
Runtime Analysis of Binary PSO∗

Dirk Sudholt

Fakultät für Informatik, LS 2

Technische Universität Dortmund

Dortmund, Germany

Carsten Witt

Fakultät für Informatik, LS 2

Technische Universität Dortmund

Dortmund, Germany

February 20, 2008

Abstract

We investigate the runtime of the Binary Particle Swarm Optimiza-
tion (PSO) algorithm introduced by Kennedy and Eberhart (1997).
The Binary PSO maintains a global best solution and a swarm of par-
ticles. Each particle consists of a current position, an own best posi-
tion and a velocity vector used in a probabilistic process to update the
particle’s position. We present lower bounds for a broad class of imple-
mentations with swarms of polynomial size. To prove upper bounds,
we transfer a fitness-level argument well-established for evolutionary
algorithms (EAs) to PSO. This method is then applied to estimate
the expected runtime on the class of unimodal functions. A simple
variant of the Binary PSO is considered in more detail. The 1-PSO
only maintains one particle, hence own best and global best solutions
coincide. Despite its simplicity, the 1-PSO is surprisingly efficient. A
detailed analysis for the function OneMax shows that the 1-PSO is
competitive to EAs.

1 Introduction

The runtime analysis of randomized search heuristics is a growing area with
many interesting results in the last decades. The analysis of evolutionary
algorithms started with the investigation of simple evolutionary algorithms
on simple example functions (see, e. g., Droste, Jansen and Wegener [2]).
The theoretical results derived from such analyses then helped to develop

∗Supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of the Collabo-
rative Research Center “Computational Intelligence” (SFB 531).

1
Dagstuhl Seminar Proceedings 08051 
Theory of Evolutionary Algorithms 
http://drops.dagstuhl.de/opus/volltexte/2008/1480



methods to analyze more complex evolutionary algorithms on more complex
problems. The runtime analysis of evolutionary algorithms can be called
a success story since nowadays analyses are possible for many problems
from combinatorial optimization. This includes, for example, maximum
matchings [3], spanning tree problems [12, 11], matroid optimization [14] as
well as the NP-hard partition problem [17].

In recent years, the first runtime analyses on swarm intelligence algo-
rithms have appeared, following a similar approach as taken for the analysis
of evolutionary algorithms. Such analyses are, in general, more difficult than
for evolutionary algorithms as the probabilistic model underlying swarm al-
gorithms may depend on a long history of past solutions. Regarding ant
colony optimization (ACO), first runtime analyses have been presented in-
dependently by Gutjahr [4] and Neumann and Witt [13]. Neumann and Witt
defined a simple ant algorithm called 1-ANT and analyzed its performance
on the function OneMax. It turned out that the 1-ANT is very sensitive to
the choice of the so-called evaporation factor that determines the amount of
change in the probabilistic model. Similar results for other functions were
presented by Doerr, Neumann, Sudholt and Witt [1]. On the other hand,
variants of the Max-Min Ant System (MMAS) proved to be quite effective
for simple functions (Gutjahr and Sebastiani [5] and Neumann, Sudholt and
Witt [10]).

Particle swarm optimization (PSO) is another class of swarm algorithms
that is mostly applied in continuous spaces. Originally developed by Kennedy
and Eberhart [7], it has become a popular bio-inspired optimization principle
in recent years. A comprehensive treatment is given in the book by Kennedy,
Eberhart, and Shi [9]. A typical PSO algorithm maintains a swarm of par-
ticles where each particle corresponds to a solution of the problem at hand.
Each particle moves through the search space according to a certain veloc-
ity. In every iteration the velocity of a particle is updated in the direction
of its own best solution and the best individual in its neighborhood. This
kind of behavior is motivated from social-psychology theory as it combines
cognitive and social effects to determine the behavior of each particle.

Kennedy and Eberhart [8] presented a binary version of PSO, called
Binary PSO. As in classical PSO, velocities are used to determine the next
position of a particle. However, as each bit may only obtain discrete values
0 and 1, velocities are used in a stochastic solution construction process.
More precise, the velocity value of a bit determines the probability to set
this bit to 1 in the next solution construction. This closely relates to binary
ACO algorithms like the 1-ANT or MMAS variants.

2



Our aim is to develop a theoretical understanding of the Binary PSO, in
particular from the perspective of computational complexity. In the original
formulation of Binary PSO, all velocities are restricted to an interval of
constant range. We prove in Section 2 that the effect on the performance is
disastrous if vmax is fixed while the problem size grows. Instead, we present
a formulation of the Binary PSO that is adjusted towards growing problem
dimensions.

In Section 3 we present lower bounds on the runtime of Binary PSO.
Section 4 shows how fitness-level arguments, a powerful tool for the analysis
of evolutionary algorithms, can be used for the analysis of the Binary PSO
using only the social component. We examplarily apply this technique to
the class of unimodal functions. In Section 5, we consider a specific variant
of Binary PSO in more detail. The 1-PSO works with a swarm consist-
ing of only one particle. Despite its simplicity, the 1-PSO turns out to be
surprisingly efficient. A thorough analysis on the function OneMax in Sec-
tion 5 shows that the 1-PSO is competitive to evolutionary algorithms. We
conclude in Section 6 with possible directions for future research.

2 The Binary PSO

We consider the Binary PSO algorithm by Kennedy and Eberhart [8] for the
optimization of pseudo-Boolean function f : {0, 1}n → R. Generally, the Bi-
nary PSO algorithm maintains µ triples (x(i), x∗(i), v(i)), 1 ≤ i ≤ µ, denoted
as particles. Each particle i consists of its current position x(i) ∈ {0, 1}n,
its own best position x∗(i) ∈ {0, 1}n and its velocity v(i) ∈ R

n. Note that
the velocity is from a continuous domain. In PSO terminology, the three
components of a particle are often called vectors. Using the language of opti-
mization, we will refer to particle positions x(i), x∗(i), and x∗ synonymously
as solutions.

