
Software Engineering f or Self-Adaptive Systems:
A Research Road Map

(Draft Version) ∗

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee
(Dagstuhl Seminar Organizer Authors)

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt

Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam
Malek, Raffaela Mirandola, Hausi Müller, Sooyong Park, Mary Shaw, Matthias Tichy,

Massimo Tivoli, Danny Weyns, Jon Whittle
(Dagstuhl Seminar Participant Authors)

Contact Emails: r.delemos@kent.ac.uk, holger.giese@hpi.uni-potsdam.de

ABSTRACT
Software’s ability to adapt at run-time to changing user
needs, system intrusions or faults, changing operational en-
vironment, and resource variability has been proposed as
a means to cope with the complexity of today’s software-
intensive systems. Such self-adaptive systems can config-
ure and reconfigure themselves, augment their functionality,
continually optimize themselves, protect themselves, and re-
cover themselves, while keeping most of their complexity
hidden from the user and administrator. In this paper, we
present research road map for software engineering of self-
adaptive systems focusing on four views, which we identify
as essential: requirements, modelling, engineering, and as-
surances.

Keywords
Software engineering, requirements engineering, modelling,
evolution, assurances, self-adaptability, self-organization, self-
management

1. INTRODUCTION
The simultaneous explosion of information, the integration
of technology, and the continuous evolution from software-
intensive systems to ultra-large-scale (ULS) systems requires
new and innovative approaches for building, running and
managing software systems [18]. A consequence of this con-
tinuous evolution is that software systems must become more

∗This road map paper is a result of the Dagstuhl Seminar
08031 on “Software Engineering for Self-Adaptive Systems”
in January 2008.

versatile, flexible, resilient, dependable, robust, energy-efficient,
recoverable, customizable, configurable, or self-optimizing
by adapting to changing operational contexts and environ-
ments. The complexity of current software-based systems
has led the software engineering community to look for in-
spiration in diverse related fields (e.g., robotics, artificial in-
telligence) as well as other areas (e.g., biology) to find new
ways of designing and managing systems and services. In
this endeavour, the capability of the system to adjust its
behaviour in response to its perception of the environment
and the system itself in form of self-adaptation has become
one of the most promising directions.

The topic of self-adaptive systems has been studied within
the different research areas of software engineering, includ-
ing, requirements engineering, software architectures, mid-
dleware, component-based development, and programming
languages, however most of these initiatives have been iso-
lated and until recently without a formal forum for dis-
cussing its diverse facets. Other research communities that
have also investigated this topic from their own perspec-
tive are even more diverse: fault-tolerant computing, dis-
tributed systems, biologically inspired computing, distrib-
uted artificial intelligence, integrated management, robotics,
knowledge-based systems, machine learning, control theory,
etc. In addition, research in several application areas and
technologies has grown in importance, for example, adapt-
able user interfaces, autonomic computing, dependable com-
puting, embedded systems, mobile ad hoc networks, mobile
and autonomous robots, multi-agent systems, peer-to-peer
applications, sensor networks, service-oriented architectures,
and ubiquitous computing.

It is important to emphasise that in all the above ini-
tiatives the common element that enables the provision of
self-adaptability is software because of its flexible nature.
However, the proper realization of the self-adaptation func-
tionality still remains a significant intellectual challenge, and
only recently have the first attempts in building self-adaptive
systems emerged within specific application domains. More-
over, little endeavour has been made to establish suitable
software engineering approaches for the provision of self-
adaptation. In the long run, we need to establish the foun-

Dagstuhl Seminar Proceedings 08031 
Software Engineering for Self-Adaptive Systems 
http://drops.dagstuhl.de/opus/volltexte/2008/1500

1



dations that enable the systematic development of future
generations of self-adaptive systems. Therefore it is worth-
while to identify the commonalities and differences of the
results achieved so far in the different fields and look for
ways to integrate them.

The development of self-adaptive systems can be viewed
from two perspectives, either top-down when considering an
individual system, or bottom-up when considering cooper-
ative systems. Top-down self-adaptive systems assess their
own behaviour and change it when the assessment indicates
a need to adapt due to evolving functional or non-functional
requirements. Such systems typically operate with an ex-
plicit internal representation of themselves and their global
goals. In contrast, bottom-up self-adaptive systems (self-
organizing systems) are composed of a large number of com-
ponents that interact locally according to simple rules. The
global behaviour of the system emerges from these local in-
teractions.1 The global behaviour of the system emerges
from these local interactions, and it is difficult to deduce
properties of the global system by studying only the lo-
cal properties of its parts. Such systems do not necessar-
ily use internal representations of global properties or goals;
they are often inspired by biological or sociological phenom-
ena. The two cases of self-adaptive behaviour in the form
of individual and cooperative self-adaptation are two ex-
treme poles. In practice, the line between both is rather
blurred, and compromises will often lead to an engineering
approach incorporating representatives from these two ex-
treme poles. For example, ultra large-scale systems need
both top-down self-adaptive and bottom-up self-adaptive
characteristics (e.g., the Web is basically decentralized as
a global system but local sub-webs are highly centralized).
However, from the perspective of software development the
major challenge is how to accommodate in a systematic en-
gineering approach traditional top-down approaches with
bottom-up approaches.

The goal of this road map paper is to summarize and
point out the current state-of-the-art, its limitations, and
identify critical challenges for the software engineering of
self-adaptive systems. Specifically, we intend to focus on
development methods, techniques, and tools that seem to be
required to support the systematic development of complex
software systems with dynamic self-adaptive behaviour. In
contrast to merely speculative and conjectural visions and
ad hoc approaches for systems supporting self-adaptability,
the objective of this paper is to establish a road map for
research and identify the main research challenges for the
systematic software engineering of self-adaptive systems.

To present and motivate these challenges, the paper is
structured using the four views which have been identified
as essential. Each of these views are roughly presented in
terms of the state of the art and the challenges ahead. We

1In context of biologically inspired systems usually self-
organization rather than self-adaptation is used and similar
to our initial characterization we distinguish “strong self-
organizing systems,” which are those systems where there is
no explicit central control either internal or external (bot-
tom up); from “weak self-organizing systems,” which are
those systems where, from an internal point of view, there
is re-organization maybe under an internal (central) con-
trol or planning (top-down). Strong self-organizing systems
are thus purely decentralized, access to global information
is limited or impossible, interactions occur locally (among
neighbours) and based on local information [13].

first review the state of the art and needs concerning require-
ments (Section 2). Then, the relevant modelling dimensions
are discussed in Section 3 before we discuss the engineering
of self-adaptive systems in Section 4. The considerations
are completed by looking into the current achievements and
needs for assurance in the context of self-adaptive systems
in Section 5. Finally, the findings are summarized in Section
6 in terms of lessons learned and future challenges.

2. REQUIREMENTS
A self-adaptive system is able to modify its behaviour ac-
cording to changes in its environment. As such, a self-
adaptive system must continuously monitor changes in its
context and react accordingly. But what aspects of the envi-
ronment should the self-adaptive system monitor? Clearly,
the system cannot monitor everything. And exactly what
should the system do if it detects a less than optimal pat-
tern in the environment? Presumably, the system still needs
to maintain a set of high-level goals that should be main-
tained regardless of the environmental conditions. But non-
critical goals could well be relaxed, thus allowing the system
a degree of flexibility during or after adaptation.

These questions (and others) form the core considerations
for building self-adaptive systems. Requirements engineer-
ing is concerned with what a system ought to do and within
which constraints it must do it. Requirements engineer-
ing for self-adaptive systems, therefore, must address what
adaptations are possible and what constrains how those adap-
tations are carried out. In particular, questions to be ad-
dressed include: what aspects of the environment are rel-
evant for adaptation? Which requirements are allowed to
vary or evolve at runtime and which must always be main-
tained? In short, requirements engineering for self-adaptive
systems must deal with uncertainty because the expecta-
tions on the environment frequently vary over time.

