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Abstract. Constraints exist in almost every optimization problem. Dif-
ferent constraint handling techniques have been incorporated with ge-
netic algorithms (GAs), however most of current studies are based on
computer experiments. An example is Michalewicz’s comparison among
GAs using different constraint handling techniques on the 0-1 knapsack
problem. The following phenomena are observed in experiments: 1) the
penalty method needs more generations to find a feasible solution to
the restrictive capacity knapsack than the repair method; 2) the penalty
method can find better solutions to the average capacity knapsack. Such
observations need a theoretical explanation. This paper aims at provid-
ing a theoretical analysis of Michalewicz’s experiments. The main result
of the paper is that GAs using the repair method are more efficient than
GAs using the penalty method on both restrictive capacity and average
capacity knapsack problems. This result of the average capacity is a lit-
tle different from Michalewicz’s experimental results. So a supplemental
experiment is implemented to support the theoretical claim. The results
confirm the general principle pointed out by Coello: a better constraint-
handling approach should tend to exploit specific domain knowledge.

1 Introduction

There is a wide gap between the theory and practice of genetic algorithms.
Current theories analyze simple algorithms and simple problems, rather than
algorithms and problems used in real applications. In the real world, almost
every optimization problem contains more or less constraints. It is very important
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to handle constraints when GAs are used in solving optimization problems in
practice. Different constraint handling techniques have been incorporated with
GAs, and many papers have contributed to this direction, e.g. [1–6]. Due to its
importance in practice, how to deal with constraints is still a hot research in the
field of evolutionary computation. Many new constraint handling techniques have
been designed in recent years, for example, stochastic ranking [7], co-evolutionary
augmented Lagrangian methods [8], multiple Lagrange multiplier method [9],
two phase algorithm, [10], α-constrained method [11], multi-objective approach
[12], simple multi-membered evolution strategy [13] etc. However, most current
studies are based on computer experiments. Few theoretical contributions have
been made towards this research issue.

Through computer experiments, Michalewicz has compared GAs using differ-
ent constraint handling techniques [14], including the penalty function method,
repair method and decode method. The following phenomena were observed in
the experiments [14].

1. For the average capacity knapsack problem, GAs using the penalty function
method cannot get a feasible solution in 500 generations. The GA using the
repair method Ar[2] is better than others.

2. For the average capacity knapsack problem, the penalty function algorithm
Ap[1] is the best among five GAs.

However, the above observations are based on computer experiments, and
no theoretical analysis has been made. It is necessary to make a theoretical
analysis to explain these experimental results. This paper aims at providing
such an analysis. Of course, it will be impossible to investigate all constraint-
handling techniques in a single paper, so the discussion is restricted to two
classical and popular methods introduced in [14]: the methods of penalizing
infeasible solutions and repairing infeasible solutions.

The time complexity has been widely used to measure the theoretical per-
formance of genetic algorithms, i.e. how many generations are needed to find
a solution [15–19]. There were only a few theoretical analysis of running times
of GAs for solving the knapsack problem. In [20], the constraint is handled
by a multi-objective optimization technique. Two multi-objective evolutionary
algorithms, SEMO and FEMO, are applied for a simple instance of the multi-
objective 0/1 knapsack problem and the expected running time is analyzed.
In [21], the problem with constraints is also transformed into a two-objective
optimization problem. A multi-objective evolutionary algorithm, REMO, is pro-
posed to solve the knapsack problem. The paper formalizes a (1+ε)-approximate
set of the knapsack problem and presents a rigorous running time analysis to
obtain the formalized set. The running time on a special bi-objective linear func-
tion is analyzed. The paper [22] has analyzed the role of penalty coefficients in
GAs. It is shown that in some examples, GAs have benefited greatly from higher
penalty coefficients, while in other examples, they benefited from lower penalty
coefficients. The runtime of GAs for solving the knapsack problem ranges from
a polynomial time to an exponential time when different penalty coefficients
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are used. Differently from previous research, this paper continues the previous
initial study [22] and focuses on a comparison between two constraint-handling
techniques and gives a theoretical analysis to the experimental results reported
in [14].

The paper is organized as follows: Section 2 introduces the knapsack prob-
lem and describes GAs for solving the 0-1 knapsack problem. Section 3 analyzes
the restrictive capacity knapsack problem. Section 4 estimates first hitting times
of GAs for restrictive capacity problems. Section 5 analyzes the average capac-
ity knapsack problem. Section 6 compares GAs for average capacity problems.
Section 7 reports two supplemental experimental results. Section 8 gives conclu-
sions.

2 Knapsack Problem and Genetic Algorithms

2.1 Knapsack Problem

The 0-1 knapsack problem is to

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ C,

xi = 0 or 1, i = 1, · · · , n, (1)

where

xi =
{

1 if item i is selected,
0 else,

and pi is the profit of item i, wi the weight of item i and C the capacity of the
knapsack.

A detailed discussion about the knapsack problem can be referred to [23].
GAs have been applied for solving the knapsack problem [14, 24]. Since this
problem is an NP-complete problem, it is hard for GAs to solve.

The difficulty of the problem is greatly affected by the correlation between
profits and weights. Three randomly generated data sets are considered in ex-
periments [23, 14]:

1. uncorrelated: the pi and wi are chosen uniformly at random in [1, ν];
2. weakly correlated: the wi are chosen uniformly at random in [1, ν] and the pi

uniformly at random in [wi−r, wi +r] (if for some i pi ≤ 0, then the random
generation procedure should be repeated until pi > 0);

3. strongly correlated: the wi are chosen uniformly at random in [1, ν]; and
pi = wi + r;

In this paper, the parameters ν and r are set to be

ν =
n

20
, r =

n

20
.
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Two values of the capacity are considered in [23, 14]:

1. restrictive capacity knapsack: the capacity of the knapsack is small, i.e.

C1 = 2ν.

2. average capacity knapsack: the capacity of the knapsack is large,

C2 = 0.5
n∑

i=1

wi.

Due to the paper length limitations, this paper only discusses the uncorre-
lated capacity knapsack and leaves other problems to future work.

2.2 Genetic Algorithms

The GA [14] is described as in Figure 1. The encoding is a binary representation
(x1 · · ·xn), where xi = 1 if the i-th item is chosen in the knapsack, xi = 0 if the
i-th item is not in the knapsack.

begin
t := 0;

initialize ξ(0);

evaluate ξ(0);
while (termination-condition does not hold) do

mutate ξ(t);

evaluate ξ(t);
t := t + 1;

select ξ(t) from ξ(t−1);
od

end

Fig. 1. Genetic Algorithm. t is the generation counter; ξ(t) is the t-th generation pop-
ulation.

The genetic operators used in the GA are bitwise mutation with a mutation
rate 1/n and an elitist selection. Crossover is not considered in the GA since the
analysis of a crossover is too complex.

The fitness of an individual is dependent on the technique used for handling
constraints. A general introduction of constraint-handling techniques incorpo-
rated with GAs can be found in many references, e.g. [1, 14, 5].

In this paper, two of them are considered: the methods of penalizing infeasible
solutions and repairing infeasible solutions.

For the method using a penalty function, the fitness of an individual consists
of two parts:

f(x) =
n∑

i=1

xipi − g(x),
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where the penalty term g(x) is set to 0 for all feasible solutions, otherwise it is
assigned a positive value.

There are many different ways to assign the penalty value. Michalewicz [14]
used three types of penalty functions in experiments.

1. Ap[1]: the penalty function is

g1(x) = ln(1 + ρ(
n∑

i=1

xiwi − C)) (2)

2. Ap[2]: the penalty function is

g2(x) = ρ(
n∑

i=1

xiwi − C) (3)

3. Ap[2]: the penalty function is

g3(x) = ρ2(
n∑

i=1

xiwi − C))2 (4)

where
ρ := max

i=1,··· ,n
{ pi

wi
}.

GAs using the repair method are almost the same as GAs using the penalty
method. The only difference is at one point: if an infeasible individual is gener-
ated, then it will be repaired and then become a feasible solution.

The fitness function is determined as follows [14]:

f(x) =
n∑

i=1

x′ipi,

where x′ is a feasible individual obtained by repairing the infeasible individual
x.

The repairing procedure [14] is described in Figure 2.
Two repairing methods are used in [14] which are described as follows:

1. Ar[1]: the algorithm uses a random repairing approach, i.e. the select pro-
cedure is to choose an item from the knapsack randomly.

2. Ar[2] : the algorithm uses a greedy repairing approach, i.e first the items
are sorted according to the order of pi/wi, then the select procedure is to
choose the smallest item.