The movement for each particle is influenced by the best particle in its
neighborhood. Hence, depending on the neighborhood structure, different
particles may be guided by different good solutions. In this work, how-
ever, we only use the trivial neighborhood consisting of the whole swarm.
This means that all particles are influenced by a single global best particle,
denoted as x∗.

The velocities are updates as follows. The velocity vector is changed
towards the particle’s own best solution and towards the global best solu-
tion x∗. Using the language of social-psychology, the first component is often
called cognitive component and the latter is often called social component.

3



1.0

0.0

0.5

0.25

0.75

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 1: The sigmoid function s(v) = 1
1+e−v .

These impact of these two components is determined by so-called learning
factors c1 and c2 representing parameters of the system. The factor c1 is the
learning factor for the cognitive component and c2 is the one for the social
component. A common choice for the learning factors is to set c1 = c2 = 2.

We give a precise definition for the Binary PSO algorithm with a swarm
size of µ and learning factors c1, c2. By lower indices we address the n
components of the three parts of the particle.

The algorithm starts with an initialization step (Step 1), where all ve-
locities are set to all-zeros vectors and all solutions, including own best and
global best solutions, are undefined, represented by the symbol ⊥. The
subsequent loop (Steps 2–5) chooses random scalars r1 and r2 anew in each
iteration. These values are then used as weights for the cognitive and the so-
cial component, respectively. Using the language of evolutionary algorithms,
we refer to iterations synonymously as generations.

In Step 3, the velocity is probabilistically translated into a new position
for the particle, i. e., a new solution. As proposed in the original formulation,
we use the sigmoid function

s(v) :=
1

1 + e−v

shown in Figure 1. Hence positive velocity components bias the correspond-
ing bit towards 1-values while negative velocities favor 0-values. At veloc-
ity 0n, each bit is completely random, hence the first created solution is
uniformly distributed over {0, 1}n.

Afterwards, the own best and global best solutions are exchanged if the
newly constructed solution is better. Note that the selection is strict, i. e., a
best solution is only exchanged in case the new solution has strictly larger
fitness.

4



In Step 4 the Binary PSO performs some vector arithmetic to update
the velocity vectors probabilistically in the direction to the particle’s own
best solution and the global best solution. To ensure convergence of the
heuristic, every velocity vector is bounded componentwise by minimum and
maximum values, i. e., to an interval [−vmax, vmax]. This reflects the common
choice of a maximum velocity as studied by Shi and Eberhart [15]. For
practical purposes, often velocities in the interval [−4, 4] are proposed. Since
we will however conduct an asymptotic analysis, we allow the maximum
velocity to grow with the problem dimension n and confine the components
to logarithmic values by letting vmax := ln(n−1). We will justify this choice
later.

Algorithm 1 (Binary PSO).

1. Initialize velocities with 0n and all solutions with ⊥.

2. Choose r1 ∈ U [0, c1] and r2 ∈ U [0, c2].

3. For j := 1 to µ do
For i := 1 to n do

Set x
(j)
i := 1 with probability s(v

(j)
i ),

otherwise set x
(j)
i := 0.

If f(x(j)) > f(x∗(j)) or x∗(j) = ⊥ then x∗(j) := x(j).
If f(x∗(j)) > f(x∗) or x∗ = ⊥ then x∗ := x∗(j).

4. For j := 1 to µ do
Set v(j) := v(j) + r1(x

∗(j) − x(j)) + r2(x
∗ − x(j)).

Restrict each component of v(j) to [−vmax, vmax].

5. Goto 2.

Throughout this work, we will deal with different implementations of the
Binary PSO, differing in the swarm size µ and the learning factors c1 and
c2. In particular, we deal with a remarkably simple yet effective algorithm,
the so-called 1-PSO using just one particle. With just one particle, the own
best solution and the global best solution coincide. Therefore, it makes sense
to turn off the social component by setting c2 = 0. The cognitive learning
factor is set to the default value c1 = 2. Note that the same algorithm is
described by the choice c1 = 0 and c2 = 2. Dropping the upper index in the
notation, the 1-PSO can be stated as follows.

5



Algorithm 2 (1-PSO).

1. Initialize v = 0n and x∗ = ⊥.

2. Choose r ∈ U [0, 2].

3. For i := 1 to n do
Set xi := 1 with probability s(vi),

otherwise set xi := 0.
If f(x) > f(x∗) or x∗ = ⊥ then x∗ := x.

4. Set v := v + r(x∗ − x).
Restrict each component of v to [−vmax, vmax].

5. Goto 2.

There are several good reasons to investigate the 1-PSO. One is that in
the Binary PSO without social component, i. e., with c2 = 0, all particles
behave like independent instances of the 1-PSO. Moreover, by analyzing the
1-PSO we gain insight into the probabilistic model underlying the Binary
PSO. This then helps to analyze more complex PSO variants. Finally, the
investigation of the 1-PSO is interesting on its own as the 1-PSO turns out
to be surprisingly effective.

Lower Bound for Constant Velocity Range

The value vmax is often set to a constant value. This makes sense when
dealing with problems of bounded size. However, one should be aware of
the fact that for growing problem sizes a fixed value for vmax leads to an
extreme decline in performance.

The following lower bound shows that if all velocities are restricted to
constant values, then the Binary PSO is too close to random search and the
algorithm fails badly, even given exponential time and a large number of
global optima.

