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Abstract. In object recognition, the ability to share common parts or
structure among related object classes allows information about parts
and relationships in one class to be generalized to other classes. We
present a recognition framework that uses probabilistic geometric gram-
mars (PGGs) to capture structural variability and shared structure within
and among object classes. We describe an efficient inference algorithm
and a set of parameter and structure learning algorithms for PGGs, and
demonstrate experimentally that the system provides a benefit in per-
formance.
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1 Introduction

Many current approaches to object recognition represent an object class as a
collection of parts with some local appearance properties, and a model of the
spatial relations among them. This representation is intuitive and attractive;
object classes are often too variable to be described well using a single shape or
appearance model, but they can be modeled as a distribution over a set of parts
and the relationships among them.

Most of these systems, however, cannot share common parts or spatial struc-
ture among related object classes. This capability would allow information about
parts and relationships in one object class to be generalized to other relevant
classes. For example, we might like to transfer knowledge about the relationships
among the arms and back of a chair to all chair classes with arms and backs,
whether the base is composed of four legs or an axle and wheel-legs. We argue
that modeling structural variability and shared part structure will allow effective
learning from fewer examples and better generalization to unseen data.
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Fig. 1. Many object classes exhibit structural variability.

With these goals in mind, we present a recognition framework that captures
structural variability within and among object classes (see Figure 1). We intro-
duce probabilistic geometric grammars (PGGs), which represent object classes
recursively in terms of their parts. PGGs extend probabilistic context-free gram-
mars (PCFGs) for language, supplementing the traditional PCFG representation
with models for the geometry and appearance of object parts. Context-free gram-
mars capture structural variability by compactly modeling hierarchical groups
and substitution of subparts, and they naturally represent conditional indepen-
dences between subgroups with the context-free assumption. Probabilistic gram-
mars further model distributions over the combination of subparts.

2 Related Work

The PGG framework is inspired by recent object class models that use a collec-
tion of parts, an appearance model for each part, and a statistical model of the
geometric relations among the parts. This approach has existed in the literature
for decades [1], but there has been an increase of activity in this area in the
last few years; e.g., the constellation or star model [2,3], and statistical pictorial
structures or k-fans [4,5,6].

In contrast to these approaches, in which each object class consists of an un-
structured set of parts, the PGG model uses a fundamentally hierarchical notion
of object and part. The use of part hierarchies to model object classes and enable
parts sharing among classes has become increasingly popular in recent years, and
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chair:
1.0 chair → top (φ000) base (φ001)

top:
0.55 top → seat (φ100) back (φ101)
0.45 top → seat (φ110) back (φ111) arm (φ112) arm (φ113)

base:
0.65 base → leg (φ200) leg (φ201) leg (φ202) leg (φ203)
0.35 base → axle (φ210) wheel-leg (φ211) wheel-leg (φ212) wheel-leg (φ213)

seat (A3) arm (A5) axle (A7)
back (A4) leg (A6) wheel-leg (A8)

Fig. 2. A textual description of a PGG for chairs.

researchers have shown it can improve the learning rate and recognition accuracy
[7,8,9].

The PGG model, while similar in spirit to these hierarchical approaches,
differs fundamentally in that it allows choice (“OR”) nodes in addition to the
“AND” nodes that exist in simple part hierarchies; this difference is what makes
it a grammar. Most recent uses of grammars in vision have focused on modeling
the segmentation of entire images, rather than object classes, or on detecting
mid-level visual objects, such as curves and rectangles [10,11,12]. The work of
Zhu, Chen, and Yuille [13] is a notable exception; our approach contrasts with
theirs in that our model exploits stronger conditional independence assump-
tions, allowing simple and robust algorithms for recognition and grammar learn-
ing. Finally, our structure learning operators and score resemble those in many
approaches to grammar learning for language [14,15].

3 The PGG Model

The probabilistic geometric grammar model augments traditional PCFGs with
geometry and appearance models. A PGG is a set of part models, each of which is
either primitive or composite (similar to terminals and nonterminals in PCFGs).
A composite part model consists of a set of rules which define how the part can
be broken down into subparts. A primitive part model consists of an appearance
model which describes a distribution over the part’s image appearance. Figure 2
shows an example of a PGG for chairs.

An image can be broken down into a finite set of windows or regions. For
each part model c and each window w in the image, we define a binary random
variable Xcw denoting that window w contains an object or part of type c.

