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1 Introduction

A wireless sensor network (WSN) consists of spatially distributed autonomous
devices using sensors connected via a wireless link. Sensors may be designed
for pressure, temperature, sound, vibration, motion... Initially WSN were de-
veloped for military applications (battlefield surveillance). Now, many civilian
applications (environment monitoring, home automation, traffic control) may
take advantage of WSN, see, e.g., [KM04, Hae06].

Applications suggest many research topics, from the design of protocols for
communication between sensors, localization problems, data compression and
aggregation, security issues... All these problems are made more complicated
by the constraints imposed on each node of the WSN, which usually has limited
computing capabilities, communication capacity and a very restricted power
consumption.

Here, the application we consider is WSN for source tracking, which may be
important when considering mobile phone localization and tracking, computer
localization in an ad-hoc networks, co-localisation in a team of robots, speaker
localization... Figure 1 illustrates a typical localization problem: a source rep-
resented by a circle moves in a field of sensors, each of which is represented by
a cross.

The localization technique used depends on the type of information available
to the sensor nodes. Time of arrival (TOA), time difference of arrival (TDOA)
and angle of arrival (AOA) usually provide the best results [PAK+05], however,
these quantities are most difficult to obtain, as they require, a good synchro-
nization between timers (for TOA), exchanges between sensors (for TDOA) or
multiple antennas (for AOA). Contrary to TOA, TDOA or AOA data, read-
ings of signal strength (RSS) at a given sensor are easily obtained, as they only
require low-cost sensors or are already available, as in IEEE 802.11 wireless
networks, where these data are provided by the MAC layer [STK05].
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Figure 1: Source (o) and sensors (x )

This paper focuses on source localization from RSS data. Centralized ap-
proaches (see Figure 2, left) have been proposed to solve this problem for acous-
tic sources [SH05] and for sources emitting electromagnetic waves, see, e.g.,
[KMR+04, GG05, GTG+05]. In the first case, some knowledge of the decay rate
of the RSS (path loss exponent) is needed for efficient nonlinear least squares
estimation. In the second case, an off-line training phase is required to allow
maximum a posteriori localization. In both cases, a good initial guess of the
location of the source facilitates convergence to the global minimum of the cost
function. Distributed approaches (see Figure 2, right) have also been employed,
e.g., in [RN04], where a distributed version of nonlinear least squares has been
presented. When badly initialized, it suffers from the same convergence prob-
lems as the centralized approach, as illustrated in [HIB05], which advocates
projection on convex sets. However, this requires an accurate knowledge of the
source signal strength and of the path loss exponent.

Centralized Distributed

Figure 2: Centralized (left) and distributed (right) processing of measurements

Here, we consider a distributed state estimation algorithm involving bounded
measurement errors. This problem will be addressed with the help of interval
analysis, which will provide at each network node a set estimate guaranteed to
contain the true location of a moving source, provided the hypotheses on the
model and measurement noise are satisfied.
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2 Distributed state estimation

Consider a system described by a discrete-time dynamical model

xk = fk (xk−1,wk,uk) , (1)

where xk is the state vector of the model at time instant k (the sampling period
is T ). The state perturbation vector wk accounts for unmodelled parts of the
system. This noise vector is assumed to remain in a known box [w]. The input
vector uk is also assumed known. At k = 0, x0 is only assumed to belong to
some (possibly large) known set X0.

Assume that at time k, each sensor ` = 1 . . . L of a WSN has access to a
measurement

y`
k = g`

k

(
xk,v`

k

)
, (2)

where y`
k is the noisy measurement vector, and v`

k is the measurement noise,
assumed bounded in some known [v]. Then (1) and (2) are the dynamic and
observation equations of the model. Usual measurement equations are

g`
k

(
xk,v`

k

)
= h`

k (xk) + v`
k (3)

or
g`

k

(
xk, v`

k

)
= h`

k (xk) .v`
k. (4)