3 Restrictive Capacity Knapsack

3.1 Initial Solutions and First Hitting Times

Let us consider a GA using a penalty function for the restrictive capacity knap-
sack problem.
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begin
knapsack-overfilled:=false;
x′ := x;
if (

∑n
i=1 xiwi > C)

then knapsack-overfilled:=true;
while (knapsack-overfilled) do

i =: select an item from the knapsack;
set xi = 0;
if (

∑n
i=1 x′iwi ≤ C)

then knapsack-overfilled:=false;
fi

od
fi

end

Fig. 2. Repairing Procedure [14].

Lemma 1. If an initial individual is chosen at random, then the probability for
the individual of being an infeasible solution is not less than 1− e−n/16.

Proof: Since wi is chosen at random in [1, · · · , ν], then wi ≥ 1 and its expecta-
tion is

E[wi] = ν/2.

Since for each bit in a binary string, the probability of xi = 1 is 0.5, then its
expectation is

E[
n∑

i=1

xi] =
n

2
.

Each bit is chosen independently at random, hence from Chernoff bounds, it
is known that

P
( n∑

i=1

xi >
n

4

)
< e−n/16.

This means with no less than a probability 1− e−n/16,
n∑

i=1

wixi ≥
n∑

i=1

xi >
n

4
.

Since the capacity is set to be

C1 =
n

10
,

with a probability of 1− e−n/16, an initial individual satisfies:
n∑

i=1

wixi > C1,

i.e. the individual is an infeasible solution.
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Corollary 1. Given a population with N individuals, the probability of all in-
dividuals in the initial population of being infeasible is not less than

1− (1− e−n/16)N .

This probability is still very small if N = O(n).
Based on the above lemma and corollary, is is reasonable to assume that any

individual in the initial population is infeasible and

n∑
i=1

wixi >
n

4
.

Denote S to be the set of all individuals. Let the feasible solution set be

Sf := {x;
n∑

i=1

wixi ≤ C1},

and the infeasible solution set be

Si := {x;
n∑

i=1

wixi > C1}.

Furthermore, for the population space SN , denote the feasible population set
as

SN
f := {X; ∃x ∈ X : x ∈ Sf},

and the infeasible population set as

SN
i := {X; ∀x ∈ X : x ∈ Si}.

If an individual is feasible, then it satisfies the condition

n∑
i=1

xiwi ≤ C1 = 2ν.

Since wi ≥ 1, so ∀x ∈ Sf , it holds that:

n∑
i=1

xi ≤
n

10
.

The population sequence {ξ(t), t = 0, 1, 2, · · · } usually is a Markov chain [25,
26]. The first hitting time is a useful concept to measure the computation time
of GAs [27, 28]. Several first hitting times are defined in the following.

Let τf be the mean number of generations for a GA to find a feasible solution.
The following number is a first hitting time:

τf := {t ≥ 0; ξ(t) ∈ SN
f .}
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Let τn the number of generations for the GA to find a near-feasible solution
to be

τn := {t ≥ 0; H(ξ(t), Sf ) ≤ 1}.

where H(x, y) is the Hamming distance between x and y, and

H(A,B) := min{H(x, y); x ∈ A, y ∈ B}.

Furthermore, let τ , the first hitting time to optimal solutions, be

τ := {t ≥ 0; f(ξ(t)) = fmax}.

where

fmax := max
x∈S

{f(x) |
n∑

i=1

wixi ≤ C1}.

3.2 Types of Instances

Given an individual x, define its neighbour with distance δ as follows:

N(x, δ) := {y; H(x, y) ≤ δ}.

Define its left neighbour with distance δ as below:

Nl(x, δ) := {y; H(x, y) ≤ δ, | y |≤| x |}

where | x |:=
∑n

i=1 xi.
For convenience in the analysis, the instances of the knapsack problem are

grouped into several types. The idea originates from the classification of narrow-
gap and wide-gap fitness landscapes appearing in [27, 19], but with a small mod-
ification: the distance function here is the Hamming distance.

– T1: non-equivalent narrow-gap problem. A fitness function f(x) satis-
fies that ∃y ∈ Si,

f(y) > fmax. (5)

This means that the problem of maximizing f(x) is not equivalent to the
original knapsack problem. So it is called a non-equivalent problem.
The fitness function f(x) belongs to a narrow-gap landscape in Hamming
distance, defined by: ∃δ > where δ = O(1) and ∀x ∈ Si:
• ∃y ∈ Nl(x, δ): f(y) > f(x).
• or ∃y ∈ Nl(x, δ): y ∈ Sf .

– T2: non-equivalent wide-gap problem. ∃y ∈ Si,

f(y) > fmax. (6)

The fitness function f(x) belongs to a wide-gap landscape in Hamming dis-
tance, defined by some δ = ω(1)
• ∃x ∈ Si, ∀y ∈ Nl(x, δ) : y ∈ Si and f(x) > f(y).
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A special case is that
• T2.a: δ = εn, where 0 < ε < 1 is a constant.

– T3: non-equivalent wide-plateau problem: ∃y ∈ Si,

f(y) > fmax. (7)

The fitness function f(x) belongs to a wide plateau landscape in Hamming
distance, defined by: ∃x ∈ Si, ∀y ∈ Nl(x, δ) where δ = ω(1), y satisfies that

• y ∈ Si.
• f(x) ≥ f(y).
• ∃c > 0 where c > 0 is a constant and ∀y ∈ Nl(x, δ), ∃z ∈ Nl(y, c):

f(z) = f(x).

A special case is that
• T3.a: δ = εn, where 0 < ε < 1 is a constant.

– T4: Equivalent narrow-gap problem. For any infeasible solution y,
whose fitness satisfies

f(y) < fmax.

The problem of maximizing f(x) is equivalent to the original knapsack prob-
lem. So it is called an equivalent problem.
The fitness function f(x) belongs to a narrow-gap landscape in Hamming
distance as defined in Type 1. A special case is
• T4.a: For any infeasible solution x, flip one of | x | −1 one-valued bits,

the new individual y satisfies f(y) > f(x).
– T5: Wide-gap equivalent problem. For any infeasible solution y, whose

fitness satisfies:
f(y) < fmax.

The fitness function f(x) belongs to a wide-gap problem in Hamming dis-
tance as defined in Type 2. A special case is that
• T5.a: there exists some infeasible solution x, and the distance of its

neighbour Nl(y, δ) satisfies δ = εn, where 0 < ε < 1 is a constant.
– T6: Wide-plateau equivalent problem. For all infeasible solutions y,

whose fitness satisfies
f(y) < fmax.

The fitness function f(x) belongs to a wide-plateau gap problem in Hamming
distance as defined in Type 3. A special case is that
• T6.a: there exists some infeasible solution x, and the distance of its

neighbour Nl(y, δ) is as large as δ = εn, where ε is a constant.

Proposition 1. The fitness function derived from Algorithm Ap[1] belongs to
Type 2.
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Proof: For any infeasible solution x, its penalty is

g1(x) = ln(1 + ρ(
n∑

i=1

wixi − C1)),

and its fitness is

f(x) =
n∑

i=1

pixi − ln(1 + ρ(
n∑

i=1

wixi − C1)).

Let 1 = (1 · · · 1) which is infeasible, and its fitness is

f(x) =
n∑

i=1

pi − ln(1 + ρ(
n∑

i=1

wi − C1)).

Assume x∗ = (x∗1 · · ·x∗n) is the optimal solution. Then denote I(x∗) to be the
set of all items in the knapsack, i.e. the subscripts i with x∗i = 1.

Since x∗ is feasible, we have ∑
i∈I(x∗)

x∗1wi ≤ C1,

Since wi ∈ [1, · · · , ν], we know that the cardinality of I(x∗) satisfies

| I(x∗) |≤ C1 =
n

10
.

Notice that

f(1)− f(x∗) =
n∑

i=1

pi −
∑

i∈I(x∗)

pi − ln(1 + ρ(
n∑

i=1

wi − C1))

=
∑

i/∈I(x∗)

pi − ln(1 + ρ(
n∑

i=1

wi − C1))

Now we want to prove that

f(1) > f(x∗).

Equivalently,

exp(
∑

i/∈I(x∗)

pi) ≥ 1 + ρ(
n∑

i=1

wi − C1)

Since pi ∈ [1, · · · , ν] and wi ∈ [1, · · · , ν], we have

ρ = max
i=1,··· ,n

{ pi

wi
} ≤ ν
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From C1 = n/10, we get

1 + ρ(
n∑

i=1

wi − C1) ≤ 1 +
n3

400
,

Since | I(x∗) |≤ ν, we get

exp(
∑

i/∈I(x∗)

pi) ≥ exp(n/10).