Theorem 1. Consider the Binary PSO with arbitrary values for µ, c1, and
c2, where vmax is redefined to a constant value. Then there is a constant
c = c(vmax) such that the following holds. If f contains at most 2cn global
optima, the probability that the Binary PSO finds a global optimum on f
within 2cn constructed solutions is 2−cn.

Proof. Choose c such that s(vmax) = 2−3c and note that c is a positive
constant if vmax is constant. We estimate the probability to construct any

6



specific solution x. Since the Binary PSO treats 0- and 1-bits symmetrically,
we can w. l. o. g. assume that x is the all-ones string 1n. Then even if all
velocities are at vmax, the probability to construct x is still bounded by
(s(vmax))

n = 2−3cn. By the union bound, the probability to construct any
global optimum out of at most 2cn ones is bounded by 2cn · 2−3cn = 2−2cn.
By the same argument, the probability that this happens at least once in
2cn solution constructions is at most 2cn · 2−2cn = 2−cn.

For the common choice vmax := 4, the constant c is approximately
0.00873. As 20.00873·n is small for small n, the bad runtime behavior can
only be observed if the problem size is large enough. This certainly isn’t the
case for n = 100 where 2cn < 2. However, for a problem size of n = 10000,
the claimed bound has grown to 2cn > 1026 and we would not expect to live
long enough to see the Binary PSO find an optimum.

This analysis justifies our change in design, namely letting vmax scale
with the problem size. In the following, we assume vmax = ln(n − 1). As
s(−vmax) = 1/n and s(vmax) = 1− 1/n, the probability of setting a bit to 1
is always in the interval [1/n, 1 − 1/n].

3 Lower Bound for Binary PSO

An important step towards runtime bounds for the Binary PSO is to un-
derstand the dynamics of the probabilistic model underlying PSO, that is,
the behavior of the velocity vector. Consider a single bit that is set to 1
both in the own best and in the global best solution. Then, as long as these
solutions are not exchanged, its velocity value v is guided towards the upper
bound vmax. An important observation is that the velocity is only increased
in case the bit is set to 0 in the next constructed solution. The probability
that this happens is given by

1 − s(v) = 1 −
1

1 + e−v
=

1

1 + ev
,

and we see that this probability decreases rapidly with growing v. Hence,
the closer the velocity is to the bound vmax, the harder it is to get closer. A
symmetric argument holds for velocities that are guided towards −vmax.

As long as the v-values are not too close to the velocity bounds −vmax

and vmax, the search of the Binary PSO is too random for it to find single
optima with high probability. We can make this idea precise by the following,
general lower bound, which holds for all practical choices of the learning
factors c1 and c2 and a polynomial swarm size µ.

7



Theorem 2. Let f be a function with a unique global optimum, let µ =
poly(n) and let the sum d := c1 + c2 of the learning factors of the Binary
PSO be O(1). Then the expected number of generations of the Binary PSO
on f is Ω(n/log n).

Proof. W. l. o. g. the global optimum is 1n. Let t := cn/ln n for a small
constant c > 0 which is chosen later. We show that the probability of not
creating 1n within t generations is 1 − o(1), which implies the claim of the
theorem.

We consider an arbitrary bit in an arbitrary particle. The event of creat-
ing a one at this bit is called success. Let a bit be called weak if its success
probability has been at most p := 1− e ln(µn)

n up to and including the current
generation. Let a set of bits be called weak if it contains only weak bits. We
will show that with probability 1− 2−Ω(n) after t generations of the 1-PSO,
each particle contains still a weak subset of bits of size at least n/e. The
probability of setting all bits of such a weak subset to 1 simultaneously is
bounded from above by pn/e ≤ 1/(µn) for each particle. Note that this
event is necessary to create 1n in a particle. Thus the probability of finding
the optimum within t generations creating µ new solutions each is still less
than tµ/(µn) = O(1/log n) = o(1), which will prove the theorem.

We still have to show that with probability Ω(1), after t generations,
there is a weak subset of size at least n/e in each particle. One step can
increase the velocity by at most d. Note that p = 1 − O((ln n)/n) since
µ = poly(n). To reach success probability at least p, the current velocity
must be between s−1(p) − d = ln(p/(1 − p)) − d and s−1(p) at least once.
Pessimistically assuming the first value as current velocity, the probability
of not increasing it in a single step is at least

1

1 + e− ln(p/(1−p))+d
= 1 −

ed(1 − p)

p + ed(1 − p)
≥ 1 − 2ed(1 − p)

if n is large enough for p ≥ 1/2 to hold. The last expression equals 1 −
(2ed ln n)/n by definition of p. Hence, along with d = O(1) and again
µ = poly(n), the probability of not increasing the velocity within t steps is
at least

(

1 −
2ed ln(µn)

n

)t

=

(

1 −
O(ln n)

n

)cn/ln n

≥ 2e−1

if c is chosen small enough. This means that each bit in each particle inde-
pendently has a probability of at least 2e−1 of being weak at generation t.

8



Using Chernoff bounds, the probability of not having a weak set of size at
least n/e in a specific particle is at most e−Ω(n). As µ = poly(n), the proba-
bility that there exists a particle without weak subset at generation t is still
µe−Ω(n) = e−Ω(n).

4 Upper Bound for Binary PSO

In this section we derive an upper bound for a broad class of Binary PSO
algorithms. Consider a Binary PSO where the cognitive component is turned
off by setting c1 = 0. Then each particle is driven only by its social behavior,
that is, it tries to follow the leader of the swarm, the global best solution
x∗. Note that this class of algorithms includes the 1-PSO. We will see that
this setting allows the application of analysis tools known from evolutionary
algorithms. In the following, we set c2 to its default value 2, although results
may be adapted for different constants.