3.1 Rules

Each rule r in a composite part model c defines one way that the part can be
composed of subparts. A rule consists of an expansion probability γcr ∈ [0, 1],
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and a set of rule parts. The expansion probabilities must sum to 1 for a fixed
parent part c. Thus, the set of rules defines a distribution over the choice of
ways to expand the part—an “OR” node—while each rule defines an “AND”
relationship over its rule parts.

Each child rule part k in rule r of parent part model c has two components: an
index dcrk which refers to another part model in the grammar, and a conditional
geometry model φcrk, which defines a distribution on the geometric properties
of this subpart given those of its parent part (of type c). We assume that the
geometric and image properties of subparts are conditionally independent given
the properties of the parent c.

One way to interpret a rule is that it expresses a compositional relationship;
it states that a part with class c can be composed of a set of subparts, where the
kth subpart in rule r has class dcrk. More generally, composite part models may
be viewed as hidden variables that represent geometric information upon which
their child parts depend. In either of these cases, however, composite parts do
not directly model pixels in the image—only primitive parts do this.

We can also think of the expansion probabilities as defining a distribution
over Bayes nets. Each internal node in each Bayes net represents the geometry
of a composite object part, while each leaf node represents the geometry and
appearance of a primitive part.

3.2 Conditional Geometry Models

Each rule part k has a geometry model φcrk, which models a conditional distri-
bution over the geometric attributes of the kth child part, given the attributes
of the parent part. The attributes over which the models are defined may be
anything: location, scale, orientation, shape, etc. In this paper, we model only
the relative location of part centroids, defining a Gaussian over the position of
a child v relative to its parent w:

P (v|w;φcrk) = N (xv − xw, yv − yw;µcrk,Σcrk) .

To avoid overfitting, we use a diagonal covariance. Despite this simple model,
multimodal distributions can be handled using multiple rules with the same
symbols but different geometry models, effectively yielding Gaussian mixtures.

3.3 Appearance Models

Each primitive part model c has an appearance model Ac which defines the
appearance or material properties of the part. The PGG formulation is mod-
ular with respect to the representation for the appearance model; the only re-
quirement is that the model enable the calculation of the image likelihood ratio
P (Iw|Xcw)/P (Iw): the ratio of the likelihood of the image pixels Iw in window w,
given that a primitive part of type c occupies that window, to the unconditional
image likelihood P (Iw). Using the ratio ensures that every image pixel that is
not assigned to a specific primitive part is evaluated according to the uncondi-
tional model. This allows us to compare object detections occupying different
numbers of pixels.
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4 Efficient Recognition with PGGs

In this section, we present a top-down dynamic programming algorithm for ob-
ject classification and localization in an image. It extends the pictorial structures
algorithm [4] to hierarchical part models and choice nodes. The algorithm de-
pends on a discretization of the image into a finite set of locations or regions,
so it can recursively calculate a score for each region w and part model c while
caching and reusing intermediate results.

Two assumptions will enable our derivation: that primitive parts explain
different parts of the image, and that subparts are conditionally independent
given their parent. If the primitive parts overlap, then it is approximate. But we
do not assume the union of subparts equals the parent part, since the background
model explains pixels not assigned to a primitive part.

Given an image with pixels or features I, we frame the recognition problem as
finding the root part model c and window w that maximizes P (Xcw|I). We apply
Bayes rule, remove the constant term P (I), partition the features into those
inside and outside w, and evaluate the features Iw not in w with a background
model:

argmax
c,w

P (Xcw|I) = argmax
c,w

P (Iw|Xcw)P (Iw)P (Xcw)

We make the common assumption that foreground and background pixels are
independent, so that P (Iw) = P (I)/P (Iw), and also that P (Xcw) is uniform so
that all object classes and locations are equally likely (we could also naturally
incorporate a contextual prior).

= argmax
c,w

P (Iw|Xcw)
P (Iw)

We can recursively decompose the image likelihood ratio according to the
grammar. Sum over all rules r for part c, and let Xcrw denote that window w is
occupied by a part of type c and expanded by rule r:

β(c, w) =
P (Iw|Xcw)

P (Iw)
=

∑
r

P (r|c)P (Iw|Xcrw)
P (Iw)

We must consider the unknown geometry of the child parts in r; let v be a vector
specifying their locations:

=
∑

r

P (r|c) 1
P (Iw)

∑
v

P (Iw|v, Xcrw)P (v|Xcrw)

Partition Iw into Ivk
, the pixels in child region vk, and Iw−v, the pixels in w

but not in any region vk, and assume conditional independence of the children
given the parent. Let dcrk denote the part model referred to by the kth rule part,
and φcrk be its geometry model.