So it is proved that

exp(
∑

i/∈I(x∗)

pi) ≥ 1 + ρ(
n∑

i=1

wi − C1).

In other words,
f(1) > f(x∗) = fmax.

Since for any y in the neighbourhood Nl(1, n/2) := {y; H(y,1) < n/2}, it is
easy to see that f(1) > f(y) if y 6= 1.

So the proposition is proved.

Proposition 2. (1) The fitness function derived from the algorithm Ap[2] be-
longs to Type 1, 3, 4 or 6, but doesn’t belong to Types 2 or 5.

(2) The probability for the fitness function belonging to Type 3 or 6 is small.

Proof: (1) It is possible that f(x) > fmax for some infeasible solution under a
certain condition. Let’s see such condition.

Let x∗ = (x1 · · ·xn) be the optimal solution, and I∗ be the set of all items in
the optimal knapsack. If for some j /∈ I∗, it holds that

−pj + ρ(
∑

i∈I(x∗)

wi + wj − C1) > 0,

then we can prove f(x) > fmax under this condition.
Let x′ be the solution with xi = 1 for i ∈ I(x∗) ∪ {j} and xi = 0 for the

other subscripts. Then we have

f(x′)− f(x) = −pj + ρ(
∑

i∈I(x∗)

wi + wj − C1) > 0.

So we have proved that it is possible that f(x) > fmax. In other words, the
problem is a non-equivalent problem.

Now we prove that the fitness function f(x) is not a wide-gap problem.
Notice that the fitness function is

f(x) =
n∑

i=1

xipi − ρ(
n∑

i=1

xiwi − C1).
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Let x = (x1 · · ·xn) be an infeasible solution, i.e.
∑n

i=1 xiwi ≥ C. Without
losing generality, assume that x1 = 1 and let x′ = (0x2 · · ·xn), then

f(x′)− f(x) = −p1 + ρw1 = w1(−
p1

w1
+ ρ).

Since

ρ = max
i=1,··· ,n

{
pi

wi

}
,

then we know that

– if p1/w1 = ρ, then
f(x′)− f(x) = 0.

– if p1/w1 < ρ, then
f(x′)− f(x) > 0.

This has proved that f(x) generated by Ap[2] does not belong to a wide-gap
fitness landscape.

(2) Let us consider f(x) belonging to a wide-plateau fitness landscape (Type
3 or Type 6). Then in this case, as proved above, at least δ pairs of pi and wi

satisfy pi/wi = ρ.
For a given pi, since wi are chosen at random from [1, · · · , ν], the probability

of pi/wi = ρ happening is no more than 1/ν.

And then the probability for δ pairs of pi and wi to satisfy pi/wi = ρ is up
to (

1
ν

)δ

.

Since δ = ω(1) and ν = n/20, the above probability is very small.

Example 1. In algorithm Ap[2], let wi = pi = c,

For all infeasible solutions, the penalty function is

g2(x) =
n∑

i=1

cxi − C1,

and the fitness function is
f(x) = C1.

If c is chosen to make fmax > C1, then the fitness function f(x) is in Type 3.
If c is chosen to make fmax < C1, then the fitness function f(x) is in Type 6.

Proposition 3. The fitness function derived from Algorithm Ap[3] belongs to
Type 1 or Type 3 (narrow-gap problem).
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Proof: It is possible that the function belongs to Type 1. Let x∗ be the optimal
solution, and I(x∗) be the set of subscripts i such that xi = 1. If for some
j /∈ I(x∗), it holds that

−pj + ρ2(
∑

i∈I(x∗)

wi + wj − C1)2 > 0

then we can prove the fitness function belongs to Type 1.
Let x′ be the solution with xi = 1 for i ∈ I(x∗) ∪ {j} and xi = 0 for the

other subscripts. Then we have

f(x′)− f(x) = −pj + ρ2(
∑
i∈I∗

wi + wj − C1)2 > 0.

Now we prove the fitness function doesn’t belong to Types 2, 3, 5 and 6.
Let x = (x1 · · ·xn) be an infeasible solution, i.e.

∑n
i=1 xiwi ≥ C1. Without

losing generality, assume that x1 = 1 and let x′ = (0x2 · · ·xn). Denote I(x) to
be the set of {i; xi = 1} and I(x′) the set of {i; x′i = 1}, then

f(x′)− f(x) = −p1 − ρ2(
∑

i∈I(x′)

x′iwi − C1)2 + ρ2(
∑

i∈I(x)

xiwi − C1)2

= −p1 + ρ2(
∑

i∈I(x)

xiwi +
∑

i∈I(x′)

x′iwi − 2C1)w1.

Since
∑

i∈I(x) xiwi − C1 > 0 and
∑

i∈I(x′) x′iwi − C1 > 0,

ρ(
∑

i∈I(x)

xiwi +
∑

i∈I(x′)

x′iwi − 2C1) > ρ(
∑

i∈I(x)

xiwi −
∑

i∈I(x′)

x′iwi) = ρw1 ≥ 1.

Then

f(x′)− f(x) > −p1 + ρw1 ≥ 0 .

From the above result it follows that f(x′) > f(x) and we have proved that
the fitness function derived from algorithm Ap[3] doesn’t belong to Types 2, 3,
5, and 6.

Example 2. In algorithm Ap[3], let wi = 0.5 and pi = 1, where c is a constant,
then ρ = 2.

For any infeasible solution, its penalty is

g2(x) = 4(
n∑

i=1

0.5xi − C1)2

and its fitness is

f(x) =
n∑

i=1

xi − 4(
n∑

i=1

0.5xi − C1)2.
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Let x and y be two infeasible solutions such that | x |>| y |.

f(x)− f(y) =| x | − | y | −4 | x |2 +4C1 | x | +4 | y |2 −4C2 | y |

= (| x | − | y |)(1 + 4C1 − 4 | x | −4 | y |)

Since x is infeasible, then

0.5 | x |> C1,

| x |> 2C1,

(1 + 4C1 − 4 | x | −4 | y |) < 0,

f(x) < f(y).

4 Analysis of the Restrictive Capacity Knapsack

4.1 Analysis of GAs using Penalty Methods

Since a problem in Type 1, 2 or 3 is not equivalent to the original knapsack
problem, it is enough to discuss the first hitting time to the optimal solution
only.

Proposition 4. When a (1+1) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 1, 2 or 3, the expected first hitting time τ in the worst case is +∞.

Proof: Since the optimal feasible solution may have smaller fitness than some
infeasible individual, the optimal individual may not be accepted by the elitist
selection used in the (1+1) GA.

Note: this trouble is caused by the static penalty. It may not exist for other
methods, e.g. the method of dynamic penalty, death penalty, repairing infeasible
solutions and superiority of feasible solutions etc [5].

If the problem is an equivalent problem, then the population sequence {ξ(t)}
is convergent to the optimal solution [25, 26].

Proposition 5. When a (1+1) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 4, 5 or 6, the expected first hitting time τ in the worst case is finite.

Proof: The conclusion is drawn directly from the elitist selection and bitwise
mutation used in the GAs.

Proposition 6. (1) If a (1 + 1) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 4, the expected first hitting time τ̄n is O(nδ+1) in the worst case and the
expected number of fitness evaluations is O(nδ+1).

(2) If a (1 + 1) Ap[i], i = 1, 2, 3 is used to solve any problem in Type 4.a,
the expected first hitting time τ̄n in the worst case is Θ(n lnn) and the expected
number of fitness evaluations is Θ(n lnn).
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Proof: (1) The time bound can be drawn by applying drift analysis [27] to
estimate the first hitting time.

Define the distance between an individual x and Sa to be

d(x) = min{H(x, Sn)}

A positive drift can happen if δ 1-valued bits are flipped. The probability
this happens is at least

1
nδ

(1− 1
n

)n−δ

So the drift is at least

∆d(x) ≥ δ
1
nδ

(1− 1
n

)n−δ

Then the mean first hitting time is

E[τn] ≤ n

max ∆d(x)
= O(nδ+1).

(2) For Type 4.a, an individual makes a positive drift towards the set Sn only
if at least a 1-valued bit is flipped to 0. Since there are | x | −1 candidate bits,
the first hitting time of the (1+1) GA to reach the set Sn on problem 4.a is not
faster than for the OneMax problem.