The lower bound from Theorem 2 relied on the fact that a velocity that
is guided towards vmax doesn’t reach this value in short time and then the
Binary PSO cannot find a single target efficiently. On the other hand, if we
consider a longer period of time, the velocities may reach the bounds −vmax

and vmax, respectively. Then the Binary PSO samples within a promising
region of the search space given by the global best solution.

In case a bit reaches the velocity bound corresponding to the global best
solution, we say that the velocity has been “frozen” as the only chance to
alter the velocity again is to have an improvement of the global best solution.
The random time F until a bit is frozen is called freezing time. The following
lemma bounds this time by O(n).

Lemma 1. Consider the Binary PSO with c1 = 0 and c2 = 2. The expected
freezing time for a single bit is bounded by E(F ) = O(n). Moreover, for
t ≥ 8n(ln n + 1), we have Prob(F ≥ t) ≤ 2e−t/(16n).

Proof. Since the lemma must hold for arbitrary initial velocities, we need a
worst-case initial value for the velocity at hand. Intuitively, −vmax should be
such a value. More generally, definining v(t) to be the velocity at time t if the
initial velocity equals v, we would expect some kind of stochastic dominance
according to Prob(v(t) ≥ d) ≥ Prob(w(t) ≥ d) for arbitrary t and d if v ≥ w
holds. However, this is true only at a macroscopic level. Actually, if w is
only by a tiny amount larger than v, the dominance does not hold due to
the above-mentioned slowdown of the process w. r. t. increasing values.

Fortunately, it can be shown that the dominance holds for v ≥ w + 2.
This means that a decrease of the initial value by at least 2 certainly slows

9



down the process. We therefore artificially extend the velocity scale by 2
and arrive at a simplified Markov process vt, t ≥ 0 called v-process on
[−vmax − 2, vmax] as follows. Initially, v0 := −vmax − 2. For t ≥ 0, the
random state vt+1 is obtained as follows:

vt+1 :=

{

min{vt + r, vmax} with probability 1
1+evt

vt otherwise,

where r ∈ U [0, 2] is drawn independently. Due to the above-mentioned
dominance, the v-process is a pessimistic model for the real velocities if we
are looking for upper bounds on when to reach a given value.

The probability of increasing a value v is 1 − s(v). Hence, the expected
waiting time for an increase is (1 − s(v))−1 = 1 + ev. By definition of r,
each increase is bounded from below by 1 with probability at least 1/2
(or vmax is reached anyway). Since this is independent of other steps, the
expected waiting time for an increase by at least 1 (or up to vmax) is bounded
from above by 2 + 2ev. We obtain an upper bound on E(F ) if we sum up
these waiting times for all integral values in [⌊−vmax − 2⌋, ⌈vmax⌉]. Since the
waiting time is non-decreasing w. r. t. the v-value, this sum can be estimated
by the corresponding integral. Hence, using the definition of vmax,

E(F ) ≤

⌈vmax⌉
∑

v=⌊−vmax−2⌋

(2 + 2ev) ≤

∫ ⌈vmax⌉

⌊−vmax−2⌋
(2 + 2ev) dv

≤ 4(vmax + 3 + evmax+1) ≤ 4 ln n + 12 + 4en = O(n),

which proves the first statement.
For the second statement, note that the probability of increasing a non-

maximal v-value is always at least 1/n. Since t ≥ 8n(ln n + 1), we have
t/(4n) ≥ 2vmax + 2. Hence, the following two events together are sufficient
to reach vmax by time t:

• In t steps there are at least t/(2n) increases.

• The total amount of increase in t/(2n) increases is at least t/(4n).

We finish the considerations prematurely if vmax is reached with less in-
creases or less total increase.

To bound the probability of failures, we use Chernoff and Hoeffding
bounds. According to standard Chernoff bounds, the probability of less
than t/(2n) increases within t trials is at most e−t/(8n). We can apply the
Hoeffding bound from [6] for upper tails of random variables with bounded

10



range since the distributions of the considered random variables are symmet-
ric. Hence, the increase in t/(2n) steps is less than t/(4n) with probability
at most e−t/(16n). Altogether, Prob(F ≥ t) ≤ 2e−t/(16n).

Due to the strict selection in the Binary PSO, x∗ is only exchanged in
case a better solution is discovered. This means that after some time either
the global best solution has improved or all velocities are frozen. In the
latter case, since vmax = ln(n − 1), the probability to create a 1 for any bit
is now either s(−vmax) = 1/n or s(vmax) = 1 − 1/n. The distribution of
constructed solutions equals the distribution of offspring of the (1+1) EA
with x∗ as the current search point. For the sake of completeness, we give a
definition of the (1+1) EA.

Algorithm 3 ((1+1) EA).

1. Choose an initial solution x∗ uniformly at random.

2. For i := 1 to n do
Set xi := 1 with probability 1 − 1/n if x∗

i = 1
and with probability 1/n if x∗

i = 0.

3. If f(x) ≥ f(x∗) then x∗ := x.

4. Goto 2.

We also refer to the (1+1) EA* as the (1+1) EA with the condition in
Step 3 replaced by f(x) > f(x∗).

If for the 1-PSO all velocity values take their upper or lower bounds,
the 1-PSO behaves like the (1+1) EA* until a solution with larger fitness is
encountered. This similarity between PSO and EAs can be used to transfer
a well-known method for the runtime analysis from EAs to PSO, the fitness-
level method. We present this method, also called the method of f -based
partitions (see [16]), in a restricted formulation. Let f1 < f2 < · · · < fm

be an enumeration of all fitness values and let Ai, 1 ≤ i ≤ m, contain all
solutions with fitness fi. We also say that Ai is the i-th fitness level. Note
that the last fitness level Am contains only optimal solutions. Now, let si,
1 ≤ i ≤ m − 1, be a lower bound on the probability of the (1+1) EA
(or, in this case equivalently, the (1+1) EA*) to create an offspring in
Ai+1 ∪ · · · ∪ Am, provided the current population belongs to Ai. The ex-
pected waiting time until such an offspring is created is at most 1/si and
then the i-th fitness level is left for good. As every fitness level has to be

11



left at most once, the expected optimization time for the (1+1) EA and the
(1+1) EA* is bounded above by

m−1
∑

i=1

1

si
. (1)

A similar bound holds for the Binary PSO using only the social compo-
nent.