=
∑

r

P (r|c) 1
P (Iw)

∑
v

P (Iw−v)
∏
k

P (Ivk
|Xdcrkvk

)P (vk|w;φcrk)
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Due to our independence assumptions, we have that P (Iw−v) = P (Iw)Q
k P (Ivk

) , so
we can substitute and cancel:

=
∑

r

P (r|c)
∑
v

∏
k

P (Ivk
|Xdcrk,vk

)
P (Ivk

)
P (vk|w;φcrk)

=
∑

r

P (r|c)
∏
k

∑
v

β(dcrk, v)P (v|w;φcrk) (1)

The result is a recursive expression for the likelihood ratio, where P (r|c) is the
rule probability γcr, β(dcrk, v) is the recursive likelihood ratio for the kth child
part, and P (v|w;φcrk) is the likelihood of the geometry of v conditioned on the
attributes of w. The base case occurs when c is primitive: β(c, w) is defined
directly by the appearance model for part c.

Equation 1 leads to a top-down algorithm that recursively calculates a score
for each region and part model, caching intermediate results. It has complexity
O(|G||I|2), where |G| is the number of part models, rules, and rule parts in the
grammar, and |I| is the number of image regions. In practice, we limit the sum
over child regions v to those near the expected location (we use three standard
deviations around the mean), greatly reducing the effect of the squared term.

It is crucial that we not approximate the sums over r and v in Equation 1
with max, although this would enable the use of the distance transform. This
would result in scoring individual parse trees, and we cannot compare the scores
of two parse trees that have different numbers of parts or edges because an
unequal number of terms is contributing to the likelihood function in each case.
To control for the structural difference among trees, we sum them out entirely.

5 Parameter Learning in PGGs

We assume for now a fixed grammar structure, and develop an EM algorithm to
estimate its parameters from data, extending the standard inside-outside algo-
rithm for PCFGs. We have a set of training images {Ii|i = 1 . . . N} labeled with
root bounding boxes ui and root object classes ρi. Let Ii

w be the image pixels in
region w of the ith training image. The internal tree structure and geometry of
each object is not labeled.

The parameters Θ are the rule probabilities γcr and the geometry model pa-
rameters (µcrk,Σcrk). In this paper, we will not address learning the appearance
models Ac, assuming a fixed vocabulary of primitive part detectors. We need to
estimate the parameters Θ′ given the parameters Θ from the previous iteration.

E-step We need to calculate the likelihood of the hidden variables Xcw, Xcrw,
and Xdcrkv; these responsibilities will be used to reestimate the parameters.

In the inside-outside algorithm for PCFGs, the inside probability is the likeli-
hood that a substring was generated by a nonterminal, summing out all possible
parse trees. The analogous quantity in our context is P (Iw|Xcw), but because the
PGG framework actually models the image likelihood ratio P (Iw|Xcw)/P (Iw),



Learning Grammatical Models for Object Recognition 7

we shall use the notion of the inside probability ratio β(c, w) instead, which we
derived in Equation 1.

In PCFGs, the outside probability is the total likelihood of seeing the symbols
that are on either side of a substring and a nonterminal covering the substring.
The analogous quantity for us is P (Iw, Xcw), the likelihood of seeing the pixels
Iw outside the window w and the part model c in window w. Again, we use the
outside probability ratio instead, which we can define recursively (derivation in
our technical report):

α(c, w) =
P (Iw, Xcw)

P (Iw)

=
∑
c′,w′

α(c′, w′)
∑
r′

γc′r′

∑
k s.t.

dc′r′k=c

P (w|w′;φc′r′k)
∏

k′ 6=k

∑
v

β(dc′r′k′ , v)P (v|w′;φc′r′k′)

The base case occurs when c is the labeled object class and w is the labeled
bounding box, when α(c, w) = 1.0.