From the result on the OneMax problem, we know the expected first hitting
time is Ω(n lnn).

In the following we prove the bound is tight. Define

l(x) = min{H(x, Sn)}

and define the distance
d(x) = n ln l(x).

Then at each generation, a positive drift towards the set Sn can happen if
the following event appears: one 1-valued bit is flipped to 0.

From the definition of Type 4.a, we know that the probability of flipping one
1-valued bit and leading to the positive drift is at least(

| x | −1
1

)
1
n

(1− 1
n

)n−1, (8)

and the positive drift is at least

∆d(x) ≥ (n ln l − n ln(l − 1))(| x | −1)
1
n

(1− 1
n

)n−1

≥ c,

where c > 0 is a constant.
Then the expected first hitting time is no more than

E[τ ] ≤ n lnn

min∆d(x)
= O(n lnn).

We have proved that the expected first hitting time to the set Sn is Θ(n lnn).
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If a (1 + 1) algorithm Ap[i], i = 1, 2, 3 is used to solve problems in Type 6, a
trivial lower bound is given as follows.

Proposition 7. If a (1+1) algorithm Ap[i], i = 1, 2, 3 is used to solve problems
in Type 6, then the expected first hitting time τ̄n in the worst case is Ω(n lnn).

Proof: Since the wide-plateau problem is at least harder than the OneMax
problem, the time bound for the (1+1) GA to solve the wide-plateau is at least
Ω(n lnn).

At the end let us makes a short analysis for the population-based (N + N)
GA.

Proposition 8. If an (N + N) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 1, 2 or 3, then

1. the expected first hitting time τ̄ in the worst case is +∞ if the selection
strategy is “winner-take-all”.

2. the expected first hitting time τ̄ in the worst case is finite if the selection
pressure is not too high, i.e. to allow an individual with smaller fitness in
the population to survive with a positive probability.

Proof: 1) Since the selection is “winner-take-all”, starting from an initial indi-
vidual ξ(0) = x with f(x) > fmax, then the optimal solution is never selected
and appears in the next generation through the elitist strategy.

2) Since the bitwise mutation is global, a feasible solution can be generated
through mutation; furthermore, since the selection has low pressure, the optimal
solution can be kept in the next generation with a positive probability. Therefore,
E[τ ] < +∞.

Proposition 9. If an (N + N) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 4, then the expected first hitting time in the worst case is Ω(n lnn/N) and
the expected number of fitness evaluations is Ω(n lnn/N).

Proof: Similar to the above analysis of the (1 + 1) GA, the behavior of the
(N + N) GA in reaching the set Sa on Type 2 is similar to the behavior of the
(N + N) GA on the OneMax problem. Since the discussion is only involved in
finding a lower bound on the first hitting time τf , without losing generality, it
is enough to consider the case of the OneMax problem.

For a population x, define its distance from the set Sn as

d(x) = min{d(x); x ∈ x},

where d(x) = H(x, Sn) is the Hamming distance between x and the set Sn.
Let x = (x1, · · · , xN ) with d(x) = k (where k > 0) be the parent population

and y = (y1, · · · , yN ) be the offspring population. Since here only the lower
bound needs to be estimated, it is enough to consider the case of d(x1) = · · · =
d(xN ) = k and estimate the relevant drift. It is easy to see that in the other
cases, the drift is less.
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Notice that
d(x) = min{d(xi); i = 1, · · · , N}.

Since each individual is mutated independently, the events d(xi)− d(yi) ≥ j
are independent. For any j > 0, we know that

P[d(x)− d(y) ≥ j] = 1−
N∏

i=1

(1− P[d(xi)− d(yi) ≥ j]),

and get,

P[d(x)− d(y) = j] ≤ NP[d(x1)− d(y1) = j].

Consider the (1+1) GA, i.e. the case N = 1, and denote by σk the first
hitting times of the (1+1) GA to the set Sn if starting from d(x) = k. Then
σk = Ω(n lnn) if k = Ω(n).

Let d(x) = σk/N if D(x) = k, then we have

∆k =
∑

j

(dk−dk−j)P[d(x)−d(y) = j)] ≤
∑

j

(σk

N
− σk−j

N

)
NP[d(x1)−d(y1) = j] = 1.

So by applying drift analysis [19], we obtain that if the initial population
satisfies d(ξ(0)) = Ω(n), the first hitting time of the (N+N) GA satisfies

E[τa | ξ(1)] ≥
σΩ(n)

N
= Ω

(
n lnn

N

)
. (9)

Since at each generation the fitness is evaluated N times, the expected num-
ber of fitness evaluations is Ω(n lnn).

Similar to the above theorem, we have

Proposition 10. If an (N + N) Ap[i], i = 1, 2, 3 is used to solve a problem in
Type 6, then the expected first hitting time in the worst case is Ω(n lnn/N) and
the expected number of fitness evaluations is Ω(n lnn).

4.2 Algorithms Repairing Infeasible Solutions

Proposition 11. When a (1+1) Ap[i], i = 1, 2, 3 is used to solve any knapsack
problem, the expected first hitting time τ in the worst case is finite.

Proof: The statement is directly drawn from the elitist selection and the bitwise
mutation.

Proposition 12. If a (1 + 1) Ar[i], i = 1, 2 is used to solve any knapsack prob-
lem, then the expected first hitting time τ̄f is 1 and the expected number of fitness
evaluations is Θ(n).
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Proof: At each generation, if x is infeasible, then one item will be removed
from the knapsack. This procedure will be repeated until a feasible solution is
found. Since at most n items are in the initial knapsack, then at most n steps
are needed to find a feasible solution. This means the first hitting time τf is 1.

With a probability not less than 1 − e−n/16, the initial individual has more
than n/4 items and it is infeasible. So at least n/4−n/10 fitness evaluations are
needed to reach the set Sf and the number of fitness evaluations is Θ(n).

Proposition 13. When an (N+N) Ap[i], i = 1, 2, 3 is used to solve any knap-
sack problem, the expected first hitting time τ in the worst case is finite.

Proposition 14. If an (N + N) Ar[i], i = 1, 2 is used to solve any knapsack
problem, then the expected first hitting time τ̄n is 1 and the expected number of
fitness evaluations is Θ(Nn).

Proof: Since all individuals in the initial population will be infeasible with prob-
ability 1− (1− exp(−n/16))N and each individual has more than n/4 items, for
each individual at least Θ(n) items have to be removed before a feasible solution
is reached. Since the population size is N , the number of fitness evaluations is
Θ(Nn).

This proposition means that the introduction of a population doesn’t bring
any benefit towards reducing the number of fitness evaluations.

4.3 Comparison Between Repairing Feasible Solutions and
Penalizing Feasible Solutions

The results of the above two subsections are summarized in Tables 1 and 2.
From the two tables, we can see that

– The approach of repairing infeasible solutions is more efficient in finding
a feasible solution. The expected first hitting time τ̄n of Ap[i], i = 1, 2, 3 is
larger than that of Ar[i], i = 1, 2. The expected number of fitness evaluations
of Ap[i] is larger than that of Ar[i].

– Since the problems produced by Algorithms Ap[2] belong to a narrow-gap
problem with a high probability and the problems from Ap[3] are definitely a
kind of narrow-gap problem, both algorithms can find a near-feasible solution
in polynomial time. This result is not observed from the experiments.

4.4 A Note on the role of Crossover

In the above discussion the crossover is omitted. The analysis of crossover usually
is very difficulty. Currently only theoretical analyses of GAs on some artificial
functions [29, 30] are available. The paper will not make further investigations
on this issue. Here we only give a note.

For the repair algorithms, since the problem is always an equivalent problem,
the larger is the fitness, the better is the individual. In this case, a crossover
operator may play a positive role, i.e. help GAs to find a better solution.
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Table 1. Results of (1+1) GAs using a penalty function. τ̄ , τ̄f and τ̄n are the expected
first hitting times to an optimal, feasible and near-feasible solution respectively. κ is
the number of fitness evaluations. “−” means that no result is given, “∗” means that
the algorithm doesn’t produce that type.

algorithm
type Ap[1] Ap[2] Ap[3]

1

τ̄ ∗ +∞ +∞
τ̄f ∗ − −
τ̄n ∗ − −
κ ∗ − −

2

τ̄ +∞ ∗ ∗
τ̄f − ∗ ∗
τ̄n − ∗ ∗
κ − ∗ ∗

3

τ̄ ∗ +∞ ∗
τ̄n ∗ − ∗
τ̄f ∗ − ∗
κ ∗ − ∗

4(a)

τ̄ ∗ finite finite
τ̄f ∗ − −
τ̄n ∗ Ω(n ln n) Ω(n ln n)
κ ∗ Ω(n ln n) Ω(n ln n)

6(a)

τ̄ ∗ finite ∗
τ̄f ∗ − ∗
τ̄n ∗ Ω(n ln n) ∗
κ ∗ Ω(n ln n) ∗

However, for the penalty algorithms, if the problem is not equivalent to the
original knapsack problem, the larger the fitness is, the worse is the individual.
In this case crossover may play a negative role.