Theorem 3. Let Ai form the i-th fitness level of f and let si be the minimum
probability for the (1+1) EA to leave Ai towards Ai+1 ∪ · · · ∪Am. Consider
a Binary PSO with c1 = 0 and c2 = 2. Let µ = poly(n), then the expected
number of iterations to optimize f is bounded from above by

O

(

mn log n +
1

µ
·

m−1
∑

i=0

1

si

)

.

Note that the right-hand sum is the upper bound obtained for the
(1+1) EA and (1+1) EA* from (1). The factor 1/µ reflects the fact that
a large swarm may decrease the waiting time for an improvement. This
behavior resembles a (1+λ) EA that creates λ = µ offspring in each gener-
ation. Note, however, that the number of f -evaluations is by a factor of µ
larger than the number of iterations.

Proof. We only need to prove that the expected number of generations to
increase the fitness from the i-th fitness level is at most O(n log n+1/(µsi)).

We estimate the expected time until all bits in the swarm are frozen or
an improvement happened anyway. Let t := 32n(ln n + ln µ). By Lemma 1,
the probability that a single bit has not been frozen after t generations is
bounded by 2e−t/(16n) = 2/n2 · 2/µ2. By the union bound, the probability
that all µn bits in the swarm have not been frozen after t iterations is at
most 2/(µn). Considering independent phases of length t each, the expected
number of iterations until the swarm is frozen is at most 2t = O(n log n).

Once all bits are frozen to the corresponding bounds of x∗, all particles
behave equally until the next improvement. This implies that the Binary
PSO performs µ trials in each generation to create a solution with higher
fitness and the probability for a success in one trial is bounded below by si.
The probability that the Binary PSO is not successful within a period of
1/si trials is bounded by

1 − (1 − si)
1/si ≥ 1 − e−1 =

e − 1

e
.

12



The expected number of periods is therefore bounded by e/(e − 1). The
number of generations needed to have a period of 1/si trials equals ⌈1/(µsi)⌉.
Hence the expected number of generations to increase the fitness is bounded
by

e

e − 1
·

(

1

µsi
+ 1

)

= O

(

1

µsi
+ 1

)

.

Adding the expected freezing time for the swarm yields the claimed bound
O(n log n + 1/(µsi)) for fitness level i.

The additive term O(mn log n) in the bound from Theorem 3 results
from the (pessimistic) assumption that on all fitness levels, the Binary PSO
has to wait until all velocities are frozen in order to find a better solution.
Nevertheless, fitness-level arguments represent a powerful tool that can eas-
ily be applied to various problems. We examplarily present an application
for unimodal functions.

A function f is called unimodal if it has exactly one local optimum
w. r. t. Hamming distance. Hence, if the global best solution x∗ is not the
unique optimum, there is always at least one Hamming neighbor (a solution
with Hamming distance 1 to x∗) with larger fitness. The probability for
the (1+1) EA* to create a specific Hamming neighbor as offspring equals
1/n · (1−1/n)n−1 ≥ 1/(en). We conclude si ≥ 1/(en) for every non-optimal
fitness level. Theorem 3 yields the following bound.

Corollary 1. Let f be a unimodal function with m different function values.
Then the expected optimization time of the Binary PSO with c1 = 0 and
c2 = 2 is bounded by

O

(

mn log n +
1

µ
· en

)

= O(mn log n).

5 The 1-PSO on OneMax

Corollary 1 yields a bound O(n2 log n) on the expected optimization time of
the 1-PSO on OneMax, defined by

OneMax(x) :=

n
∑

i=1

xi.

Compared to the well-known bound Θ(n log n) that holds for the (1+1) EA
in this setting, this seems relatively rough. To improve the O(n2 log n)
bound, we have to show that it is not necessary for the 1-PSO to spend

13



Θ(n log n) steps on each fitness level until all bits have been frozen to the
velocity bounds of the global best solution.

In the following, we will improve the optimization time bound of the
1-PSO on OneMax to O(n log n). This implies that the 1-PSO has the
same asymptotic upper runtime bound as the (1+1) EA. For the proof,
we will basically show that O(log n) steps adjusting the velocity entries
are enough on each fitness level for the 1-PSO to attain almost the same
success probability as the (1+1) EA. Hence, a more careful inspection of the
behavior of the velocities is required.

We reconsider the v-process as defined in the proof of Lemma 1. The ran-
dom vt, t ≥ 0, gives us a random probability Pt of setting the considered bit
to 1 (called success) at time t. Its expectation E(Pt) :=

∑

p p ·Prob(Pt = p)
equals the actual probability of a success at time t. However, it is important
to study the distribution of Pt and not only its expectation. The proof of
Lemma 1 suggests that for t = Ω(n), Pt is likely to be close to its maximum
value 1 − 1/n. Our following statement is more general.

Lemma 2. Let t ≥ 16(ln n + 2), 1 ≤ i ≤ t/96 and n be large enough. If vt

is not capped by the upper bound vmax then

Prob

(

Pt ≥ 1 −
96i

t

)

≥ 1 − e−i.