Let αi and βi be the inside and outside probability ratios applied to the ith
training image. Let Xρiui denote that the labeled object class ρi occupies the
labeled bounding box ui in image Ii. Then the responsibilities are given by:

fi(c, w) = P (Xcw|Ii, Xρiui) =
αi(c, w)βi(c, w)

βi(ρi, ui)

gi(c, r, w) = P (Xcrw|Ii, Xρiui)

=
1

βi(ρi, ui)
αi(c, w)γcr

∏
k

∑
v

βi(dcrk, v)P (v|w;φcrk)

hi(c, r, k, w, v) = P (Xcrw, Xdcrkv|Ii, Xρiui)

=
1

βi(ρi, ui)
αi(c, w)γcrβi(dcrk, v)P (v|w;φcrk)

×
∏

k′ 6=k

∑
v′

βi(dcrk′ , v′)P (v′|w;φcrk′)

M-step Now we can reestimate the parameters Θ′ for the next iteration using
the responsibilities:

γ′cr =
∑

i

∑
w gi(c, r, w)∑

i

∑
w fi(c, w)

µ′
crk =

∑
i

∑
w

∑
v hi(c, r, k, w, v)T (v, w)∑

i

∑
w

∑
v hi(c, r, k, w, v)

Σ′
crk =

∑
i

∑
w

∑
v hi(c, r, k, w, v)(T (v, w)− µ′

crk)2∑
i

∑
w

∑
v hi(c, r, k, w, v)

where T (v, w) transforms the child region v by subtracting the centroid of the
parent region w.
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Given initial parameters Θ0, we iterate the E- and M-steps until the difference
in the log likelihood scores of the data under Θ and Θ′ is no greater than 0.01
of the log likelihood score under Θ.

6 Structure Learning in PGGs

Structure learning aims to find a compact grammar that explains the training
data. By targeting compactness, we encourage sharing of parts and substructure
among object classes. Here we describe a search-based optimization approach to
structure learning.

6.1 Search Initialization

In this paper, we assume a pre-specified set of primitive parts, with appearance
models. We also assume the labeled initial locations of a set of primitive parts
making up each training object, although these are free to change during EM.

For each unique pattern of labeled primitive parts in the training data, we
write down a rule with the labeled object class on the left side of the rule and
the primitive parts on the right side. To initialize the geometry models φcrk, we
estimate the mean and variance of the primitive part positions relative to the
bounding boxes’ centroids, across training images with the same object class and
set of primitive labels.

6.2 Structure Search Operators

As in other approaches to grammar learning, our search operators move the
algorithm through the space of candidate grammars by proposing changes to
the current grammar. We use four types of operators.

Create a new AND composite part. The role of this operator is to recognize
common subsets of rule parts, and create new composite parts to stand for these
patterns. A new AND part Cand may be proposed whenever a pattern of rule
parts ξ with size no greater than nand occurs on the right side of at least two
rules (we use nand = 3). For example:

C1 → X1 X2 X3 X4
C2 → X2 X3 X5 ⇒

C1 → X1 Cand X4
C2 → Cand X5
Cand →→→ X2 X3

The initial geometry parameters for Cand are a weighted average of the trans-
formed parameters1 of the instances of the pattern ξ that contributed to its
1 We must transform the geometry models to be relative to a new local parent (we use

the centroid of the selected parts), so the models will be invariant to their positions
in the context of their original rule. Then, to average a set of geometry models with
parameters (µi, σ

2
i ) and weights γi to produce the initial model for a merged rule

part, we use µ =
P

i γiµi for the mean and σ2 =
P

i γi

`
σ2

i + (µi − µ)2
´

for the
variance. Because EM is notoriously sensitive to initialization, it is important that
we are able to choose reasonable initial values for these parameters.
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creation. The initial mean for each replaced instance of Cand in the old rules is
the centroid of the instance of ξ which was replaced; the initial variance param-
eter in each dimension is the average of the variances of the component parts
that were replaced.

Create a new OR composite part. This operator plays the opposite role:
it notices differences among sets of rules, and creates composite parts to more
compactly express those differences. A new OR composite part Cor may be
proposed whenever at least two rules would become identical were a pair or
small subset of part models (X1,X2, ...), to be renamed to Cor in the context of
those rules. We search for sets of symbols that are in common among the rules
with size no greater than nor, or sets that are different among the rules with
size no greater than nor (we use nor = 3).

C1 → X1 X2 X3
C1 → X1 X2 X4 ⇒

C1 → X1 X2 Cor

Cor →→→ X3
Cor →→→ X4

The initial geometry parameters of the merged rule are again an average of those
of the contributing rules, weighted by their rule probabilities. The initial prob-
abilities on the new rules for Cor are a renormalized version of the contributing
rule probabilities. One rule in the new part may be entirely empty, expressing
the notion of an optional set of parts, such as chair arms.