5 Average Capacity Knapsack

Lemma 2. For any average capacity knapsack, if the initial individual is chosen
at random, then the probability of an initial individual of being a feasible solution
is 0.5.

Proof: The result is directly derived from the binomial distribution. Let x =
(x1 · · ·xn) be infeasible. Hence it satisfies

n∑
i=1

wixi > C2.

Then let x̄ = (x̄1 · · · x̄n) where x̄i = 1− xi. If x 6= y, then x̄ 6= ȳ.

19



Table 2. Results of (1+1) GAs using the repair method. τ̄ , τ̄f and τ̄n are the expected
first hitting times to an optimal, feasible and near-feasible solution respectively. κ is
the number of fitness evaluations.

Ar[1] Ar[2]

τ̄ finite finite
τ̄f 1 1
τ̄n 1 1
κ Θ(n) Θ(n)

Since
n∑

i=1

wi1 = 2C2,

then x̄ = (x̄1 · · · x̄n) satisfies

n∑
i=1

wix̄i < C2.

This means x̄ is feasible. From the above analysis, we see

| Sf |≥| Si | .

If we do the calculations vice versa, we get

| Si |≥| Sf | .

Combining the above inequalities together, we get

| Si |=| Sf | .

Since the initial individual is chosen at random, the conclusion is proved.

Corollary 2. For any average capacity knapsack, the initial population of the
(N+N) GA contains a feasible solution with a probability not less than 1− 0.5N .

Based on Lemma 2, it is reasonable to assume that in the initial population
ξ(0), at least one individual is feasible.

Definition 1. A local optimal set Sl with size δ is

Sl := {x; ∀y ∈ N(x, δ) : f(x) > f(y)}.

where δ ≥ 1 is a constant.
Define the global optimal set to be

Sg := {x ∈ Sf ; ∀y ∈ S : f(x) ≥ f(y)}.
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Definition 2. Assume ξ(0) = (x, · · ·x), where x ∈ Sl. Let τb be the first hitting
time to reach a solution with a better fitness than ξ(0):

τb := min{t; f(ξ(t)) > f(ξ(0))}.

Similar to the restrictive capacity knapsack, the average capacity knapsack
can be classified into the six types too:

– T1′: narrow-gap non-equivalent problem. ∃x ∈ Si, it holds

f(x) > fmax. (10)

And ∀x ∈ S, ∃y ∈ N(x, δ) (δ = O(1)) it holds:

f(y) > f(x).

– T2′: wide-gap non-equivalent problem. ∃x ∈ Si, it holds

f(x) > fmax. (11)

And ∃x ∈ S, ∀y ∈ N(x, δ) where δ = ω(1), it holds:

f(x) > f(y).

– T3′: wide-plateau non-equivalent problem. ∃x ∈ Si, it holds

f(x) > fmax. (12)

And
1. ∃x ∈ S, ∀y ∈ N(x, δ) where δ = ω(1), it holds:

f(y) ≤ f(x).

2. ∀y ∈ N(x, δ), ∃z ∈ N(y, δ′) where δ′ = O(1), it holds:

f(z) = f(x).

– T4′: narrow-gap equivalent problem. ∀y ∈ Si, it holds

f(y) ≤ fmax. (13)

And ∀x ∈ S, ∃y ∈ N(x, δ) (δ = O(1)) it holds:

f(y) > f(x).

– T5′: wide-gap equivalent problem: ∀y ∈ Si, it holds

f(y) ≤ fmax. (14)

And ∃x ∈ S, ∀y ∈ N(x, δ) where δ = ω(1), it holds:

f(y) < f(x).
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– T6′: wide-plateau equivalent problem:∀y ∈ Si, it holds

f(y) ≤ fmax. (15)

And
1. ∃x ∈ S, ∀y ∈ N(x, δ) where δ = ω(1), it holds:

f(y) ≤ f(x).

2. ∀y ∈ N(x, δ), ∃z ∈ N(y, δ′) where δ′ = O(1), it holds:

f(z) = f(x).

Proposition 15. For Algorithm Ap[1], denote x∗ = (x∗1 · · ·x∗) to be a global
optimal solution , I(x∗) the set of items in the optimal knapsack and J(x∗) the
items outside the optimal knapsack.

1. if the following condition holds:

exp(
∑

i/∈I(x∗)

pi) > 1 + 0.5ρ(
n∑

i=1

wi)

then the problem derived from the algorithm is a non-equivalent problem (one
of Types 1′, 2′, or 3′).

2. if the above condition doesn’t hold, then the landscape derived from it is an
equivalent problem (one of Types 4′, 5′, or 6′).

Proof: (1) For any infeasible solution x, its penalty term is

g(x) = ln(1 + ρ(
n∑

i=1

wixi − C1)),

and its fitness is

f(x) =
n∑

i=1

pixi − ln(1 + ρ(
n∑

i=1

wixi − C1)).

Let 1 = (1 · · · 1), whose fitness is

f(x) =
n∑

i=1

pi − ln(1 + ρ(
n∑

i=1

wi − C1)).

Since x∗ is feasible, we have ∑
i∈I(x∗)

x∗1wi ≤ C2,
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Notice that

f(1)− f(x∗) =
n∑

i=1

pi −
∑

i∈I(x∗)

pi − ln(1 + ρ(
n∑

i=1

wi − C1))

=
∑

i/∈I(x∗)

pi − ln(1 + ρ(
n∑

i=1

wi − C1))

Because of the condition

exp(
∑

i/∈I(x∗)

pi) ≥ 1 + ρ(
n∑

i=1

wi − C1)

Now we come to
f(1) > f(x∗).

(2) Notice (1 · · · 1) is the infeasible solution with the maximum fitness value
among all infeasible solutions. If the condition doesn’t hold, then we will have

f(1) ≤ fmax.

Then the problem belongs to an equivalent problem.

Corollary 3. For Algorithm Ap[1], if the cardinality | J(x∗) |≥ 3 ln n, then the
problem is a non-equivalent problem.

Proof: Since pi ≥ 1, then ∑
j∈J(x∗)

pi ≥ 3 ln n

and then
exp(

∑
j∈J(x∗)

pi) ≥ n3.

Since w ≤ ν and ρ ≤ n, we get

1 + 0.5ρ(
n∑

i=1

wi) ≤ n2ν ≤ 0.1n3.

Then we get

exp(
∑

j∈J(x∗)

pi) > 1 + 0.5ρ(
n∑

i=1

wi)

From the above proposition, it is drawn that the fitness landscape derived from
the algorithm is that of a non-equivalent problem.

The corollary shows that only when the optimal knapsack includes many
items, the problem derived from Algorithm Ap[1] can belong to an equivalent
problem. This event may happen with a small probability. The estimation of
such probability needs further investigations.
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Proposition 16. The problem derived from Algorithm Ap[2] can belong to Type
1′, 2′, 3′, 4′, 5′ and 6′.

Denote x∗ = (x1 · · ·xn) to be the optimal solution, I(x∗) the set of items in
x∗ and J(x∗) outside x∗. If for some j /∈ I(x∗), it holds that

−pj + ρ(
∑

i∈I(x∗)

wi + wj − C2) > 0,

then the problem derived from the algorithm is a non-equivalent problem.

Proof: It is enough to prove f(x) > fmax for some infeasible solution x.
Let x∗ = (x1 · · ·xn) be the optimal solution. Then

f(x∗) =
∑

i∈I(x∗)

pi.

Let x′ be the solution with xi = 1 for i ∈ I∗ ∪ {j} and xi = 0 for other
subscripts.

f(x′) =
∑

i∈I∗∪{j}

pi − ρ(
n∑

i=1

wixi − C2).

Then
f(x′)− f(x∗) = pj − ρ(

∑
i∈I

wi + wj − C2) > 0.

Since for some j ∈ J(x∗), it holds that

pj − ρ(
∑

i∈I(x∗)

wi + wj − C2) > 0,

then
f(x′) > fmax

for the infeasible solution x′.