Proof. Define b(t, i) := s−1(1 − 96i/t). We show the following claim: with
probability at least 1 − e−i, it holds vt ≥ b(t, i) or vt has reached vmax

anyway; the latter case will pessimistically be ignored in the following. Since
the success probability at value b(t, i) is exactly 1− 96i/t, the claim implies
the lemma.

Recall that the probability of increasing the v-value decreases mono-
tonically with the v-value. It is therefore bounded from below by 96i/t
before a v-value of at least b(t, i) has been reached but increases with the
distance of the current value from b(t, i). A negative v-value, recall that
v0 = −vmax − 2 (cf. Section 4, the −2 ensures a worst-case initial value),
even leads to an increase with probability at least 1/2. Altogether, a total in-
crease by vmax+2+b(t, i) is sufficient to reach b(t, i) by time t. We divide the
progress to this boundary value into

√

t/(96i)−1 phases with geometrically

decreasing probabilities. During the k-th phase, 1 ≤ k ≤
⌈

√

t/(192i)
⌉

− 1,

the current success probability (i. e., the probability of not increasing the

v-value) is within the interval
[

1 − 96(k+1)2i
t , 1 − 96k2i

t

]

∩ [1/2, 1]. Since all

14



success probabilities are at least 1/2 in the phases, it can be shown by tak-
ing the inverse sigmoid function that the length of an interval, expressed in
v-scale, is at most 3 ln(k + 1) if n is not too small. We will show that with

high probability, we spend at most t ln(k+1)
4k2 steps in a phase. If this holds for

all phases, the total time spent in all phases is less than
∑∞

k=1
t ln(k+1)

4k2 ≤ t/2.
The times where the success probability of the v-process is less than 1/2,

i. e., where an increase happens with probability at least 1/2, are treated
separately. Arguing similarly as in the proof of Lemma 1, the following
events together are sufficient to reach the desired v-value. Considering the
second event, we use t ≥ 16(ln n + 2), which implies t/16 ≥ vmax + 2.
Note that Condition (3b) suffices to leave any considered interval of success
probabilities.

1. In the first t/2 steps, there are at least t/8 increases, or a positive
v-value is reached.

2. The total increase in t/8 increases is at least t/16, or a positive v-value
is reached.

3. For k = 1, . . . ,
⌈
√

t
192i

⌉

− 1 it holds

(a) If the current success probability is in the interval

[

1 −
96(k + 1)2i

t
, 1 −

96k2i

t

]

∩

[

1

2
, 1

]

then t ln(k+1)
4k2 steps contains at least 12i ln(k + 1) increases.

(b) The total increase in 12i ln(k + 1) increases is at least 3 ln(k + 1).

We finish the considerations prematurely if the desired v-value is reached
within less steps or less total increase.

According to Chernoff bounds, the failure probability for the first event
is at most e−t/32, which is less than e−3i since i ≤ t/96. According to
Hoeffding bounds, the failure probability for the second event is at most
e−t/64 ≤ e−3i/2. Similarly, the failure probabilities for the third and fourth
event are at most e−3i ln(k+1) and e−27i ln(k+1)/8, in sum at most 2e−3i ln(k+1).
Since

∑∞
k=1 e−3 ln(k+1) ≤ 1/4, the sum of the failure probabilities is at most

e−i if n is large enough.

Instead of speaking of velocities at times t or later, we introduce a handy
notion.

15



Definition 1. A random velocity is called t-strong, t ∈ N0, iff it stochasti-
cally dominates the v-process at time t.

We also say that a bit is t-strong if this holds for its velocity. We sum-
marize a simple fact: if a bit is currently t-strong, it will be t+t′-strong after
another t′ steps provided the x∗-entry for this bit is 1 during these times.

Using Lemma 2, we know enough about the distribution of a t-strong
bit to show the following claim. We consider this bit in the v-process where
the x∗-entry never changes.

Lemma 3. The expected time for a success at a t-strong bit, 384 ln n ≤ t ≤
n2, is bounded by 1 + O(1/t + 1/n).

Proof. We ignore the upper bound 1−1/n on success probabilities and allow
a probability to become arbitrarily close to 1. Since the expected time for a
success at success probability 1− 1/n equals 1/(1− 1/n) = 1 + O(1/n), the
asymptotic upper bound of the lemma is not affected.

We consider a random variable P̃ with support {1−96i/t | 1 ≤ i ≤ t/192}
and distribution

Prob(P̃ = 1 − 96/t) = 1 − e−1,

Prob(P̃ = 1 − 96i/t) = e−i+1 − e−i for 2 ≤ i ≤ t/192,

and Prob(P̃ = 1/n) = e−t/192.

Obviously, all probabilities sum up to 1. Since t ≥ 384 ln n, the last assign-
ment implies Prob(P̃ = 1/n) ≤ 1/n2.

Using Lemma 2, is follows that the success probability of the t-strong bit
stochastically dominates P̃ . It is therefore enough to bound the expected
time for a success according to P̃ from above. Given that P̃ has the value p,
the waiting time for a success follows a geometric distribution with expec-
tation 1/p. We can bound the reciprocals of the single success probabilities
according to 1/(1 − 96i/t) ≤ 1 + 97i/t if n is not too small. By the law of
total probability, the unconditional expected waiting time is at most

(1 − e−1) ·

(

1 +
97

t

)

+

t/192
∑

i=2

(

e−i+1 − e−i
)

·

(

1 +
97i

t

)

+
1

n2
· n

≤

(

1 +
97

t

)

+

t/192
∑

i=2

(

e−i+1 − e−i
) 97i

t
+ O

(

1

t
+

1

n

)

≤

(

1 +
97

t

)

+

t/192
∑

i=2

e−i+1 97i

t
+ O

(

1

n

)

= 1 + O

(

1

t
+

1

n

)

.