2.1 Back to centralized discrete-time state estimation

When all measurements at time k are available at central processing unit, one
gets {

xk = fk (xk−1,wk,uk) ,
yk = gk (xk,vk) ,

(5)

with yT
k =

((
y1

k

)T
, . . . ,

(
yL

k

)T)
and vT

k =
((

v1
k

)T
, . . . ,

(
vL

k

)T)
. Determining

an estimate for xk from the measurement y`, ` = 0 . . . k is a classical state
estimation problem, which solution depends on linearity of (1) and (2) and
noise model. For a gaussian noise, with a linear dynamic equation, the Kalman
filter [Kal60] is the natural solution. When the model is non-linear, one may use
an extended Kalman filter [Gel74], griddling techniques [TA95] or particle filters
[PS99]. In a bounded-error context, with a linear model, the set of state vectors
consistent with the model and noise on the measurements may be evaluated
exactly using polytopes [Sch68], or outer-approximated using ellipsoids [MN96].
With a nonlinear model, again, only an outer-approximation of the state is
possible using subpavings, i.e., union of non-overlapping boxes [KJW02].

Summarizing the information available at time k, one gets

Ik =
{

X0, {[wj ]}
k
j=1 , {[vj ]}

k
j=1 , {[yj ]}

k
j=1

}
. (6)

Centralized bounded-error state estimate at time k aims at characterizing the
set Xk|k of all values of xk that are consistent with (1), (2) and Ik. One may
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propose an idealized algorithm [KJW02], alternating, as the Kalman filter a
prediction step

Xk|k−1 =
{
fk (x,w,uk) | x ∈ Xk−1|k−1, w ∈ [w]

}
(7)

and a correction step accounting for the new measurement

Xk|k =
{
x ∈ Xk|k−1 | yk = gk (x,v) , v ∈ [v]

×L
}

. (8)

The two steps of the idealized algorithm are depicted in Figure 3.

x1

x2

Xk k-1| -1

xk-1

y1

y2

Xk k|

Xk|k-1

yk k, V

gk

fk
xk

Figure 3: Idealized recursive bounded-error state estimator

2.2 Distributed state estimation

Ideally, any sensor `, ` = 1 . . . L of the WSN should provide

X
`
k|k = Xk|k. (9)

Distributed versions of the Kalman filter have been proposed in [Spe79], as-
suming linear models, gaussian noise, and instantaneous communications. Ap-
plication to distributed estimation in power systems have been addressed in
[LC05] and to distributed estimation in WSN are considered in [RGR08]. Nev-
ertheless, to the best of our knowledge, no similar tools have been proposed in
a bounded-error context.

2.2.1 Hypotheses

Here, we assume that the sensor network is entirely connected, which is a nec-
essary condition to be able to obtain X

`
k|k = Xk|k. The following measurement
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processing and communication will be considered. At time k, each sensor pro-
cesses own measurement y`

k. Between time k and k + 1, a first round trip is

considered (r = 1) in which each sensor ` broadcasts its own estimate X
`,r
k|k to

the network. Then each sensor ` receives and processes X
s,1
k|k, s ∈ C (`) where

C (`) is the set of indices of sensors connected to `. Depending on the sample
time, more round trips (r > 1) may be considered. Just before time k + 1, each
sensor ` builds a final estimate X

`
k|k .

This way of processing and transmitting information leads to the following
idealized distributed algorithm.

2.2.2 Proposed idealized algorithm

For each sensor ` = 1 . . . L,

At time k:

X
`
k|k−1 =

{
fk (x,w,uk) | x ∈ X

`
k−1|k−1, w ∈ [w]

}
. (10)

X
`,0
k|k =

{
x ∈ X

`
k|k−1 | y`

k = g`
k (x,v) , v ∈ [v]

}
. (11)

Between k and k + 1,
for r = 1 to Rmax (number of round trips)

X
`,r
k|k =

⋂

s∈C(`)

X
s,,r−1
k|k (12)

Just before k + 1
X

`
k|k = X

`,Rmax

k|k . (13)

One may easily prove that

Xk|k ⊂ X
`
k|k. (14)

However, the conditions to have

Xk|k = X
`
k|k (15)

needs further developments. They involve network connectivity, which itself is
linked to the largest distance between sensors. This problem has been partly
addressed in [Yok01, BFV+05].

2.2.3 Practical algorithm

The implementation of the proposed idealized algorithm is done in a way similar
to that of the centralized algorithm presented in [KJW02]. In a most basic
version of the algorithm, sets are represented by boxes, basic interval evaluations
are performed for the prediction step and interval constraint propagation is done

5



for the correction step. The advantage of this version is that it may readily
be implemented on chips with reduced computational capabilities. A more
sophisticated version involves description of sets using subpavings, a prediction
step implemented using ImageSp [KJW02]and Sivia [JW93] combined with
interval constraint propagation for the correction step.

