Conclusion and Future Work

Extended staggered interval arithmetics are very powerful tools for reliable numerical
computations far beyond IEEE double computations and/or interval computations using
ordinary interval data types. We have realized such extended arithmetics for real and for
complex (staggered interval) computations. For the new extended staggered data types
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a complete set of transcendental elementary functions is available. The scaling factor
introduced in the extended data types allows a very wide exponent range. Additionally,
as our numerical exaples show, the accuracy of numerical computations is improved
significantly compared to ordinary staggered interval computations. The improvement
results mainly from our automatic scalings introduced in the implementation of the
basic arithmetical extended staggered operations.

The new arithmetics would be very fast if an exact dot product for vectors with
floating point components was supported by hardware. Exact dot products are a key
feature to get numerical results with high accuracy. Therfore, we ask the manufactures
of processors to incorporate an exact dot product facility on their chips! The (little)
additional amount of hardware [24, 25] would be worth a mint for scientists/engineers
interested in fast and highly accurate reliable numerical computations.

Our work concerning extended staggered numbers is still in progress [6]. Up to now
the main focus are point computations or computations with very narrow intervals (with
respect to the staggered level in use). We will support also wide interval computations.
Additionally, we will replace the integer scaling factor (32 bit) by a scaling factor of
type double (53 mantissa bit). Thus, the exponent range will be widened even more.
Last but not least the input/output facilities of extended staggered quantities should be
improved and automatic differentiation [8] should be provided.

A Proof of Theorem 1

First some notations/definitions:

– z = x + i · y ∈ C.
In this appendix we use|z| := |x| + |y|, with |z| ≥

√

x2 + y2.
– S ⊂ C denotes an arbitrary bounded subset ofC.

We define |S| := max
z∈S

{|z|}.

[ S ] denotes the interval hull ofS.
– With S1 ⊂ C andS2 ⊂ C the convex hull is denoted byS1∪S2.
– The diameter of a real intervalX = [x, x] is defined by d(X) := x − x.
– The diameter of a complex intervalZ = X + i · Y is defined by d(Z) := d(X) +

d(Y ). It can easily be shown that d(z + Z) = d(Z).
– S · Z := {w |w = s · z; s ∈ S, z ∈ Z}.

With the above notations it holds3

d([ S · Z ]) ≥ |S| · d(Z). (19)

Theorem 1as formulated on page 17:Let Z be a complex interval,z ∈ C, 0 6= c ∈ C,

and letf : C → C be an analytic function in the convex regionR ⊃ z ∪ (z + Z), then
with

−c · f (z) + [(1 − c · f ′(z ∪ (z + Z))), ·Z]
◦⊂ Z (20)

3 It should be noted that (19) is a generalization of d(A · B) ≥ |A| · d(B), whereA andB are
complex intervals, [2, (15), page 72].
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there exists a unique zeroz0 of f (z), with z0 ∈ z + Z.

Proof: (see also [19])

Let f : C → C be an analytic function inR. For the range h(z + Z) of the analytic
auxiliary function

h(z) := z − c · f(z) (21)

it holds the inclusion relation, [9, Theorem 5., page 35]

h(z + Z) ⊂ h(z) + [ h′(z∪(z + Z)) · Z ]. (22)

With the definition of h(z) we find

h(z + Z) ⊂ z − c · f(z) + [ (1 − c · f ′(z∪(z + Z))) · Z ], (23)

and together with (20) we get the inclusion relation

h(z + Z)
◦⊂ z + Z. (24)

Thus, Brouwer’s fixed-point theorem shows that the auxiliary function h(z) has at least
one fixed-pointz0 ∈ z + Z, i.e. h(z0) = z0, and with the definition of h(z) it follows
thatf(z) has at least one zeroz0 ∈ z + Z.

We now show that this zeroz0 ∈ z+Z is unique. The inclusion relation (20) implies

z − c · f (z) + [(1 − c · f ′(z ∪ (z + Z))) · Z]
◦⊂ Z + z,

and for the diameter d we get the estimations

d(z + Z) > d(z − c · f (z) + [(1 − c · f ′(z ∪ (z + Z))) · Z])

= d([(1 − c · f ′(z ∪ (z + Z))) · Z])

≥ |1 − c · f ′(z ∪ (z + Z))| · d(Z).

The equal sign is substantiated by a simple displacement in thez-plane, generated by
z−c·f(z), and the last line follows with (19). If in Theorem 1 condition (20) is fulfilled,
Z cannot be a point interval and so d(Z) has to be positive. Hence d(z+Z) = d(Z) > 0,
and, with the above estimation, we get

|1 − c · f ′(z ∪ (z + Z))| < 1 resp.
∣

∣h′(z ∪ (z + Z))
∣

∣ < 1. (25)

This demonstrates that the function h(z) is a contractive mapping inz+Z ⊂ z∪(z+Z).
According to Banach’s fixed-point theorem exactly one fixed-pointz0 exists. Hence

z0 ∈ z + Z, and h(z0) = z0.

With (25) we see
c 6= 0 and 0 6∈ f ′(z ∪ (z + Z)).

Hence, from the definition of h(z) it follows that the unique fixed-pointz0 of h(z) is a
unique simple root off(z) �
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