16



Using a very similar calculation, we will show the following lower bound
on the expected success probability at time t. Note that this lower bound
is basically the reciprocal of the expected success time we have just de-
rived. However, since we are dealing with random probabilities, the follow-
ing lemma does not imply the preceding one.

Lemma 4. The expected success probability of a t-strong bit, 384 ln n ≤ t ≤
n2, is bounded by 1 − O(1/t).

Proof. We reuse the random variable P̃ as defined in the proof of Lemma 3.
Recall that the real success probability of the t-strong bit stochastically
dominates P̃ . Therefore, using the law of total probability, the expected
success probability is at least

(1 − e−1) ·

(

1 −
96

t

)

+

t/192
∑

i=2

(

e−i+1 − e−i
)

·

(

1 −
96i

t

)

≥ (1 − e−1) ·

(

1 −
96

t

)

+ (e−1 − e−t/192) −

t/192
∑

i=2

e−i+1 ·
96i

t

≥ (1 − e−t/192)

(

1 −
96

t

)

− O

(

1

t

)

= 1 − O

(

1

t

)

,

which completes the proof.

In the following analysis, we will consider k random velocities of 1-bits
gained while optimizing OneMax. Freshly gained 1-bits tend to have a
weaker velocity than older ones. Sorting the bits from weak to strong, this
will be reflected by the following layering.

Definition 2. The values v1, . . . , vk of k velocities form an m-layer, m ∈ N,
iff vj, 1 ≤ j ≤ k, is jm-strong. A set of k velocities forms an m-layer iff it
can be arranged as an m-layer.

We also say that bits form an m-layer if their velocities form such a layer.
Again it is helpful to summarize a simple fact: given that i bits form an m-
layer, we can consider any other bit and wait for it to become m-strong.
If x∗ remains fixed for these i+1 bits, they form an m-layer after at most m
steps.

For the following theorem, we will consider layers where the j-th bit is
basically Θ(j ln n)-strong. Defining that a set of bits is successful if all, inde-
pendently processed, have successes simultaneously, we show the following
lemma. Note that we again consider these bits in the v-process and assume
x∗ to be fixed to 1 for these bits.

17



Lemma 5. Let k ≤ n independent bits form a (384 ln n)-layer. Then the
expected time until all have a success simultaneously is bounded by O(1).

Proof. Due to the independence, it suffices to multiply the expected success
times for the single bits. According to our assumption, the j-th bit, 1 ≤ j ≤
k, is 384j ln n-strong. By Lemma 3, its expected success time is bounded by
1+ κ

384j lnn + κ
n for some large constant κ. Taking the product over all j, we

obtain

k
∏

j=1

(

1 +
κ

384j ln n
+

κ

n

)

≤ e
Pn

j=1

κ
384j ln n

+ κ
n ,

which is O(1) since
∑n

j=1 1/j = O(ln n).

Now we can state the improved bound for OneMax.

Theorem 4. The expected optimization time of the 1-PSO on OneMax is
O(n log n).

Proof. The basic proof idea is to keep track of the velocities of the newly
gained 1-bits after improvements of the best-so-far solution x∗. We wait on
average O(log n) steps after an improvement and show that after that, the
probability of improving is at least in the same order as for the (1+1) EA.

A difficulty with these arguments is that 1-bits in x∗ may be set to 0 if
the best-so-far solution is exchanged. We call this a reset of a bit. Resets
may disturb the velocity increase on 1-bits as strong 1-bits may be replaced
by weaker 1-bits.

In order to simplify the argumentation, we first describe an analysis for
an idealized setting and then argue how to extend the arguments to the real
setting. Assume in the following that the 1-PSO does not accept resets of
1-bits, i. e., an improvement of the OneMax-value is only accepted in case
all 1-bits are set to 1 in the new best-so-far solution.

We now divide a run of the 1-PSO into phases. Phase 0 only contains
the initialization step. Phase i for 1 ≤ i ≤ n starts with the end of the
previous phase and it ends when the following two conditions are met:

1. The best-so-far OneMax-value is at least i.

2. At least i 1-bits form an m-layer for m := 384 ln n.

Note that the second condition will be fulfilled throughout the run as all 1-
bits are maintained forever in our idealized setting and hence their velocities
are monotone over time.

18



We claim that the expected time spent in Phase i is bounded above
by O(ln n + n/(n − i)) for each 1 ≤ i ≤ n. Note that phases may be
empty. Moreover, when finishing Phase n the global optimum has been
found. Hence, the expected time to find a global optimum is bounded by

n
∑

i=1

O

(

ln n +
n

n − i

)

= O(n log n) + O(n) ·
n
∑

i=1

1

i

= O(n log n).

Consider the 1-PSO at the time it enters Phase i. As Phase i − 1 has
been completed, i − 1 1-bits form an m-layer. According to Lemma 5, all
these bits are set to 1 simultaneously after an expected number of O(1)
steps. Independently of these bits, the 1-PSO turns each 0-bit into a 1-bit
with probability at least 1/n, hence the probability of turning at least one
0-bit into 1 is at least Ω((n−i)/n). The expected waiting time for this event
is O(n/(n − i)). Due to the independence, we can multiply expectations.
Altogether the expected time until constructing a solution with OneMax-
value at least i has been bounded from above by O(n/(n − i)).

Once the best-so-far OneMax-value has increased to at least i, the ve-
locities on i 1-bits are monotone increasing. Since currently i−1 bits form an
m-layer, the i 1-bits by definition form an m-layer after at most m = O(ln n)
steps. Together, the claimed bound O(ln n + n/(n − i)) follows for the ex-
pected time in Phase i. This also finishes the analysis for the idealized
setting without resets.