3 Applications

For the application part, a static localization problem for a single source is
considered first. Then, the source will be moving, and the localization problem
is cast into a problem of state estimation.

3.1 Static source localization

The known location of the sensors is denoted by r` ∈ R
2, ` = 1 . . . L. The

unknown location of the source is θ = (θ1, θ2)
T ∈ R

2. The mean power P (d`) (in
dBm) received by `-th sensor is described by Okumura-Hata model [OOKF68]

P dB (d`) = P0 − 10np log
d`

d0
, (16)

where np is the path-loss exponent (unknown, but constant), d` = |r` − θ|. The
received power is assumed to lie within some bounds

PdB (d) ∈

[
P0 − 10np log

d

d0
− e, P0 − 10np log

d

d0
+ e

]
, (17)

where e is assumed known.
The RSS by sensor ` = 1 . . . L may be rewritten as

y` = h` (θ, A, np) v`, (18)

with

h` (θ, A, np) =
A

|r` − θ|
np

, A = 10P0/10d
np

0 , (19)

and
v` ∈ [v] =

[
10−e/10, 10e/10

]
. (20)

The noise is thus multiplicative in the normal domain. The parameter vector
to be estimated is then x = (A, np, θ1, θ2)

T.

3.1.1 Distributed approach: interval constraint propagation

At sensor `, y` ∈ [y`] is measured. Some boxes [θ], [A], and [np] are assumed to
be available, a priori, or as results transmitted by the other sensors to sensor `.
The parameter vector has to satisfy the constraint provided by RSS model

y` −
A

|r` − θ|
np

= 0. (21)
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Sensor 68 741 954
Measurement [9.303, 58.698] [17.856, 112.664] [18.644, 117.640]

Table 1: Static localization example of measurements

Using interval constraint propagation, it is possible to reduce the domains
for the variables using (21). The contracted domains may be written as





[y′
`] = [y`] ∩

[A]

|r` − [θ]|
[np]

,

[A′] = [A] ∩ [y′
`] |r` − [θ]|

[np]
,[

n′
p

]
= [np] ∩ (log ([A′]) − log ([y′

`])) / log (|r` − [θ]|) ,

[
θ′1
]

= [θ1] ∩

(
r`,1 ±

√
([A′] / [y′

`])
2/[n′

p] − (r`,2 − [θ2])
2

)
,

[
θ′2
]

= [θ2] ∩

(
r`,2 ±

√
([A′] / [y′

`])
2/[n′

p] − (r`,1 − [θ1])
2

)
.

(22)

3.1.2 Simulation results

A networks of L = 2000 sensors randomly distributed over a field of 100 m×100 m
is considered. The source is placed at θ

∗ = (50 m, 50 m) and emits a wave with
P0 = 20 dBm, d0 = 1 m. The path-loss exponent np = 2 is assumed to be
constant over the field. The measurement noise such that e = 4 dBm. Table 1
provides some examples of the measurements which are available to the sensors.

For 100 realizations of the sensor field, data have been simulated with (17).
To limit computational load, only sensors such that y` > 10 participate to
localization. The initial search box for p is taken as [0, 100]×[0, 100]×[50, 200]×
[2, 4] in a first scenario, where A (or P0) is assumed unknown. In a second
scenario, A is assumed perfectly known. For the distributed approach, five
cycles in the sensor network are performed.

The two proposed techniques are compared to localization by a closest point
approach (CPA), which searches for the index of the sensor with the largest

RSS `CPA = argmax` y` and uses the location of this sensor θ̂CPA = r`CPA
as

an estimate for θ
∗. This technique, albeit it is not the most efficient [SH05],

performs well for dense sensor networks, as here. Point estimates for θ
∗ are

evaluated as θ̂C = mid
([

projθP
])

, the midpoint of the smallest box containing

the projection of P onto the θ-plane in the centralized approach and as the center
of the projection onto the θ-plane of the solution box [p], θ̂D = mid(projθ [p]),
in the distributed approach.

Figures 4 and 5 provides typical solutions obtained using a centralized and
distributed localization algorithm. The centralized algorithm involves set de-
scription using subpavings, whereas the distributed one only uses boxes.