Example 3. A non-equivalent problem. In Ap[2], let wi = pi = 1 and n an odd
number.

For all infeasible solutions, the penalty function is

g2(x) =
n∑

i=1

xi − C1,

where C1 = 0.5n and the fitness function is

f(x) =
n∑

i=1

xi − g2(x) = C1.
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Since n is an odd number, then a feasible solution satisfies:

n∑
i=1

xi ≤ 0.5n

and we have
fmax =

n− 1
2

But
f(1) = 0.5n

and then we have
f(1) > fmax.

Example 4. A wide-gap equivalent problem.

w1 = n− 1, w2 = · · ·wn = 1,

p1 = 10n, p2 = · · · = pn = 1.

Then (10 · · · 0) is the only optimal point.

Let x = (01 · · · 1) which is a feasible solution. And for any feasible solution
y in its neighbourhood N(x, n− 2), it holds:

f(y) < f(x).

Proposition 17. For Ap[3], denote x∗ to be the optimal solution, and I(x∗)
and J(x∗) as in the previous propositions. If for some j ∈ J(x∗), it holds that

pj − ρ2(
∑

i∈I(x∗)

wi + wj − C2)2 > 0

then the problem derived from Algorithm Ap[3] belongs to the non-equivalent
problem.

Proof: The proof is similar to that of the above proposition. Let x′ be the
solution with xi = 1 for i ∈ I(x∗) ∪ {j} and xi = 0 for other subscripts. Then

f(x′)− f(x∗) = pj − ρ2(
∑
i∈I∗

wi + wj − C1)2 > 0.

In other words, f(x′) > f(x∗) where x′ is infeasible.

6 Analysis of GAs for Average Capacity Knapsack

6.1 GAs of Penalizing Infeasible Solutions

Proposition 18. Given an average capacity knapsack,
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1. if the fitness function derived from Algorithms Ap[i], i = 1, 2, 3 is an equiva-
lent problem, then Algorithms Ap[i], i = 1, 2, 3 may need an exponential time
to find the optimal solution in the worst case.

2. If the fitness function derived from Algorithms Ap[i], i = 1, 2, 3 is an equiv-
alent problem, then the (1+1) Algorithms Ap[i], i = 1, 2, 3 cannot find the
optimal feasible solution.

Proof: (1) Notice that the example of wide-gap problem 4 is a kind of deceptive
problem. Such deceptive problem is hard for genetic algorithms. So Algorithms
Ap[i], i = 1, 2, 3 need exponential time to find the optimal solution to the prob-
lem.

(2) If the GA starts with an infeasible solution whose fitness is greater than
fmax, then it cannot find the optimal solution due to the elitism of the selection
operator.

Proposition 19. Given an equivalent problem, if the fitness of all feasible solu-
tions is better than that of all infeasible solutions, then Algorithms Ap[i], i = 2, 3
start from a feasible solution and the first hitting time to a local optima Sl with
neighbour size 1 is

E[τl] = O(n2).

Proof: Notice that if an individual x is not on a local optima with neighbour-
hood size 1, then there is some y such that f(x) < f(y) and H(x, y) = 1. The
probability for x to mutate into y is Ω(1/n), and the procedure can last up to
O(n) steps, so only O(n2) generations are needed for a feasible solution x to
reach a local optima with neighbourhood size 1.

Proposition 20. For the narrow-gap equivalent problem, a (1 + 1) Ap[i], i =
1, 2, 3 can find a better solution in O(nδ) generations.

Proof: Given an individual x, the Hamming distance from x to a better solution
y is only H(x, y) = δ. The probability for x to generate a better offspring y with
f(y) > f(x) and H(x, y) = δ is not less than

1
nδ

(1− 1
n

)n−δ = Ω(
1
nδ

).

And the drift is not less than

∆(x) = Ω(
1
nδ

)

So the expected first hitting time τb is

E[τb] =
n

max ∆(x)
= O(nδ+1).

This means the GA can find a better solution quickly if δ = O(1).
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Proposition 21. For the wide-gap or wide-plateau equivalent problem, starting
from the feasible solution x, a (1 + 1) Ap[i], i = 1, 2, 3 can find a better solution
in O(nδ) generations.

Proof: The proof is similar to that of the above proposition. The only difference
is that: δ = ω(1).

The above propositions give some general but rough upper bounds. More
accurate upper bounds are dependent on the instance.

6.2 GAs Repairing Infeasible Solutions

Similar to the analysis of the GAs penalizing feasible solutions, we have the
following results about the GAs using the repair method. The only difference is
that all the problems derived from the repair method algorithms are a kind of
equivalent problem.

Proposition 22. Given an average capacity knapsack, algorithms Ar[i], i = 1, 2
may need exponential time to find the optimal solution in the worst case.

Proposition 23. Given any average capacity knapsack, algorithms Ar[i], i =
1, 2 can find a local optima with neighbourhood size 1 in O(n2) generations.

Proposition 24. For a narrow-gap problem, the (1 + 1) Ar[i], i = 1, 2, 3 can
find a better solution in O(nδ+1) generations, where δ = O(1).

Proposition 25. For the wide-gap or wide-plateau problem, starting from a
feasible solution x, a (1 + 1) Ar[i], i = 1, 2 can find a better solution in O(nδ+1)
generations, where δ = ω(1).

6.3 A Comparison Between Repairing Infeasible Solutions and
Penalizing Infeasible Solutions

Given an average capacity knapsack, the genetic operators and the fitness func-
tion of algorithms Ap and Ar are the same in the feasible solution area. So if the
search is restricted to the feasible solution area, then the behavior of these two
algorithms are equivalent.

The behavior of algorithms Ap and Ar are different only in the infeasible
solution area. In the following it is assumed that an infeasible solution is gener-
ated.

Let’s investigate the event of algorithms Ap and Ar generating an infeasible
solution. Given an individual x, denote the items in the knapsack by

I(x) = {i | xi = 1}

and the items outside the knapsack by

J(x) = {j | xj = 0}.
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The individual x is mutated into an infeasible solution only when at least one
item from J(x) is added, (where the added items are denoted by A(x)), several
(or null) items are removed from I(x) (where the removed items are denoted by
R(x)), and the constraint is violated:∑

i∈I(x)

wi −
∑

i′∈R(x)

wi′ +
∑

j∈A(x)

wj > C2.

In practice, the maximum generation T is always fixed, for example, T = 500 in
Michalewicz’s experiment when n = 100, 250, 500 [14]. Therefore it is reasonable
to assume that T ≤ 5n in the paper.

Let k be the number of items in J(x) added into x simultaneously. The
probability of adding k items is no more than(

n

k

) (
1
n

)k

If k is beyond a constant, for example, k = ln n, then the above probability
is very small, so it may seldom happen if the maximum generation is T ≤ 5n.

The analysis of a population-based GA is usually very complex. Here a simple
idea is followed: if a better offspring x′′ appears after a few generations, then the
individual should come from some parent x (due to no crossover). It is necessary
to trace how the individual x generates x′′. The individual x is mutated to an
infeasible solution x′ first.

– With the penalty method, x′ survives in the selection phase and enters the
next generation with some probability. In the next generation, it is possibly
mutated into the individual x′′ with a better fitness f(x′′) > f(x), or in more
longer generations, x′ is mutated to x′′.
From the above analysis, it is seen that at least two generations are needed
with the penalty method to generate a better offspring: first an infeasible
individual is generated, and then in the next generation or longer, the infea-
sible individual is mutated into a feasible solution.

– With the repair method, x′ is repaired to generate a feasible solution x′′

within the same generation.

This idea shows that it is possible to analyze the behavior of populations by
analyzing that of individuals.

Let’s start the discussion from the event of adding one item into the individual
x.

Event 1 Given an individual x, one item j from J(x) is added into x (x′ is an
infeasible solution); then an item i is removed from x′, and a better offspring x′′

is generated.
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Analysis of algorithm Ar[2]. Let’s see when the above event will happen: let the
item imin ∈ I(x) be the item such that

arg min
i∈I(x)

{
pi

wi

}
.

There exists some item j ∈ J(x) which satisfies,

pj > pimin , (16)
pj

wj
≥ pimin

wimin

. (17)

Denote Ja(x) to be the set of all items j ∈ J(x) satisfying the above condi-
tions.