2.1 State of the Art
Requirements engineering for self-adaptive systems ap-

pears to be a wide open research area with only a limited
number of approaches yet considered. Cheng and Atlee [7]
report on some previous work on specifying and verifying
adaptive software, and on run-time monitoring of require-
ments conformance [19, 42]. They also explain how prelim-
inary work on personalized and customized software can be
applied to adaptive systems (e.g., [47, 31]). In addition,
some research approaches have successfully used goal mod-
els as a foundation for specifying the autonomic behaviour
[29] and requirements of adaptive systems [22].

One of the main challenges that self-adaptation poses is
that when designing a self-adaptive system, we cannot as-
sume that all adaptations are known in advance — that is,
we cannot anticipate requirements for the entire set of pos-
sible environmental conditions and their respective adapta-
tion specifications. For example, if a system is to respond
to cyber-attacks, one cannot possibly know all attacks in
advance since malicious actors develop new attack types all
the time.

As a result, requirements for self-adaptive systems may
involve degrees of uncertainty or may necessarily be specified
as “incomplete”. The requirements specification therefore
should cope with:

• the incomplete information about the environment and

2



the resulting incomplete information about the respec-
tive behaviour that the system should expose

• the evolution of the requirements at runtime

2.2 Research Challenges
This subsection highlights a number of short-term and

long-term research challenges for requirements engineering
for self-adaptive systems. We start with shorter-term chal-
lenges and progress to more visionary ideas. As far as the
authors are aware, there is little or no research currently
underway to address these challenges.

A new requirements language. Current languages for
requirements engineering are not well suited to dealing with
uncertainty, which, as mentioned above, is a key consider-
ation for self-adaptive systems. We therefore propose that
richer requirements languages are needed. Few of the ex-
isting approaches for requirements engineering provide this
capability. In goal-modelling notations such as KAOS [11]
and i* [51], there is no explicit support for uncertainty or
adaptivity. Scenario-based notations generally do not pro-
vide any support either although live sequence charts (LSCs)
[24] have a notion of mandatory versus potential behaviour
which could possibly be used in specifying adaptive systems.
Of course, the most common notation for specifying require-
ments in industry is still using natural language prose. Tra-
ditionally, requirements documents make statements such
as “the system shall do this”. For self-adaptive systems, the
prescriptive notion of “shall” needs to be relaxed and could,
for example, be replaced with “the system may do this or it
may do that” or “if the system cannot do this, then it should
eventually do that.” This idea leads to a new requirements
vocabulary for self-adaptive systems that gives stakeholders
the flexibility to account for uncertainty in their require-
ments documents. For example:

Traditional RE:
“the system shall do this ... .”
Adaptive RE:

• “the system might do this ... .”

• “But it may do this...” ... “as long as it does this ... .”

• “the system ought to do this... .” but “if it cannot, it
shall eventually do this ...”

Such a vocabulary would change the level of discourse
in requirements from prescriptive to flexible. There would
need to be a clear definition of terms, of course, as well as
a composition calculus for defining how the terms relate to
each other and compose. Multimodal logics and perhaps
new adaptation-oriented logics [53] need to be developed to
specify the semantics for what it means to have the “possi-
bility” of conditions [17, 40]. There is also a relationship
with variability management mechanisms in software prod-
uct lines [48], which also tackle built-in flexibilities. How-
ever, at the requirements level, one ideally would capture
uncertainty at a more abstract level than simply enumerat-
ing alternatives.

Mapping to architecture. Given a new requirements lan-
guage that explicitly handles uncertainty, it will be necessary
to provide systematic methods for refining models in this
language down to specific architectures that support run-
time adaptation. There are a variety of technical options for

implementing reconfigurability at the architecture level, in-
cluding component-based, aspect-oriented and product-line
based approaches, as well as combinations of these. Poten-
tially, there could be a large gap in expressiveness between
a requirements language that incorporates uncertainty and
these existing architecture structuring methods. One can
imagine, therefore, a semi-automated process for mapping
to architecture where heuristics and/or patterns are used to
suggest architectural units corresponding to certain vocab-
ulary terms in the requirements.

Managing uncertainty. In general, once we start intro-
ducing uncertainty into our software engineering processes,
we must have a way of managing this uncertainty and the
inevitable complexity associated with handling so many un-
knowns. Certain requirements will not change (i.e., invari-
ants), whereas others will permit a degree of flexibility. For
example, a system cannot start out as a transport robot
and self-adapt into a robot chef! Allowing uncertainty lev-
els when developing self-adaptive systems requires a trade-
off between flexibility and assurance such that the critical
high-level goals of the application are always met [52, 39,
28].

Requirements reflection. As said above, self-adaptation
deals with requirements that vary at runtime. Therefore it
is important that requirements lend themselves to be dy-
namically observed, i.e., during execution. Reflection [34],
[27], [10] enables a system to observe its own structure and
behaviour. A relevant research work is the ReqMon tools
[38] which provides a requirements monitoring framework,
focusing on temporal properties to be maintained. Leverag-
ing and extending beyond these complementary approaches,
Finkelstein [20] coins the term“requirements reflection” that
would enable systems to be aware of their own requirements
at runtime. This would require an appropriate model of the
requirements to be available online. Such an idea brings with
it a host of interesting research questions, such as: Could
a system dynamically observe its requirements? In other
words, can we make requirements runtime objects? Future
work is needed to examine how technologies may provide the
infrastructure to do this.

Online goal refinement. As in the case of design de-
cisions that are eventually realized at runtime, new and
more flexible requirement specifications like the one sug-
gested above would imply that the system should perform
the RE processes at runtime, e.g. goal-refinement [28].

Traceability from requirements to implementation.
A constant challenge in all the topics shown above is “dy-
namic” traceability. For example, new operators of a new
RE specification language should be easily traceable down
to architecture, design, and beyond. Furthermore, if the RE
process is performed at runtime we need to assure that the
final implementation or behaviour of the system matches
the requirements. Doing so is different from the traditional
requirements traceability.

2.3 Final Remarks
In this section, we have presented several important re-

search challenges that the requirements engineering com-
munity will face as the demand for self-adaptive systems
continues to grow. These challenges span RE activities dur-
ing the development phases and runtime. In order to gain

3



assurance about adaptive behaviour, it is important to mon-
itor adherence and traceability to the requirements during
runtime. Furthermore, it is also necessary to acknowledge
and support the evolution of requirements at runtime. Given
the increasing complexity of applications requiring runtime
adaptation, the software artifacts with which the developers
manipulate and analyze must be more abstract than source
code. How can graphical models, formal specifications, poli-
cies, etc. be used as the basis for the evolutionary process
of adaptive systems versus source code, the traditional arti-
fact that is manipulated once a system has been deployed?
How can we maintain traceability among relevant artifacts,
including the code? How can we maintain assurance con-
straints during and after adaptation? How much should a
system be allowed to adapt and still maintain traceability
to the original system? Clearly, the ability to dynamically
adapt systems at runtime is an exciting and powerful ca-
pability. The RE community, among other software engi-
neering disciplines, need to be proactive in tackling these
complex challenges in order to ensure that useful and safe
adaptive capabilities are provided to the adaptive systems
developers.

3. MODELLING
Endowing a system with a self-adaptive property can take

many different shapes. The way self-adaptation has to be
conceived depends on various aspects, such as, user needs,
environment characteristics, and other system properties.
Understanding the problem and selecting a suitable solution
requires precise models for representing important aspects of
the self-adaptive system, its users, and its environment.

In this section, we provide a classification of modelling
dimensions for self-adaptive systems. Each dimension de-
scribes a particular aspect of the system that is relevant for
self-adaptation. Note that it is not our ambition to be ex-
haustive in all possible dimensions, but rather to give an ini-
tial impetus towards defining a framework for modelling self-
adaptive systems. Some of these dimensions could equally
be applied to the environment and the users of the system
(in addition to other specific dimensions), but here we have
focused on the system itself.

For the identification of the system modelling dimensions,
two perspectives were considered: the abstraction levels as-
sociated with the system, and the activities associated with
the adaptation. The first perspective refers to the require-
ments (e.g., goals), the design (e.g., architecture), and the
code of the software system, and the second refers to the key
activities of the feedback control loop, i.e., collect, analyse,
decide, and act.