Apply an existing AND or OR composite part. The creation operators
we just defined need not be applied immediately to all applicable rules. Thus,
we have operators to apply existing composite part models rather than creating
new ones.

An existing AND part Cand with a single rule Cand → ξ may be applied
whenever the pattern ξ occurs on the right side of at least one other rule.

C1 → X1 X2 X3
Cand →→→ X1 X2

⇒ C1 → Cand X3
Cand →→→ X1 X2

An existing OR composite part Cor with rule patterns (ξ1, ξ2, ...) may be
applied whenever at least two rules would become identical were the instances
of the patterns (ξ1, ξ2, ...) in those rules renamed to Cor.

C2 → X1 X2 X3
C2 → X1 X2 X4
Cor →→→ X3
Cor →→→ X4

⇒
C2 → X1 X2 Cor

Cor →→→ X3
Cor →→→ X4

6.3 Structure Score and Search Control

The structure score evaluates a structure G given the image data D. The score
we use is a simple combination of the quality of the training data under the
model and a penalty on the model’s complexity:

score(G;D) = (1− λ)`(D;G)− λ
log N

2
dim(G)
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where `(D;G) is the log likelihood ratio of the training data given the model
G, N is the number of training images, dim(G) is the number of parameters in
G, and λ trades off between the likelihood and the model complexity.2 We use
λ = 0.25 (determined empirically).

The branching factor for this search problem is quite high. However, we can
apply an insight about our structure score: a grammar’s score before EM has
been run is a lower bound on its score after EM. We can exploit this property
to find a proposal that is guaranteed to be an uphill step, rather than searching
exhaustively for the maximal gradient proposal. Specifically, rather than running
EM on each candidate grammar and choosing the operation with the best post-
EM score, we can rank the proposals according to their pre-EM scores, run EM
on the grammars in ranked order, and accept the first proposal whose post-EM
score improves on the current score.

Furthermore, we can use the guiding principle of compactness to inspire
several greedy search heuristics, which will bias us towards desirable structures
while controlling the branching factor. First, to encourage compact structure,
we always consider applying existing AND and OR parts before creating new
ones, and we collapse unnecessary hierarchy by inlining part models that have a
single rule and are referred to only once in the rest of the grammar.

Second, because we want to encourage low variance geometry distributions,
we bias the search towards geometrically plausible proposals. Although the num-
ber of proposals at each search step is usually large, most proposals will lower
the overall structure score because they will be merging parts and rules that are
not geometrically compatible. With this in mind, we prune proposals that result
in high variance geometry models (in this paper, any model that has a standard
deviation greater than 0.2 of the corresponding dimension—width or height—of
the objects in the training data).

At each step there may be multiple lexicographically identical operations
(e.g., creating an AND part for a pattern that occurs three or more times).
So, again to encourage low variance distributions, we only propose the single
operation from the set of identical operations whose geometry models match
best, and for efficiency we only consider pairs of rules or rule part subsets at
any given time. In order to compare the geometry for two sets of rule parts, we
can impose a canonical ordering on parts. There may still be ambiguity about
how to match up rule parts if there is more than one part of the same type in
each of the rules (e.g., two chair legs), but because we expect the number of such
parts to be quite small, we can enumerate all the possible ways to assign the rule
parts in one rule to the other. Then, for each fixed assignment, we transform the
geometry models to be relative to a new local parent, and use symmetrized KL
divergence as a distance metric to choose the operation that would merge parts
with the best matching geometry models.

2 Although this formula resembles the BIC score, we are not actually using a Bayesian
approach to construct our structure score.
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(a) The four ground wrench classes.

(b) Example test images.

(c) Hand-chosen edge intensity templates. From top to bottom and left to right: tip3,
tip4, side3, side4, open-left, dedge, open-right, side2, side1, tip2, tip1, full-circle.

Fig. 3. A wrench domain.

7 Experimental Results

We have collected a wrench data set to use as a test bed for the framework. It
consists of four ground classes of wrench, shown in Figure 3(a). This domain has
inherent “or” structure that makes it a natural place to start testing the PGG
model.

We focus on a localization task: given a large complicated image that contains
a single wrench but also many distractor items, the goal is to correctly localize
the wrench. We are not yet modeling or searching over scale or orientation, so
the images have been rotated and scaled so that the wrench is horizontal and
of roughly uniform width, although there is some variation. Figure 3(b) shows
example test images.