Starting from the individual x, the repair method Ar[2] chooses an item j
from Ja(x) with a probability not less than

c

(
| Ja(x) |

1

)
1
n

= Ω

(
| Ja(x) |

n

)
.

where c is a constant. Then the repair method removes the minimum item imin

and finds a better solution with probability 1.
So if Ja(x) is not empty the probability for Ar[2] of producing a better

solution is at least

Ω

(
| Ja(x) |

n

)
. (18)

Note: if the set Ja(x) is empty, the above probability is 0, and the repair
procedure plays no role in handling infeasible solutions.

However since the discussion here is restricted to the early search phase, i.e.
T ≤ 5n, the event of Ja(x) being empty may seldom happen, especially in the
initial population or very early phase populations.

From the above analysis, Algorithm Ar[1] can find a better solution x quickly
until the condition holds: for all j ∈ J(x),

pj

wj
<

pimin

wimin

.

Analysis of algorithm Ar[1]. Let’s see when Event 1 will happen: there exists
some item j ∈ J(x), and j satisfies for some i ∈ I(x),

pj > pi (19)

Denote Jb(x) to be the set of all item j ∈ J(x) satisfying the above condition.
It is obvious that Ja(x) ⊂ Jb(x).

Given an item j ∈ Jb(x), denote the items i with pi ≤ pj by Ib(x, j).
Starting from individual x, Algorithm Ar[1] first adds one item j from Jb(x)

with some probability and then an infeasible solution may be generated. The
probability of such event happening is not less than

c

(
| Jb(x) |

1

)
1
n

= Ω

(
| Jb(x) |

n

)
,
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where c is a constant.
Assume one item j ∈ Jb(x) is added. Then the algorithm repairs the infeasible

solution by removing one item from I(x) at random. It will remove an item
i ∈ Ib(x, j) with a probability

| Ib(x, j) |
| I(x) |

So the probability of generating a better solution is

Ω

 ∑
j∈Jb(x)

1
n

| I0(x, j) |
| I(x) |

 (20)

Analysis of algorithm Ap. It is similar to the analysis of Algorithm Ar[1]. Let’s
see when Event 1 will happen: there exists some j ∈ J(x), and j satisfies for
some i ∈ I(x),

pj > pi (21)

Still denote Jb(x) to be the same set of all items j ∈ J(x) satisfying the above
condition. Given an item j ∈ Jb(x), denote the items i with pi ≤ pj by Ib(x, j).

Starting from x, the probability of x generating an infeasible solution by
adding one item j ∈ Jb(x) is no more than

c

(
| Jb(x) |

1

)
1
n

= O

(
| Jb(x) |

n

)
.

Then the individual survives the selection phase with some probability, de-
noted by q(x′)(q(x′) < 1). This probability is dependent on the selection pressure
and the fitness of the other individuals in the population.

In the next generation, one item i ∈ Ib(x, j) is removed and a better individ-
ual is generated with a probability not higher than

c

(
| Ib(x, j) |

1

)
1
n

.

If the above three events are considered together, the probability of generat-
ing a better individual in two generations is

O

q
∑

j∈Jb(x)

1
n

| Ib(x, j) |
n

 . (22)

However sometimes no better individual is generated in the second genera-
tion, so we should investigate the probability of generating a better individual
in the third generation.

Similar to the above analysis, the probability is no more than

O

q2
∑

j∈Jb(x)

1
n

| Ib(x, j) |
n

 . (23)
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By deduction, the total probability of x generating a better individual in up
to T generations is

O

(q + q + · · ·+ qT )
∑

j∈Jb(x)

1
n

| Ib(x, j) |
n

 , (24)

= O

q(1− qT+1)
1− q

∑
j∈Jb(x)

1
n

| Ib(x, j) |
n

 , (25)

This means the probability of algorithm Ap[i], i = 1, 2, 3 producing a better
offspring is smaller than that of the algorithm Ar[1].

From the above upper bound, it is seen that if the selection pressure is smaller,
i.e. q is bigger, then the upper bound on the probability of generating a better
individual may be larger under Event 1. This means that among the three algo-
rithms Ap[1], Ap[2], Ap[3], Ap[1] may have the biggest probability to generate a
better offspring.

However, this needs a precondition, i.e. the fitness of all feasible solutions is
better than that of infeasible solutions. As proved before, for Algorithm Ap[1],
if the cardinality | J(x∗) |≥ 3 ln n, then the problem to maximize the fitness
function is not equivalent to the knapsack problem. Since for many instances, it
holds that | J(x∗) |≥ 3 ln n, Algorithm Ap[1] may find some infeasible solution
with a large fitness rather than a feasible solution. So it may be the worst among
the three penalty algorithms.

By using the same analysis, we consider the event of adding one item and
removing two items.

Event 2 Given an individual x, one item j from J(x) is added into x, and the
offspring x′ is an infeasible solution. Then two items i1, i2 ∈ I(x) are removed
from x′, and a better offspring x′′ is generated.

This event can happen when there exists one item j ∈ J(x) and for this item
j, there are two items i1, i2 ∈ I(x),

pj > pi2 + pi1 (26)
pj < pi1 , pj < pi2 , (27)∑
i∈I(x)

wi − wi1 − wi2 + wj ≤ C2. (28)

Denote the set of all items j satisfying the above condition by Jc(x). And for
the given item j ∈ Jc(x), denote the items i1, i2 that satisfy the above conditions
to be Ic(x, j).

Analysis of algorithm Ar[2]. Let’s see when the event will happen: let imin 1 ∈
I(x) be the item such that

arg mini∈I(x)

pi

wi
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and imin 2 ∈ I(x) the item such that

arg mini∈I(x)\{imin 1}
pi

wi
.

There is one item j ∈ Jc(x) and for the above two items imin 1, imin 2 ∈ I(x),

pj

wj
≥ pimin 1

wimin 1

,
pj

wj
≥ pimin 2

wimin 2

(29)

Denote Jd(x) to be the set of all the above j ∈ Jc(x) satisfying the above
condition.

Starting from individual x, Algorithm Ar[2] first adds one item j ∈ Jd(x) in
x and an infeasible solution is generated. The probability of this event is not less
than

c

(
| Jd(x) |

1

)
1
n

= Ω

(
| Jd(x) |

n

)
. (30)

where c is a constant.
Then the repair method removes two items imin 1 and imin 2 with probability

1.
So the probability of Algorithm Ar[2] of finding a better solution is

Ω

(
| Jd(x) |

n

)
. (31)

Note: if the set Jd(x) is empty, the above probability is 0, and the repair
procedure plays no role in handling infeasible solutions.

Analysis of algorithm Ar[1]. Starting from x, Algorithm Ar[1] first adds one
item j from Jc(x), then an infeasible solution is generated. The probability of
this event happening is no less than

c

(
| Jc(x) |

1

)
1
n

= Ω

(
| Jc(x) |

n

)
,

where c is a constant.
The algorithm then repairs the infeasible solution by removing two items

from Ic(x, j) at random. The probability is not less than(
| Ic(x, j) |
| I(x) |

)2

So the probability for the algorithm to generate a better solution is

Ω

 ∑
j∈Jc(x)

1
n

| I0(x, j) |2

| I(x) |2

 (32)
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Analysis of algorithm Ap. Starting from x, one item is added to individual x.
Then an infeasible x′ is generated. This event happens with a probability no
more than

c

(
| Jc(x) |

1

)
1
n

= O

(
| Jc(x) |

n

)
.

And then the individual x′ survives in the selection phase with a probability
q(x′)(q(x′) < 1) and the total probability is no more than

O

(
q
| Jc(x) |

n

)
.

In the next generation, two items j1, j2 ∈ Ic(x, j) are removed with a proba-
bility no more than

c

(
| Ic(x, j) |

2

)
1
n2

,

where c is a constant.
If the above three events are considered together, then the event will happen

with a probability no more than

O

q
∑

j∈Jc(x)

1
n

| Ic(x, j) |2

n2

 . (33)

If no better individual is generated in the second generation, then in the next
or more generations, two items i1, i2 ∈ Ic(x, j) are removed. This event happens
with a probability no more than

Ω

q2
∑

j∈J(x)

1
n

| Ic(x, j) |2

n2

 . (34)

By deduction, the probability for Algorithm Ap to generate a better solution
in up to T generations is

O

q
1− qT

1− q

∑
j∈Jc(x)

1
n

| Ic(x, j) |2

n2

 . (35)

This means that the probability of algorithm Ap[i], i = 1, 2, 3 producing a
better offspring is smaller than that of the algorithm Ar[1] for Event 2.