In the following, we present the dimensions in term of
three groups. First, we introduce the modelling dimensions
that can be associated with the adaptation activities of the
feedback control loop, giving special emphasis to decision
making. The other two groups are related to non-functional
properties, i.e., timing and dependability, that are particu-
larly relevant to some classes of self-adaptive systems. The
proposed modelling framework is presented in the context
of an illustrative case from the class of embedded systems,
however, these dimensions were equally useful in describing
the self-adaptation properties of an IT change management
system.

3.1 Illustrative Case

As an illustrative scenario, we consider the problem of ob-
stacle/vehicle collisions in the domain of unmanned vehicles
(UVs). A concrete application could be the DARPA Grand
Challenge contest [44]. Each UV is provided with an au-
tonomous control software system (ACS) to drive the vehicle
from start to destination along the road network. The ACS
takes into account the regular traffic environment, including
the traffic infrastructure and other vehicles. The scenario
we envision is the one in which there is a UV driving on the
road through a region where people and animals can cross
the road unexpectedly. To anticipate possible collisions, the
ACS is extended with a self-adaptable control system (SCS).
The SCS monitors the environment and controls the vehicle
when a human being or an animal is detected in front of the
vehicle. In case an obstacle is detected, the SCS manoeu-
vres the UV around the obstacle negotiating other obstacles
and vehicles. Thus, the SCS extends the ACS with self-
adaptation to avoid collisions with obstacles on the road.

3.2 Overview of Modelling Dimensions
We give overview of the important modelling dimensions

per group. Each dimension is illustrated with an example
from the illustrative case.

Adaptation
The first group describes the modelling dimensions related
to adaptation.

Type of adaptability. The type of adaptability refers
to the particular kind of adaptation applied. The domain
of type of adaptability ranges from parametric to composi-
tional. Self-adaptivity can be realized by simple local para-
metric changes of a system component, for example, or it
can involve major architectural level structural changes. In
the illustrative case, to avoid collisions with obstacles, the
SCS has to adjust the movements of the UV, and this might
imply adjusting parameters in the steering gear.

Degree of automation. The automation dimension refers
to the degree of human intervention required for self-adaptation.
The domain of degree of automation ranges from autonomous
to human-based. Adaptive systems may be fully automatic
requiring no human intervention, or the system may require
human decision making, or at least confirmation or approval.
In the illustrative example, the UV has to avoid collisions
with animals without any human intervention.

Form of organization. The form of organization refers to
the type of organization used to realize self-adaptation. The
domain of form of organization ranges from weak (or central-
ized) to strong (or decentralized). In a strong organization,
the behaviour of components reflect their local environment,
there is no global model of the system. Driven by changing
requirements, the components change their structure or be-
haviour to self-adapt the system. This self-organizing form
of self-adaptation can be collaborative, market-based, and so
on. In a weak organization, adaptation is achieved through a
global system model, which incorporates a feedback control
loop, for example. A self-adaptive subsystem monitors the
base system possibly maintaining an explicit representation
of the system, and based on a set of high-level goals, the
structure or behaviour of the system is adapted. Section 4
elaborates on the different forms of organization to realize
self-adaptation. The SCS of the UV in the illustrative ex-
ample seems to fit naturally with a weak organization.

4



Techniques for adaptability. Techniques for adaptabil-
ity refer to the way self-adaptation is accomplished. The do-
main of techniques for adaptability ranges from data-oriented
to process-oriented [46]. In a data-oriented approach, the
system is characterised as acted upon, by providing the cri-
teria for identifying objects, often by modelling the objects
themselves. In a process-oriented approach, the system is
characterised as sensed, by providing the means for produc-
ing or generating objects having the desired characteristics.
In the illustrative case, the SCS will monitor the environ-
ment for obstacles that suddenly appear in front of the vehi-
cle and subsequently guide the vehicle around the obstacle
to avoid a collision. To realize this form of self-adaptability,
the SCS senses the environment of the UV, and depending
on the controller, which is part of the system model, it pro-
duces the appropriate system output.

Place of change. The place of change refers to the loca-
tion where self-adaptation takes place. The domain of place
of change includes the values application, middleware, or in-
frastructure. Self-adaptation can be realized by monitoring
and adapting the application logic, the supporting middle-
ware, or the infrastructure that defines the system. In the
illustrative case, self-adaptation is realized by the SCS that
is part of the application logic.

Abstraction of adaptability. This modelling dimension
refers to abstraction level at which self-adaptation is ap-
plied. The domain of abstraction of adaptability refers to
requirements, design, and implementation, and their respec-
tive products, for example, goals, architectures and code.
An example of adaptation at the design level is the dynamic
reconfiguration of the system architecture. Another exam-
ple of adaptation at the design level can be the selection of
an alternative algorithm. An example of adaptation at the
level of code is dynamic weaving of additional code. To avoid
collisions, the SCS may pass particular control information
to the ACS which seems to fit best at the abstraction level
of design.

Impact of adaptability. This modelling dimension refers
to the impact that adaptation might have upon the system.
The domain of impact of adaptability ranges from specific
to generic. Adaptability is specific if it affects a particular
component or part of the system. On the other hand, if the
adaptability affects the whole system, its impact is generic.
In the illustrative case, if the the steering gear fails, the self-
adaptation would be generic since collision avoidance affects
the overall system’s behaviour.

Trigger of adaptability. This modelling dimension refers
whether the agent of change is either internal or external to
the system. A failure in a system component is considered
as an internal trigger for reconfiguring the system structure
or changes the services it provides, while the existence of an
obstacle is an external trigger since the system has to change
its behaviour in order to avoid a collision.

In addition to the above modelling dimensions that can be
applied to the system as a whole, there are some dimensions
related specifically to the key activities of the feedback con-
trol loop. In the following, we present two of that modelling
dimensions that are related to decision making.

Degree of decision making. The degree of decision mak-
ing expresses to what extent self-adaptation is defined in

advance. The domain ranges from static (or pre-defined) to
dynamic (or run-time). For static decision making, the sce-
narios of self-adaptation are exhaustively defined before the
system is deployed. For dynamic decision making, the deci-
sion of self-adaptation will be made during execution based
on a set of high-level goals. In the illustrative example, the
SCS monitors the environment and decides at run-time when
it has to take control over the ACS to avoid collisions.

Techniques for decision making. This modelling dimen-
sion refers to the procedures and methods used to determine
when to apply self-adaptation. Values of the domain of tech-
niques for decision making are utility functions, case-based
reasoning, etc. The SCS will likely use a reasoning-like ap-
proach to determine when the vehicle is in collision range
with an obstacle.

Timing
The second group describes modelling dimensions related to
timing issues.

Responsiveness. The responsiveness of self-adaptation re-
lates to the answering or replying of the self-adaptation. The
domain ranges from guaranteed to best-effort. For critical
scenarios, self-adaptation is required to be guaranteed, how-
ever, in less-critical situations, best-effort will suffice. In the
illustrative example, the SCS must guarantee that the UV
reacts effectively to avoid collisions with possibly a human
being.

Performance. The performance dimension refers to the de-
gree of predictability of self-adaptation. The domain ranges
from predictable to degradable. In time-critical cases, the
self-adaptable system often needs to act in a highly pre-
dictable manner. In other cases, a graceful degradation of
the system is acceptable. In the illustrative case, when an
obstacle appears, the SCS will manoeuvre the UV in such a
way that a collision should be avoided. In order to accom-
plish this task predictably, other system tasks might have
their performance affected.

Triggering. The triggering dimension of self-adaptation
refers to the initiation of the adaptation process. The do-
main of triggering ranges from event to time. The cause for
self-adaptation is event triggered when the process is ini-
tiated whenever there is a significant change in the state,
i.e., an event. The cause for self-adaptation is time trig-
gered when the process is initiated at predetermined points
in time. Obstacles in the illustrative case appear unexpect-
edly and as such triggering of self-adaptation is event-based.

Dependability
The third and final group we consider describes modelling
dimensions related to dependability, that is, the ability of
a system to deliver a service that can justifiably be trusted
[1].

Reliability, availability, confidentiality. Reliability, avail-
ability, and confidentiality are attributes of dependability.
The domain of each of these properties ranges from high to
low. In the illustrative case, the reliability of the SCS avoid-
ing a collision is expected to be high.