Figure 6 presents the histogram of the L2 norm of the difference between
θ
∗ and its estimates provided by the three techniques previously described.
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Figure 4: Projection of the solution on the (θ1, θ2)-plane
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Figure 5: Zoom of the projection of the solution on the (θ1, θ2)-plane
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The centralized approach performs better than the distributed one, but the dis-
tributed approach provides a reasonable estimate at a much lower computation
and transmission cost. Both techniques outperforms CPA, the performances of
which do not depend on whether A is known.
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Figure 6: Histograms of estimation error for θ (100 realizations of sensor field

3.2 Source tracking

In this part, the source is assumed to be moving. A and np are now known.
The state vector is taken as

xk = (θ1,k, θ2,k, φ1,k, φ2,k, θ1,k−1, θ2,k−1, φ1,k−1, φ2,k−1)
T (23)

where (φ1, φ2) represents the speed with respect to (θ1, θ2) . This long state
vector allows to estimate

(
φ1,k, φ2,k

)
.

3.2.1 Model

The following uncertain linear dynamic equation is considered to determine the
evolution with time of xk



θ1,k

θ2,k

φ1,k

φ2,k

θ1,k−1

θ2,k−1

φ1,k−1

φ2,k−1




=

(
I4 04

I4 04

)




θ1,k−1

θ2,k−1

φ1,k−1

φ2,k−1

θ1,k−2

θ2,k−2

φ1,k−2

φ2,k−2




+ T.




φ1,k−1

φ2,k−1

w1

w2

0
0
0
0




, (24)

with w1 ∈ [w] and w2 ∈ [w].
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3.2.2 Interval constraint propagation

Using interval constraint propagation, one gets the contracted domains





[
y′

`,k

]
= [y`,k] ∩

A

|r` − [θk]|[np]
,

[
θ′1,k

]
= [θ1,k] ∩

(
r`,1 ±

√(
A/
[
y′

`,k

])2/np

− (r`,2 − [θ2,k])2
)

,

[
θ′2,k

]
= [θ2,k] ∩

(
r`,2 ±

√(
A/
[
y′

`,k

])2/np

− (r`,1 − [θ1,k])2
)

.

[
φ′

1,k

]
=
[
φ1,k

]
∩

([
θ′1,k

]
−
[
θ′1,k

]

T
+ T [w]

)

[
φ′

2,k

]
=
[
φ2,k

]
∩

([
θ′2,k

]
−
[
θ′2,k

]

T
+ T [w]

)

(25)

3.2.3 Results

Now, a field of 50 m×50 m is considered, with its origin at center. A WSN
of L = 25 sensors with communication range of 15 m is spread over this field.
The source is placed at θ

∗ = (5 m, 5 m), with characteristics P 0 = 20 dBm,
d0 = 1 m. The measurement noise is such that e = 4 dBm. The path-loss
exponent is np = 2, assumed constant over the field. The sampling time is

T = 0.5 s and [w] = [−0.5, 0.5]×2 m.s−2.
Figure 7 illustrates the connectivity of the considered random WSN and the

trajectory followed by the source.
The simplest algorithm implementation presented in Section 2.2.3 has been

considered: sets are represented by boxes, simple image evaluations using in-
clusion functions are performed and correction is done by interval constraint
propagation. The localization performance using this algorithm is depicted in
Figure 8. The width of the solution box (left part of Figure 8) provided at each
time instant decreases very quickly to reach a floor. A similar behavior is seen
for the norm of the localization taking the center of the solution boxes at each
time instant. The convergence is quite fast and the number of round trips has
only a very limited impact on the convergence of the algorithm.

4 Conclusions

In this paper, we have considered distributed bounded-error state estimation
applied to the problem of source tracking with a network of wireless sensors.
Estimation is performed in a distributed context, i.e., each sensor has only a
limited amount of measurements available. A guaranteed set estimator is put
at work
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Figure 7: Trajectory of the source (o) in the WSN, each sensor is represented
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Figure 8: Width of the box [θ1,k] × [θ2,k], and norm of the localization error
when the estimate is taken as the center of the solution box
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There is still large space for improvements in the considered problem. First,
convergence properties have to be carefully studied. In particular, conditions
under which the distributed solution coincides with the centralized one have to
be determined. Robustness to outliers has also to be considered. A challenging
future application would be the distributed estimation, e.g., in a team of robots.
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