A reset of a bit can destroy the velocity layers as a strong 1-bit with
might be exchanged by a weak 1-bit. In the worst case, such a new 1-bit
is only 0-strong. If an improvement resets d bits, an m-layer of i bits may
shrink to an m-layer of i − d 1-bits. By an amortized analysis, we wait for
the velocities to recover so that we end up with an m-layer of i bits again.

Consider an improvement in a setting where k bits form an m-layer. A
t-strong bit is reset with probability at most O(1/t) according to Lemma 4.
The expected number of bits among these k layered bits reset during this
improvement is therefore bounded from above by

k
∑

j=1

O(1)

384j ln n
= O(1).

Hence, an improvement prolongs the time spent in the current phase in ex-
pectancy by O(ln n). Note that we can repeat the argumentation if another

19



improvement occurs in the meantime since we only consider reset probabil-
ities for all bits in a layer. As we can only have n improvements, we obtain
an additional term O(n log n) in our runtime bound, which proves the time
bound O(n log n) for the real setting.

6 Conclusions and Future Work

We have considered the runtime behavior of the Binary PSO algorithm by
Kennedy and Eberhart. Thereby, we adapted the choice of the maximum
velocity vmax to growing problem sizes and justified why this adaptation is
necessary when dealing with large problem sizes. For the resulting Binary
PSO we have proved a lower bound Ω(n/log n) on the expected number
of generations for any function where the global optimum is unique. This
bound holds for almost any choice of the swarm size and the learning factors
c1 and c2 for the cognitive and the social component of PSO.

We also assessed the impact of these two PSO components. The Bi-
nary PSO using only the social component behaves similar to a (1+λ)-
evolutionary algorithm with population size 1 and an offspring population
of size λ as all particles are guided by one global best particle. Due to this
similarity, we were able to transfer a fitness level argument from the analysis
of evolutionary algorithms (EAs) to PSO. The upper bounds derived from
this method do not differ much from bounds known for EAs. An exemplary
application to the class of all unimodal functions showed that the Binary
PSO is effective on these functions.

On the other hand, if only the cognitive component is used in the Binary
PSO, all particles behave independently and can be seen as many instances
of the simple 1-PSO, a Binary PSO using just one particle. Our results
on the 1-PSO may be applied in such a setting. Despite its simplicity, the
1-PSO is surprisingly efficient. A detailed analysis on the function OneMax

revealed the runtime bound O(n log n) for the 1-PSO and hence the same
upper bound as known for the (1+1) EA.

Future work should focus on the runtime of the Binary PSO when cog-
nitive and social effects melt together. Then, the Binary PSO performs an
update both towards the own best and towards the global best solution.
This can also be seen as an update towards a recombined solution for own
best and global best. For a bit where own best and global best differ, this
yields a tendency for the velocity towards value 0, that is, for assigning the
bit randomly. This resembles a genetic algorithm with uniform crossover.
However, as velocities are not necessarily guided towards −vmax or vmax,

20



this may prevent the velocity vector from freezing. Thus, it is difficult to
apply fitness level arguments. In order to obtain upper bounds in such a
setting, different arguments need to be developed.

References

[1] B. Doerr, F. Neumann, D. Sudholt, and C. Witt. On the runtime
analysis of the 1-ANT ACO algorithm. In Proc. of GECCO ’07, pages
33–40. ACM, 2007.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theor. Comput. Sci., 276:51–81, 2002.

[3] O. Giel and I. Wegener. Evolutionary algorithms and the maximum
matching problem. In Proc. of STACS ’03, volume 2607 of LNCS,
pages 415–426, 2003.

[4] W. J. Gutjahr. First steps to the runtime complexity analysis of Ant
Colony Optimization. Computers and Operations Research, 2008. To
appear.

[5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of ant colony op-
timization with best-so-far reinforcement. Methodology and Computing
in Applied Probability, 2008. (to appear).

[6] W. Hoeffding. Probability inequalities for sums of bounded random
variables. American Statistical Association Journal, 58(301):13–30,
1963.

[7] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc.
of the IEEE International Conference on Neural Networks, pages 1942–
1948. IEEE Press, 1995.

[8] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle
swarm algorithm. In Proc. of the World Multiconference on Systemics,
Cybernetics and Informatics (WMSCI), pages 4104–4109, 1997.

[9] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm intelligence. Morgan
Kaufmann, 2001.

[10] F. Neumann, D. Sudholt, and C. Witt. Comparing variants of MMAS
ACO algorithms on pseudo-boolean functions. In Proc. of SLS 2007,
volume 4638 of LNCS, pages 61–75, 2007.

21



[11] F. Neumann and I. Wegener. Minimum spanning trees made easier via
multi-objective optimization. Natural Computing, 5(3):305–319, 2006.

[12] F. Neumann and I. Wegener. Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem. Theor. Comput.
Sci., 378(1):32–40, 2007.

[13] F. Neumann and C. Witt. Runtime analysis of a simple Ant Colony
Optimization algorithm. In Proc. of ISAAC ’06, volume 4288 of LNCS,
pages 618–627. Springer, 2006. Extended version to appear in Algorith-
mica.

[14] J. Reichel and M. Skutella. Evolutionary algorithms and matroid opti-
mization problems. In GECCO ’07, pages 947–954, 2007.

[15] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm opti-
mization. In Proc. of the Seventh Annual Conference on Evolutionary
Programming, pages 591–600, 1998.

[16] I. Wegener. Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions. In R. Sarker, X. Yao, and M. Mohammadian,
editors, Evolutionary Optimization, pages 349–369. Kluwer, 2002.

[17] C. Witt. Worst-case and average-case approximations by simple ran-
domized search heuristics. In Proc. of STACS ’05, volume 3404 of
LNCS, pages 44–56, 2005.

22