Safety. The safety dimension refers to absence of catastrophic
consequences on the user and the environment, which can be
caused by the self-adaptation. The domain of safety ranges

5



from critical to non-critical. Self-adaptation in the illustra-
tive example is clearly critical because of the catastrophic if
there is a failure.

Maintainability. The maintainability modelling dimen-
sion refers ability to undergo modifications and repairs. The
domain of maintainability ranges from autonomous to human-
based. An fully autonomous self-adaptive system includes
facilities to self-check and self-tune its abilities to adapt the
system. Given the nature of the Grand Challenge contest is
likely that the system should be autonomous as far as main-
tainability is concerned.

Data integrity. The data integrity dimension of self-adaptation
refers to the improper alterations of the data. The domain
of this modelling dimension ranges from short-term to long-
term. Short-term data integrity applies to hard real-time
systems in which the flow of time tends to invalidate the
date, while long-term data integrity applies to transaction
processing systems. Since the illustrative example is related
to an embedded real-time system, the data integrity will be
short-term.

3.3 Challenges Ahead
In spite of the many years of software engineering research,

construction of self-adaptive software systems has remained
a very challenging task. While substantial progress has been
made in each of the discussed modelling dimensions, there
are several important research questions that are remaining,
and frame the future research in this area. We briefly elab-
orate on those below. The discussion is structured in line
with the three presented groups of modelling dimensions.

Adaptation

Many types of adaptation techniques have been developed:
architecture-based adaptation that is mainly concerned with
structural changes at the level of software components, parametric-
based adaptation that leverages policy files or input parame-
ters to configure the software components, aspect-oriented-
based adaptation that changes the source code of a running
system via dynamic source-code weaving, and so on. Re-
searchers and practitioners have typically leveraged a single
tactic to realize adaptation based on the characteristics of
the target application. However, given the unique bene-
fits of each approach, we believe a fruitful avenue of future
research is a more comprehensive approach that leverages
several adaptation tactics simultaneously.

There is a wide spectrum of the degree of automation sup-
ported by the current state of the art approaches. However,
in general, there are significant hurdles facing the construc-
tion of fully automatic adaptive systems, many of which are
reminiscent of the challenges that the AI community has
faced over the past few decades. It is imperative for the
software engineering community to develop better models
that incorporate the AI techniques in solving the practical
problems of automatic adaptive systems.

Most state of the art adaptive systems are built accord-
ing to the centralized closed-control loop pattern. Thereby,
if applied to a large-scale software system, almost all cur-
rent techniques suffer from scalability problems. The field
of multi-agent systems has developed a large body of knowl-
edge on systems in which the system components adapt
their structure or behaviour to changing requirements to re-
alize system adaptation. Related are biologically inspired

adaptation systems that tend to be more decentralized as
well. However, practical experiences with these approaches
in real-world settings is limited. Methods used in systems
engineering, like hierarchical organization and coordination
schemes could be applicable. There is a pressing need for de-
centralized, but still manageable, efficient, and predictable
techniques for constructing self-adaptive software systems.
A major challenge is to accommodate a systematic engineer-
ing approach that integrates both control-loop approaches
with decentralized agent-inspired approaches.

Most state of the art techniques leverage a utility func-
tion to map the trade-offs among several conflicting goals of
adaptability to a scalar value, which is then used for making
decisions about adaptation. However, in practice, defining
such a utility function is a challenging task. Practical tech-
niques for specifying and generating utility functions, po-
tentially based on the user’s requirements, are needed. One
promising direction is to use preferences that compare situ-
ations under ceteris paribus conditions.

Dynamic/run-time decision requires efficient mechanisms
for gathering information about the running system and its
environment. Principled approaches for efficient gathering of
information at run-time are needed. An important research
effort will be to understand how we can collect the neces-
sary information for different domains and derive reusable
engineering approaches.

Timing

Responsiveness is a crucial property in real-time software
systems, which are becoming more prevalent with the emer-
gence of embedded and cyber-physical systems. These sys-
tems are often required to respond deterministically within
pre-specified (often short) time intervals, making it extremely
difficult to adapt the system, while satisfying timing con-
straints. There is a need for adaptation models targeted for
real-time systems that treat the duration and overhead of
adaptation as first class entities.

Predicting the exact behaviour of a software system due to
run-time changes is a challenging task. For example, while
it may be possible to predict the new functionality that will
become available as a result of replacing a software com-
ponent, it may not be possible to determine what will be
the impact of the replaced software component on the other
components that are sharing the same resources (e.g., CPU,
memory, and network). More advanced and predictive mod-
els of adaptation are needed for systems that could fail to
satisfy their requirements due to side-effects of change.

Often, adaptation is triggered by the occurrence of a pat-
tern in the data that is gathered from a running system.
For example, the system is monitored to determine when
a particular level of Quality of Service (QoS) is not satis-
fied, which then initiates the adaptation process. However,
monitoring a system, especially when there are several dif-
ferent QoS properties of interest, has an overhead. In fact,
the amount of degradation in QoS due to monitoring could
outweigh the benefits of improvements in QoS to adapta-
tion. We believe that more research on light-weight mon-
itoring techniques, as well as more advanced models that
take the monitoring overhead of the approach into account
are needed.

6



Dependability

Adapting safety-critical software systems while ensuring the
safety requirements have remained largely an out-of-reach
goal for the practitioners and researchers. There is a need
for verification and validation techniques that guarantee safe
and sound adaptation of safety-critical systems, under all
foreseen and unforeseen, see also section 5.

4. ENGINEERING
Building self-adaptive software systems cost-effectively and
in a predictable manner is a major engineering challenge
even though adaptive systems have a long history with huge
successes in many different branches of engineering [49, 16].
Mining the rich experiences in these fields, borrowing the-
ories from control engineering, and then applying the find-
ings to software-intensive adaptive systems is a most worth-
while and promising avenue of research. Lehman’s work
on software evolution [30] has shown that “[t]he software
process constitutes a multilevel, multiloop feedback system
and must be treated as such if major progress in its planning,
control, and improvement is to be achieved.” Therefore,
any attempt to automate parts of these processes such as
self-adaptive systems necessarily also has to consider feed-
back loops. Therefore, we advocate to focus on the feed-
back loop—a concept that is elevated to a first-class entity
in control engineering—when engineering self-adaptive soft-
ware systems.

4.1 State of the Art & Feedback Loops
Self-adaptation in software-intensive systems comes in many
different guises. What self-adaptive systems have in com-
mon is that design decisions are moved towards runtime
and that the system reasons about its state and environ-
ment. The reasoning typically involves feedback processes
with four key activities: collect, analyze, decide, and act
as depicted in Figure 1 [14]. Here we concentrate on self-
adaptive systems that are implemented using feedback mech-
anisms to control their dynamic behavior. For example,
keeping web services up and running for a long time requires
collecting of information that reflects the current state of the
system, analyzing of that information to diagnose perfor-
mance problems or to detect failures, deciding how to resolve
the problem (e.g., via dynamic load-balancing or healing),
and acting to effect the made decision.

Figure 1: Activities of the control loop.

We have observed that feedback loops are often hidden,
abstracted, or internalized when presenting the architecture
of self-adaptive systems [36]. However, the feedback behav-
ior of a self-adaptive system, which is realized with its con-
trol loops, is a crucial feature and, hence, should be elevated
to a first-class entity in its modelling, design, and implemen-
tation. When engineering a self-adaptive system, the prop-
erties of the control loops affect the system’s design and
architecture. Therefore, besides making the control loops
explicit, the control loops’ properties have to be made ex-
plicit as well. Cheng, Garlan and Schmerl also advocate to
make self-adaptation external, as opposed to be internal or
hard-wired, to separate the concerns of system functionality
from the concerns of self-adaptation [8].