A similar analysis can be applied to other more complex events, for example,

Event 3 add two items j1, j2 ∈ J(x) to generate a new infeasible individual x′

first; then remove one item i from I(x) to generate a better individual.
The following condition holds

pj1 + pj2 > min
i∈I(x)

{pi}
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but
pj1 < min

i∈I(x)
{pi}

pj2 < min
i∈I(x)

{pi}∑
i∈I(x)

wi + wj1 + wj2 −
∑

k∈R(x)

wk < C2

The analysis is the same as before, but we will not do it again.
The following example shows the repairing method Ar may be much better

than the penalty method Ap and the repairing algorithm Ar[1].

Example 5. Example of a wide-gap equivalent problem 4.

Let x = (01 · · · 1) be the local optimum. Algorithm Ar[1] or Ar[2] will add the
first item into the knapsack with a probability Ω(1/n), and through the greedy
repairing or random repairing, the global optima (10 · · · 0) then is generated.

However, for any penalty method, if the first item is added, then the proba-
bility of removing all other items and keeping the first item at the same time is
very small.

This shows that the repair algorithm Ar is much better than the penalty
algorithm Ap on this example.

7 Experiments

The above theoretical explanation has shown that GAs using the repair method
are more efficient than GAs using the penalty method, at least in the early
search phase. Due to the following two reasons, it is necessary to implement a
comparative experiment among the five GAs Ap[i], i = 1, 2, 3 and Ar[i] = 1, 2.

1. The result about the average capacity knapsack is different from the exper-
imental observations reported in [14]. It will be useful to find out whether
Algorithm Ap[1] has the best performance as claimed in [14] or Algorithm
Ap[1] has a worse performance as predicted in this paper.

2. The GAs considered in this paper don’t employ a crossover operator. It is
necessary to implement computer experiments for both GAs using crossover
and not, although it is believed the introduction of crossover will not change
the theoretical claim.

The experimental setting is given as follows: the profits and weights in the
knapsack are initialized at random; the initial population is generated at random.
ν = r = n/20. Bitwise mutation with rate pm = 0.05 is the same as in [14]. The
crossover rate is pc = 0.65. The repairing algorithms Ar[1] and Ar[2] use repairing
rate 1. The maximum number of generation is set to be 500. For both the tests on
GAs with crossover and without crossover, the experiment includes 45 instances
of restrictive capacity knapsacks and 45 average capacity knapsacks, where 15
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instances are assigned for each item size 100, 250, 500. The result is averaged over
10 independent runs. The program is coded in Java and implemented on a SUN
AMD 64 Opteron desktop computer. The total time for GAs without crossover
is 291 minutes 19 seconds and the total time for GAs with uniform crossover is
4,756 minutes 10 seconds.

Table 3 shows the number of instances in which a GA has produced the best
solution among five GAs. From the table, we see that for GAs without crossover,
Ar[2] is always the best one on 90 instances. However, if crossover is introduced
in the GAs, for 6 instances the performance of algorithm Ar[2] is worse than
that of Ap[2] or Ap[3]. So further theoretical explanations of the role of crossover
are needed as indicated in the previous section.

Table 3. The number of instances which a GA has produced the best solution among
five GAs.

Ap[1] Ap[2] Ap[3] Ar[1] Ar[2]

no crossover 0 0 0 0 90
with crossover 0 3 3 0 84

Table 4 gives typical experimental results of the five GAs Ap[i], i = 1, 2, 3
and Ar[i], i = 1, 2 without using a crossover operator.

Table 5 lists typical experimental results of the five GAs using a uniform
crossover operator.

From both tables, it is seen that the experimental results have supported the
theoretical claims of the previous sections:

– Algorithm Ar[2] is the best among five algorithms for solving both restric-
tive capacity and average capacity knapsack problems, no matter whether
crossover is used or not.

– Algorithm Ap[1] sometimes cannot find a feasible solution to average capacity
knapsack problems and is worse than others.

– Among three GAs using the penalty method, Ap[2] is best.

8 Conclusions and Discussions

There exists a wide gap between the theory and practice of GAs. It is necessary
to bridge the gap between them. The paper has provided a good example to
demonstrate how a theoretical analysis can play an important role in explaining
experimental results of GAs.

Different constraint handling techniques have been incorporated with GAs,
however most of current studies are based on computer experiments. An ex-
ample is Michalewicz’s comparison of GAs using different constraint handling
techniques on the 0-1 knapsack problem [14]. The following phenomena are ob-
served in the experiments:
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Table 4. The experiments results of five GAs without crossover. C1 restrictive capacity
knapsack, C2 average capacity knapsack. “∗” means no feasible solution is found during
500 generations.

Correlation No. of items Capacity Ap[1] Ap[2] Ap[3] Ar[1] Ar[2]

none

100
C1 ∗ 9.99 13.7 15.9 28.5
C2 76.1 138.7 135.5 152.9 184.9

250
C1 ∗ 50.7 54.2 73.8 132.6
C2 476.9 962.8 930.1 995.4 1289.9

500
C1 ∗ 130.9 156.7 223.3 491.0
C2 1491.3 3602.3 3533.2 3703.9 5081.8

weak

100
C1 ∗ ∗ ∗ 12.3 27.0
C2 ∗ 240.8 230.8 244.8 306.1

250
C1 ∗ ∗ ∗ 34.1 122.4
C2 1093.8 1308.3 1282.9 1370.6 1809.9

500
C1 ∗ ∗ ∗ 66.4 414.6
C2 2439.2 5219.2 5172.5 5473.9 7462.3

strong

100
C1 ∗ ∗ ∗ 23.4 46.4
C2 403.4 411.0 406.7 409.6 441.9

250
C1 ∗ ∗ ∗ 65.8 222.2
C2 ∗ 2316.9 2292.3 2355.9 2830.1

500
C1 ∗ ∗ ∗ 131.2 706.5
C2 6968.5 9658.7 9568.6 9836.9 11704.7

1. On one hand, the penalty method needs more generations to find a feasible
solution to the restrictive capacity knapsack than the repair method.

2. On the other hand, the penalty method can find better solutions to the
average capacity knapsack than the repair method.

Such observations need a theoretical explanation. This paper has provided
such a theoretical analysis for Michalewicz’s experiments [14]. The main result of
the paper is that GAs using the repair method are more efficient than GAs using
the penalty method on both restrictive capacity and average capacity knapsack
problems. The theoretical result about the average capacity knapsack is a little
bit different from Michalewicz’s experimental results. So supplemental experi-
ments have been implemented to support the theoretical claim in the paper.

Since the repair method has used some kind of knowledge about the knapsack
problem, this theoretical study has confirmed a general principle used in prac-
tice: a problem-specific constraint-handling technique (here the repair method)
performs better than general-purpose techniques (here the penalty method). A
good and efficient constraint-handling technique must exploit domain specific
knowledge. In combinatorial optimization, the repair method may be regarded
as the best choice in handling constraints [5].

There are many constraint-handling techniques incorporated in GAs. This
paper only makes an initial analysis of two of them: the penalty method and the
repair method. In the future, it is possible to discuss other constraint handling
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Table 5. The experiments results of five GAs with crossover. C1 restrictive capacity
knapsack, C2 average capacity knapsack. “∗” means no feasible solution is found during
500 generations.

Correlation No. of items Capacity Ap[1] Ap[2] Ap[3] Ar[1] Ar[2]

none

100
C1 ∗ ∗ ∗ 10.1 23.4
C2 129.3 157.8 159.5 165.5 194.5

250
C1 ∗ ∗ ∗ 26.0 108.6
C2 221.9 929.0 922.9 978.9 1279.9

500
C1 ∗ ∗ ∗ 78.0 486.4
C2 3161.5 3661.3 3620.1 3755.2 5015.1

weak

100
C1 ∗ ∗ ∗ 12.6 29.9
C2 103.4 207.3 194.0 212.7 262.6

250
C1 ∗ ∗ ∗ 38.9 138.5
C2 200.6 1245.8 1161.0 1335.5 1771.6

500
C1 ∗ ∗ ∗ 85.1 461.8
C2 3244.5 5185.1 5120.1 5391.1 7276.6

strong

100
C1 ∗ ∗ ∗ 24.0 41.9
C2 155.6 359.4 335.8 389.2 444.0

250
C1 ∗ ∗ ∗ 62.7 204.0
C2 1506.7 2370.0 2368.8 2479.2 2857.6

500
C1 ∗ ∗ ∗ 128.1 710.6
C2 4881.0 9709.2 9588.6 9977.5 11709.4

methods. But it must be kept in mind that none of the constraint-handling
techniques can be superior to the others over all problems [5].
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