Generic Control Loop Model
The generic model of a control loop presented in Figure 1
provides a good overview of the main activities around the
feedback loop, but ignores many properties of the control
and data flow around the loop. When engineering a self-
adaptive system, questions about these properties become
important. The feedback cycle starts with the collection of
relevant data from environmental sensors and other sources
that reflect the current state of the system (see top of Fig-
ure 1). Some of the engineering questions that need be an-
swered here are: What is the required sample rate? How
reliable is the sensor data? Is there a common event for-
mat across sensors? Next, the system analyzes the collected
data. There are many approaches to structuring and rea-
soning about the raw data (e.g., using applicable models,
theories, and rules). Some of the applicable questions here
are: How is the current state of the system inferred? How
much past state may be needed in the future? What data
need to be archived for validation and verification? Next, a
decision must be made about how to adapt the system in
order to reach a desirable state. Approaches such as risk
analysis can help to make a decision among various alterna-
tives. Here, the important questions are: How is the future
state of the system inferred? How is a decision reached (e.g.,
with off-line simulation or utility/goal functions)? What are
the priorities for adaptation across multiple control loops
and within a single control loop? Finally, to implement the
decision, the system must act via available actuators and ef-
fectors. Important questions here are: When should and can
the adaptation be safely performed? How do adjustments
of different feedback loops interfere with each other? Do
centralized or decentralized control help achieve the global
goal? The above questions — and many others — regarding
the control loop should be explicitly identified, recorded, and
resolved during the development of the self-adaptive system.

Despite recent attention to self-adaptive systems (e.g.,
several ICSE workshops), development and analysis meth-
ods for such systems do not yet provide sufficient explicit fo-
cus on the feedback loops—and their associated properties—
that almost inevitably control the self-adaptations. The idea
of increasing the visibility of control loops in software archi-
tectures and software methods is not new. Over a decade
ago, Shaw compared a software design method based on
process control to an object-oriented design method [45].
She introduced a new software organization paradigm based
on control loops with an architecture that is dominated by
feedback loops and their analysis rather than by the iden-
tification of discrete stateful objects. As pointed out in

7



[26] different forms of control loops may be employed for
self-adaptive software and we may even go beyond adaptive
control and use reconfigurable control where besides the pa-
rameters also structural changes are considered (cf. compo-
sitional adaptation [35]).

Control Theory
The control loop is a central element of control theory, which
provides well-established mathematical models, tools, and
techniques to analyze system performance, stability, sensi-
tivity, or correctness [6, 15]. Researchers have applied re-
sults of control theory and engineering when building self-
adaptive systems. However, it is not clear if general prin-
ciples of this discipline (e.g., open/closed-loop controller,
observability, controlability, stability, or hysteresis) are ap-
plicable when reasoning about self-adaptive software sys-
tems. Systems with a single control loop are easier to rea-
son about than systems with multiple loops-which are much
more common. Good engineering practice calls for reduc-
ing multiple control loops to a single one, or making control
loops independent of each other [37]. If this is not possi-
ble, the design must make the interactions of control loops
explicit and expose how these interactions are handled. An-
other typical scheme from control engineering is organizing
multiple control loops in the form of a hierarchy where, due
to the employed different time periods, unexpected interfer-
ence between the levels can be excluded. This scheme seems
to be of particular interest if we distinguish different forms
of adaptation such as change management and goal man-
agement [28]. There is a rich history of control theory in
all branches of engineering. Mining the experiences in these
fields and applying them to software-intensive adaptive sys-
tems is a most worthwhile next step.

Specific Control Loop Models
Another key observation that we made is that different ap-
plication areas introduce different nomenclature and archi-
tectural diagrams for their realization of the generic feed-
back loop depicted in Figure 1. It is useful to investigate
how different application areas realize this generic feedback
loop and to point out the commonalities in order to com-
pare and leverage self-adaptive systems research from differ-
ent application areas.For example, control engineering lever-
ages the Model Reference Adaptive Control (MRAC) solu-
tion to describe many kinds of feedback-based systems (e.g.,
flight control) [16]. Because of the separation of concerns
(i.e., model reference, adaptive algorithm, controller and
process), this solution is a solid starting point for the design
of self-adaptive software-intensive systems. In fact, many
participants of the Seminar [43] presented self-adaptive sys-
tems that could be expressed in terms of MRAC (e.g., self-
adaptive flight control [33], autonomous shuttles [5], AGV
transportation [50], and the Rainbow system [21]). One
of the most recognized derivatives of the MRAC solution
for the computing domain is the autonomic element and
its architectural blueprint developed by IBM for autonomic,
self-managed systems [9]. The IBM architectural blueprint
identifies the autonomic element as a fundamental build-
ing block for designing self-configuring, self-healing, self-
protecting and self-optimizing systems.

In contrast to engineered self-adaptive systems, biologi-
cally inspired systems do not often have clearly visible con-
trol loops. Further, the systems are often decentralized in

such a way that the agents do not have a sense of the global
goal but rather it is the interaction of their local behavior
that yields the global goal as an emergent property. An
example of a self-organizing biologically inspired software
system is a distributed computational system built using
the tile architectural style from [3]. In such a system, com-
ponents distributed around the Internet come together to
“self-assemble” into a solution to an NP-complete problem.
This system can self-adapt to exhibit properties of fault and
adversary tolerance [4]. The self-adaptation control-loop is
not evident, but it does exist, and it resembles that of Fig-
ure 1. In an attempt to unify the self-adaptive (top-down)
and self-organising (bottom-up) views, [12] propose a soft-
ware architecture based on the use of metadata and policies
where adaptation properties and feedback loop reasoning are
considered explicitly both at design-time and run-time.

4.2 Challenges Ahead
We have argued that the control loop should be a first-
class entity when thinking about the engineering of self-
adaptive systems. We believe that understanding and rea-
soning about the control loop is key for advancing the con-
struction of self-adaptive systems from an ad-hoc, trial-and-
error endeavor towards a more disciplined approach. To
achieve this goal the following issues, possibly among oth-
ers, have to be addressed.

Modelling. There should be modelling support to make
the control loop explicit and to expose self-adaptive proper-
ties so that the designer can reason about the system. The
models have to capture what can be observed and what can
be influenced. It would be desirable to have a widely agreed
upon reference model of self-adaptive systems including the
control loop. Another challenge is characterizing the control
loop for self-organizing systems that are biologically inspired
such as swarms. For such systems the control loop seems im-
plicitly present.

The nature of self-adaptive system require to reify prop-
erties that would otherwise be encoded implicitly. These
reified properties need to be modelled appropriately so that
they can be queried and modified during run-time. Exam-
ples of such properties are system state that is used to rea-
son about the system’s behavior, and policies and business
goals that govern and constrain how the system will and can
adapt.

Architecture. Reference architectures for adaptive sys-
tems should highlight key aspects of feedback loops, includ-
ing number of control loops, structural arrangements of con-
trol loops (e.g., sequence, parallel, hierarchy, decentralized),
interactions among control loops, data flow around the con-
trol loops, tolerances, trade-offs, sampling rates, stability
and convergence conditions, hysteresis specifications, and
context uncertainty. It is highly desirable that such archi-
tectures can be used to reason about the properties of the
system and its control loop. In other words, is it possi-
ble to come up with Attribute-Based Architectural Styles
(ABASs) for control loops in self-adaptive systems? Con-
trol engineering and existing approaches to cope with con-
trol loops assume a static control loop at the instance level.
While this assumption eases the modelling and architecting
of self-adaptive systems, it is by no means sufficient for soft-
ware systems where dynamic structures are the default and

8



not the exception. Therefore, it can be expected that also
control loops which can only be studied at the type level or
are established at run-time become a major issue.

Design. For (multiple) control loops there should be a de-
sign catalog of common forms along with associated oblig-
ations and reasoning. We may have patterns for specific
kinds of interacting control loops, for manual vs. automatic
control, for making control loops independent, etc. As a
first step, we should identify canonical self-adaptive systems
from different domains and document their control loops.
This should also help us to better understand the differences
in control loops for self-adaptive and self-organizing systems
and the resulting differences in design goals. For example,
a design goal for self-adaptive systems is the independence
of control loops. However, independence of control loops is
a contradictory requirement for engineered self-organizing
systems. In such systems loops overlap, local and global
control loops interfere with each other. Individual compo-
nents obey their own control loop (positive and negative
feedback rules); it is the combined local interactions among
these components that provide global control loops at the
level of the system. It is the combined work of ants (lay-
ing down pheromone trails) that leads them to find the best
source of food, and to find alternative ones when it is ex-
hausted (changing the pheromone trails).

System-level support. Good system-level support should
“allow researchers with different motivations and experiences
to put their ideas in practice, free from the painful details
of low-level system implementation” [2]. Such middleware
support should allow for flexibility and rapid prototyping,
supporting different heterogeneous platforms. This could
be achieved with a framework and standardized interfaces
for self-adaptive functionality. Importantly, can there be a
common generic middleware, which can be then instantiated
to realize both self-adaptive and self-organizing systems?

Human-computer interaction. Even though self-adaptive
systems act autonomously in many respects, they have to
keep the user in the loop. Providin.g the user with feed-
back about the system state is crucial to establish and keep
users’ trust. To that effect, a self-adaptive system needs to
expose aspects of its control loop to the user. For example,
if a web server is reconfigured in response to a load change,
the human administrator needs (visual) feedback that the
performed adaptation has a positive effect. Similarly, in a
self-adaptive flight control system, the pilot of a plane that
is about to spin out of control due to a damaged part would
like to get feedback from the system that it is converging to-
wards a stable state in response to that incident. Also, users
should be given the option to disable self-adaptive features
and the system should take care not to contradict explicit
choices made by users [32]. Furthermore, users might want
feedback from the system about the information collected
by sensors and how this information is used to adapt the
system. In fact, if the collected information is personal data
there might be even a legal obligation to do so [41].

5. ASSURANCES
The goal of system assurance is simple. Developers need

to provide evidence that the set of stated functional and
nonfunctional properties are satisfied during system’s oper-
ation. While the goal is simple, achieving it is not. Tra-

ditional verification and validation methods, static or dy-
namic, rely of stable descriptions of software models and
properties. The characteristics of self-adaptive systems cre-
ate new challenges for developing high-assurance systems.
Current verification and validation methods do not align
well with changing goals and requirements as well as vari-
able software functionality. Consequently, novel verification
and validation (V&V) methods are required to provide as-
surance in self-adaptive systems. In this section, we present
a generalized verification and validation framework which
specifically targets the characteristics of self-adaptive sys-
tems. Thereafter, we present a set of research challenges for
V&V methods implied by the presented framework.

5.1 Framework
Self-adaptive systems are highly context dependent. When-

ever the system’s context changes the system has to decide
whether it needs to adapt. Whenever the system decides
to adapt, this may prompt the need for verification activi-
ties to provide continual assessment. Moreover, depending
on the dynamics of change, verification activities may have
to be embedded in the adaptation mechanism. Due to the
uniqueness of such assessment process, we find it necessary
to propose a framework for adaptive system assurance. This
framework is depicted in Figure 2. Over a period of oper-
ation, the system operates through a series of operational
modes. Modes, represented in Figure 2 by index j, rep-
resent known and, in some cases, unknown phases in the
computational lifecycle. Examples of known modes in flight
control include altitude hold mode, flare mode and touch-
down mode. Sequences of behavioral adjustments in the
known modes are known. But, continuing with the same
example, if failures change the airframe dynamics, the ap-
plication’s context changes and software control needs to
sense and adapt to the conditions unknown prior to the de-
ployment.

Mj0

mj0

Mj1

(C + S)j1
(C + S)j0

Mjk

(C + S)jk
tjk−1

|= Pj

j-1 j+1

|=

tj0|=

mjk−1

P
t
j0

P
t
jk−1

Figure 2: V & V model.

Such adaptations are reflected in a series of context - sys-
tem state (whatever this is for a self-adaptive system) con-
figurations. (C+S)ji denotes the ith combination of context
and system state in a cycle which is related to the require-
ments of the system mode j. At the level of configurations it
is irrelevant whether the context or the system state changes
(transition tj0), the result always is a new configuration.
Goals and requirements of a self-adaptive system may also
change during run-time. We abstract from the subtle dif-
ferences between goals and requirements for the generalized
framework and instead use the more generic term proper-
ties. In self-adaptive systems, properties may change over

9



time in response to changes in the system context or the
system state. Properties might be relevant in one context
and completely irrelevant in some other. Properties might
even be weighted against each other, resulting in a trade
offs between properties and, thus, their partial fulfillment.
Properties can also be related to each other. Global proper-
ties like safety requirements must be satisfied over the entire
life time of a system, through all the system modes. Differ-
ent local properties P t

ji
within a context might guarantee

a global property. Similarly, a local property may guaran-
tee that a global property is not invalidated by the changes.
Verification of the properties typically relies on the existence
of models. System dynamics and changing requirements of
self-adaptive systems make it impossible to build a steady
model before system deployment and perform all verifica-
tion tasks on such a model. Therefore, models need to be
built or at least updated at run-time. In Figure 2, Mji is
the model that corresponds to configuration (C+S)ji . Each
change in the system configuration needs to be reflected at
model level as well, although delays in model definition may
be inevitable.

5.2 Challenges
While verification and validation of properties in distrib-

uted systems is not a novel problem, a number of additional
issues arise in the context of self-adaptation due to the na-
ture of these applications. Self-adapting systems have to
contend with dynamic changes in modes and contexts as
well as the dynamic changes in user requirements. Due to
this high dynamism, V&V methods traditionally applied at
requirements and design stages of development must be sup-
plemented with run-time assurance techniques.

Dynamic identification of changing requirements. Sys-
tem requirements can change implicitly, as a result of a
change in context. Since in dynamic environments all even-
tualities cannot be anticipated, self-adapting systems have
to be able to identify new contexts. There will inevitably be
uncertainty in the process of context identification. Once
the context is identified, utility functions evaluate trade-
offs between the properties (goals) aligned with the context.
The adequacy of context identification and utility functions
is subject to verification. It appears that failure detection
and identification techniques from distributed fault tolerant
computing are a special case of context identification. Given
that all such techniques incorporate uncertainty, probabilis-
tic approaches to assurance seem to be the most promising
research direction.

Adaptation-specific model driven environments. To
deal with the challenges of adaptation we envisage a model-
driven development, where models play a key role through-
out the development. Models allow the application of V&V
methods during the development process and can support
self-adaptation at run-time. In fact, models can support es-
timation of system’s status, so that the impact of a context
change can be predicted. Provided that such predictions are
reliable, it should be possible to perform model-based adap-
tation analysis as a verification activity. A key issue in this
approach is to keep the run-time models synchronized with
the changing system. Any model based verification, there-
fore, presumes the availability of accurate change tracking
algorithms that keep system model synchronized with the
runtime environment. Uncertain model attributes can be

described, for example, using probability distribution func-
tions, the attribute value ranges, or using the analysis of
historical attribute values. These methods can take advan-
tage of probability theory and statistics that helped solve
stochastic problems in the past.

Agile runtime assurance. In situations when models that
accurately represent the dynamic interaction between sys-
tem context and state cannot be developed, performing ver-
ification activities that address verification at run-time are
inevitable. The key requirement for run-time verification
is the existence of efficient agile solution algorithms which
do not require high space/time complexity. Self-adaptive
systems may change their state quickly to respond to con-
text or property changes. Proof-Carrying Code (PCC) is
a technique by which a host platform can verify that code
provided for execution adheres to a predefined set of safety
rules. The limitation of the PCP paradigm is that exe-
cuted code must contain a formal safety proof that attests
to the fact that the code respects the defined safety policy.
Defining such a proof for code segments which are para-
meterized and undergo changes is a challenge. It is unclear
whether defining such proofs for emerging system properties
is even feasible.When formal property proofs do not seem
feasible, run-time assurance techniques may rely on demon-
strable properties of adaptation, like convergence and sta-
bility. Adaptation is a transient behavior and the fact that a
sequence of observable states converge towards a stable state
is always desirable. Transient states may not satisfy local
or global properties (or we just cannot prove that they do).
Therefore, the analysis of the rate of convergence may inspire
confidence that system state will predictably quickly reach a
“desirable” state. Here we intentionally use term “desirable”
rather than “correct” state because we may not know what
a correct adaptation is in an unforeseen context. This prob-
lem necessitates investigation of scientific principles needed
to move software assurance beyond current conceptions and
calculations of correctness.

Liability and social aspects. Adaptive functionality in
safety-critical systems is already a reality. Applications of
adaptive computing in safety critical systems are on the
rise [33, 23]. Autonomous software adaptation raises new
challenges in the legal and social context. Generally, if soft-
ware does not perform as expected, the creator may be held
liable. Depending on the legal theory, different issues will
be relevant in a legal inquiry [25]. Software vendors may
have a difficult time to argue that they applied the expected
care when developing a critical application if the software is
self-adaptive. Software may enter unforeseeable states that
have never been tested or reasoned about. It can be also ar-
gued that current state-of-the-art engineering practices are
not sufficiently mature to warrant self-adaptive functional-
ity. However, certain liability claims for negligence may be
rebutted if it can be show safety mechanisms could disabling
self-adaptive functionality in hazardous situations. Assur-
ance of self-adaptive software is then not only a step to
make the product itself safer, but should be considered a
valid defense against liability claims.

6. LESSONS AND CHALLENGES
In this section, we present the overall conclusions of the

road map paper in the context of lessons learned and what
were the major challenges identified. First and foremost,

10



this exercise had no intention of being exhaustive. There is
a lot of material yet to be covered that barely has been men-
tioned, or not at all mentioned, in this paper. The choice
has been made to focus on four major issues that were iden-
tified to be key in the software engineering of self-adaptive
systems, and in particular, those that were identified to be
essential from the software engineering perspective: require-
ments, modelling, engineering, and assurances.

In the presentations of each of the four views, the intent
was not to cover all the aspects related to them, instead
very simple theses were considered as a means for identify-
ing the challenges associated with each of the views. The
four identified theses were: requirements - “the need to de-
fine a new requirements language for handling uncertainty to
give self-adaptive systems the required freedom to do adap-
tation”, modelling - “the need to enumerate and classify
modelling dimensions for obtaining precise models to sup-
port run-time reasoning and decision making for achieving
self-adaptability”, engineering - “the need to consider feed-
back control loops as first-class entities during engineering
to rule self-adaptive systems of different flavours appropri-
ately”, and assurances - “the need to define novel verification
and validation methods for the provision of assurances which
cover the adaptation of self-adaptive systems”. In the fol-
lowing, for each of the four views, we presented some of the
identified challenges.

Requirements. The major challenge here is the definition
of a new requirements language that would be able to cap-
ture uncertainty at a more abstract level. If uncertainty is
consider at the requirements level, means have to be found
to manage this uncertainty. Thus there is the need to rep-
resent the tradeoffs between the flexibility provided by the
uncertainty, and the assurances required by the application.
Considering requirements might vary at run-time, systems
should be made aware of their own requirements, hence the
need of “requirements reflection” and online goal refinement.
However, requirements should not be consider in isolation,
techniques for mapping requirements into architecture are
needed, in addition to new operators that are able support
traceability from requirements to implementation.

Modelling. A major challenge here is the definition of
models that are able to represent a wide range of system
properties. The more precise the models are, the more ef-
fective they should be in supporting run-time analysis and
decision process. However, at the same time models should
be sufficiently simple, otherwise synthesis might become un-
feasible. The definition of utility functions for supporting
decision making is a challenging task, and practical tech-
niques are needed to specify and generate these utility func-
tions. Alternative approaches based on more light weight
techniques are needed that might be able to be generated
during run-time without human intervention.

Engineering. In order consider the feedback control loop
as a first-class entity there is the need for modelling support
to make its role more explicit. This should also be desir-
able for self-organizing systems where loops are not clearly
visible. Once loops become more explicit, it becomes much
easier to reify properties, so they can be queried and modi-
fied at run-time. For facilitating the reasoning between sys-
tem properties and its control loops, reference architectures
should be defined that highlight key aspects of these loops,
such as, number, structural arrangements, interactions and

stability conditions. From the user perspective it also im-
portant to expose certain aspects of the control in order to
establish and keep user’s trust. Considering the different
types of application and system properties, it is expected a
wide variety of control loops, hence the need for a design
catalog of common forms, which should also be helpful in
understanding their differences.

Assurances. The major challenge here is to supple-
ment traditional methods applied at requirements and de-
sign stages of development with run time assurances. Since
system context may change, there is the need to identify new
contexts dynamically. There are uncertainties associated
with this process, hence probabilistic approaches is a promis-
ing research direction. Models in context of self-adaptability
will play a key role. If models support self-adaptation dur-
ing run-time, it should be possible to perform adaptation
analysis as a verification activity. This might be achieved
with adaptation-specific model driven environments. How-
ever, a key requirement for run-time verification is the ex-
istence of efficient agile solution algorithms which do not
require high space/time complexity. One approach would
be to relax the correctness of the adaptation, and instead
use the notion of “desirable” adaptation because we may not
know what a correct adaptation is in an unforeseen context.

There are several aspects related to the software engineer-
ing of self-adaptive systems that were not covered. One of
them are processes, which are an integral part of software
engineering. Software engineering processes are essentially
associated with design time, however, the engineering of self-
adaptive systems will also require run-time processes that
would provide means for handling change. This may re-
quire re-evaluating how software should be developed for
self-adaptive systems. Instead of a single process, two com-
plementary processes may be required for coordinating the
design time and run-time activities of building software, and
this might lead to a whole new way of developing software.
Technology is another aspect that should enable and influ-
ence the development of self-adaptive systems. Technologies
like, model driven development, aspect-oriented program-
ming, and software product lines might offer new opportuni-
ties in the development of self-adaptive systems, and change
the processes by which these systems are developed.

One thing that we have learned from this exercise is that
the area of self-adaptive systems is vast, it is multidiscipli-
nary, and it involves a wide range of systems. Thus it is
important for software engineering to learn from other fields
of knowledge that are working, or have being working, in the
development of similar systems, or have already contributed
with solutions that fit the purpose of self-adaptive systems.
Some of the fields have been mentioned in this paper, like,
control theory, but other fields from which software engi-
neering might get some inspiration for the development of
self-adaptive systems are, decision theory, non-classic com-
putation, and computer networks. Another thing that we
have learned from the fact that self-adaptability might be
associated with a wide range of systems, is that the idea of
finding a solution that should be able to fit all the pur-
poses might be remote. For that reason, exemplars are
needed from a wide range of applications that would en-
able to benchmark the different techniques, methods and
tools that will be emerging to solve the different challenges

11



associated with the engineering of software for self-adaptive
systems.

We can conclude that all four theses refer to new chal-
lenges the software engineering of self-adaptive systems has
to face which result from the dynamics of adaptation. This
dynamics requires that well proven principles and techniques
valid for standard software engineering have to be questioned
and new solutions have to be considered.

7. REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic

concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, January-March 2004.

[2] Ö. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi,
and A. P. A. van Moorsel. The self-star vision. In O. Babaoglu,
M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, and A. van
Moorsel, editors, Proceedings Conference on Self-Star
Properties in Complex Information Systems, volume 3460 of
Lecture Notes in Computer Science, pages 1–20, 2005.

[3] Y. Brun and N. Medvidovic. An architectural style for solving
computationally intensive problems on large networks. In
Proceedings of Software Engineering for Adaptive and
Self-Managing Systems (SEAMS07), Minneapolis, MN, USA,
May 2007.

[4] Y. Brun and N. Medvidovic. Fault and adversary tolerance as
an emergent property of distributed systems’ software
architectures. In Proceedings of the 2nd International
Workshop on Engineering Fault Tolerant Systems (EFTS07),
pages 38–43, Dubrovnik, Croatia, September 2007.

[5] S. Burmester, H. Giese, E. Münch, O. Oberschelp, F. Klein,
and P. Scheideler. Tool support for the design of self-optimizing
mechatronic multi-agent systems. International Journal on
Software Tools for Technology Transfer (STTT), 10, 2008. (to
appear).

[6] R. Burns. Advanced Control Engineering.
Butterworth-Heinemann, 2001.

[7] B. H. C. Cheng and J. M. Atlee. Research directions in
requirements engineering. In FOSE ’07: 2007 Future of
Software Engineering, pages 285–303. IEEE Computer Society,
Minneapolis, MN, USA, May 2007.

[8] S.-W. Cheng, D. Garlan, and B. Schmerl. Making
self-adaptation an engineering reality. In Proceedings
Conference on Self-Star Properties in Complex Information
Systems, volume 3460 of Lecture Notes in Computer Science,
pages 158–173, 2005.

[9] I. Corporation. An architectural blueprint for autonomic
computing. White Paper 4th Ed., IBM Corporation, June 2006.
http://www-03.ibm.com/autonomic/pdfs/AC_BlueprintWhite_
Paper_4th.pdf.

[10] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and
J. Ueyama. A generic component model for building systems
software. ACM Transactions on Computer Systems, February
2008.

[11] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal directed
requirements acquisition. In Selected Papers of the Sixth
International Workshop on Software Specification and Design
(IWSSD), pages 3 – 50, 1993.

[12] G. Di Marzo-Serugendo, J. Fitzgerald, A. Romanovsky, and
N. Guelfi. A generic framework for the engineering of
self-adaptive and self-organising systems. Technical report,
School of Computing Science, University of Newcastle,
Newcastle, UK, 2007.

[13] G. Di Marzo-Serugendo, M.-P. Gleizes, and A. Karageorgos.
Self-organisation in mas. Knowledge Engineering Review,
20(2):165–189, 2005.

[14] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli. A survey of autonomic communications. ACM
Transactions Autonomous Adaptive Systems (TAAS),
1(2):223–259, December 2006.

[15] R. C. Dorf and R. H. Bishop. Modern Control Systems.

Prentice Hall, 10th edition, 2005.

[16] G. Dumont and M. Huzmezan. Concepts, methods and
techniques in adaptive control. In Proceedings American
Control Conference (ACC 2002), volume 2, pages 1137–1150,
Anchorage, AK, USA, 2002.

[17] S. Easterbrook and M. Chechik. A framework for multi-valued
reasoning over inconsistent viewpoints. In Proceedings of
International Conference on Software Engineering
(ICSE’01), pages 411–420, 2001.

[18] P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, L. Northrop, D. Schmidt,
K. Sullivan, and K. Wallnau. Ultra-large-scale systems: The
software challenge of the future. Technical report, Software
Engineering Institute, July 2006. http://www.sei.cmu.edu/uls/.

[19] S. Fickas and M. S. Feather. Requirements monitoring in
dynamic environments. In IEEE International Symposium on
Requirements Engineering (RE95), pages 140 – 147, 1995.

[20] A. Finkelstein. Requirements reflection. Dagstuhl Presentation,
2008.

[21] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing system
dependability through architecture-based self-repair. In R. D.
Lemos, C. Gacek, and A. Romanovsky, editors, Architecting
Dependable Systems. Springer-Verlag, 2003.

[22] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and
B. H.C.Cheng. Goal-based modeling of dynamically adaptive
system requirements. In 15th Annual IEEE International
Conference on the Engineering of Computer Based Systems
(ECBS), 2008.

[23] J. J. Hageman, M. S. Smith, and S. Stachowiak. Integration of
online parameter identification and neural network for in-flight
adaptive control. Technical Report NASA/TM-2003-212028,
NASA, 2003.

[24] D. Harel and R. Marelly. Come Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer,
2005.

[25] C. Kaner. Software liability. Software QA, 4(6), 1997.

[26] M. M. Kokar, K. Baclawski, and Y. A. Eracar. Control
theory-based foundations of self-controlling software. IEEE
Intelligent Systems, 14(3):37–45, 1999.

[27] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for
reflective middleware. Communications of the ACM,
45(6):33–38, 2002.

[28] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of Software
Engineering, pages 259–268, Minneapolis, MN, USA, May
2007. IEEE Computer Society.

[29] A. Lapouchnian, Y. Yu, S. Liaskos, and J. Mylopoulos.
Requirements-driven design of autonomic application software.
In CASCON’06: Proceedings of the 2006 Conference of the
Center for Advanced Studies on Collaborative Research,
page 7, New York, NY, USA, 2006. ACM.

[30] M. M. Lehman. Software’s future: Managing evolution. IEEE
Software, 15(1):40–44, 1998.

[31] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and
S. Easterbrook. Configuring common personal software: a
requirements-driven approach. In 13th IEEE International
Conference on Requirements Engineering (RE05),, pages
9–18. IEEE Computer Society, 2005.

[32] S. Lightstone. Seven software engineering principles for
autonomic computing development. Innovations in Systems
and Software Engineering, 3(1):71–74, March 2007.

[33] Y. Liu, B. Cukic, E. Fuller, S. Yerramalla, and S. Gururajan.
Monitoring techniques for an online neuro-adaptive controller.
Journal of Systems and Software (JSS), 79(11):1527–1540,
2006.

[34] P. Maes. Computional reflection. PhD thesis, Vrije
Universiteit, 1987.

[35] P. K. McKinley, M. Sadjadi, E. P. Kasten, and B. H. Cheng.
Composing adaptive software. IEEE Computer, 37(7):56–64,
July 2004.

[36] H. A. Müller, M. Pezzè, , and M. Shaw. Visibility of control in
adaptive systems. In Second International Workshop on
Ultra-Large-Scale Software-Intensive Systems (ULSSIS
2008), ICSE 2008 Workshop, May 2008.

[37] C. Perrow. Normal Accidents: Living with High-Risk
Technologies. Princeton University Press, 1999.

[38] W. Robinson. A requirements monitoring framework for
enterprise systems. Requirements engineering, 11:17–4, 2006.

[39] W. N. Robinson. Monitoring web service requirements. In
Proceedings of International Requirements Engineering
Conference (RE03), pages 65–74, 2003.

[40] M. Sabetzadeh and S. Easterbrook. View merging in the
presence of incompleteness and inconsistency. Requirements
Engineering Journal, 11(3):174–193, 2006.

[41] S. Sackmann, J. Strüker, and R. Accorsi. Personalization in

12



privacy-aware highly dynamic systems. Communications of the
ACM (CACM), 49(9):32–38, September 2006.

[42] T. Savor and R. Seviora. An approach to automatic detection
of software failures in realtime systems. In IEEE Real-Time
Technology and Applications Symposium, pages 136–147, 1997.

[43] Schloss Dagstuhl Seminar 08031, Wadern, Germany. Software
Engineering for Self-Adaptive Systems, January 2008.
http://www.dagstuhl.de/08031/.

[44] G. Seetharaman, A. Lakhotia, and E. P. Blasch. Unmanned
Vehicles Come of Age: The DARPA Grand Challenge.
Computer, 39(12):26–29, 2006.

[45] M. Shaw. Beyond objects. ACM SIGSOFT Software
Engineering Notes (SEN), 20(1):27–38, January 1995.

[46] H. A. Simon. The Sciences of the Artificial. MIT Press.
Cambridge, MA, USA, 1981.

[47] A. Sutcliffe, S. Fickas, and M. M. Sohlberg. PC-RE a method
for personal and context requirements engineering with some
experience. Requirements Engineering Journal, 11(3):1–17,
2006.

[48] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software: Practice and
Experience, 35(8):705 – 754, 2005.

[49] J. A. Tanner. Feedback control in living prototypes: A new
vista in control engineering. Medical and Biological
Engineering and Computing, 1(3):333–351, August 1963.
http://www.springerlink.com/content/rh7wx0675k5mx544/.

[50] D. Weyns. An architecture-centric approach for software
engineering with situated multiagent systems. PhD thesis,
Department of Computer Science, K.U. Leuven, Leuven,
Belgium, October 2006.

[51] E. S. K. Yu. Towards modeling and reasoning support for
early-phase requirements engineering. In 3rd IEEE
International Symposium on Requirements Engineering
(REŠ97), page 226, Washington, DC, USA, 1997.

[52] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In Proceedings of International
Conference on Software Engineering (ICSE’06),
Shanghai,China, May 2006.

[53] J. Zhang and B. H. C. Cheng. Using temporal logic to specify
adaptive program semantics. Journal of Systems and Software
(JSS), Architecting Dependable Systems, 79(10):1361–1369,
2006.

13