In this paper, we use hand-chosen edge intensity templates (shown in Fig-
ure 3(c)) for our appearance models, and define the image likelihood ratio as
follows:3

P (Iw|Xcw)
P (Iw)

=
f(cc(Iw, Tc))q∑

I′
w

P (I ′w)f(cc(I ′w, Tc))q

3 The right expression is not in terms of distributions; our technical report justifies
this approximation in detail.
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wrench:
1.0 wrench → C0001 C0002 dedge dedge

C0001:
0.9752 C0001 → open-right side1 side2 tip1 tip2
0.0248 C0001 → full-circle

C0002:
0.0174 C0002 → full-circle
0.9826 C0002 → open-left side3 side4 tip3 tip4

Fig. 4. On the left, a typical learned grammar for wrenches. On the right, an
example of 68% overlap. The blue (outer) box is the correct labeled bounding
box, while the green (inner) box is the prediction.

where cc denotes (unnormalized) cross correlation between the image patch Iw

and the template Tc, f normalizes the correlation coefficient to be in [0, 1], and
the exponent q serves to strengthen strong responses and suppress weak ones (a
similar approach to that of Torralba et al. [9]). We use q = 6 for all templates
except the full-circle wrench end; because of its larger area, we found that q = 8
worked better. We can estimate the denominator by sampling over training set
foreground and background patches and computing the expected correlation
response. The ratio will be greater than 1 in cases where the template response
is better than “average”, and less than 1 otherwise.

Figure 4 (left) shows a typical learned grammar in the wrench domain. The
structure makes sense: a wrench consists of a right end (C0001), a left and
(C0002), and two horizontal bars; each end can be closed or open. However,
the rule probabilities for the wrench ends strongly prefer the “open” choice; we
have learned that, given our fixed set of appearance models, all four types of
wrenches can be explained well by a model of open-open wrenches. Despite this
surprising result, the model performs impressively. We expect that learning the
primitive appearance models so that they span the representational space and
avoid redundancy would result in even better structures and results.

7.1 Comparison With Simpler Models

To evaluate whether the PGG framework provides a performance benefit, we
compared the full PGG model against simpler versions of the model:

– A set of grammars, one for each wrench type, where each grammar has a
single flat rule.4

– A single grammar with a set of flat rules, one for each wrench type.

The first might be considered the simplest derivative of the PGG model. The
second ensures that any benefit achieved by the full model over the first baseline
4 A flat rule has the object class on the left hand side and the set of primitive parts

on the right.
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Fig. 5. A comparison of the full PGG model against simpler versions of the
model. Because there are four ground classes, the total training data is four
times each x-axis value. Error bars represent 95% confidence intervals.

is not due to tweaking the rule probabilities or geometry parameters during EM,
but rather due to some aspect of the structure learning: the hierarchy introduced
by building up structure, or the sharing of common substructure among different
types of wrenches.

Our performance metric is the percentage overlap between the predicted and
labeled bounding boxes: the ratio of the area of intersection of the windows to
the area of their union. This will be one when the windows are identical and
zero when they do not overlap at all.

We trained each model on training sets of increasing size, and tested the
learned models on a set of 40 images (10 of each wrench type). We report the
mean percentage overlap score on the test set for each training set size. We
repeated this procedure 10 times for different splits of training and test data,
and averaged the resulting curves together to produce Figure 5.

Reassuringly, the full PGG model enjoys a significant advantage over the two
baseline models. Furthermore, the flat structure slightly outperforms the one-
grammar-per-class approach, but not significantly so for most training set sizes.
Therefore, we can feel confident that the structure learning process is responsible
for most of the advantage of the full PGG model over the simplest model.

To put the scores shown in Figure 5 in perspective, Figure 4 (right) 68%
overlap looks like in an image—it is quite a high localization score.
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Fig. 6. A comparison of the PGG model against other leading object recognition
systems [6,9]. Because there are four ground classes, the total training data is
four times each x-axis value. Error bars represent 95% confidence intervals.

7.2 Comparison With Other Approaches

It is important to validate our overall approach through comparisons with other
leading object recognition systems. Therefore, we also compared the full PGG
model against the following systems:

– The 1-fan object detector [6], treating all wrench types as one object class.
– Two variations of the joint boost object detector (JBOD) [9]: treating all

wrench types as one object class, and running a separate detection experi-
ment for each wrench type and averaging the results.5

In the first case, we used the authors’ published implementation, while in the
second we used our own reimplementation. We used the same values for all
experimental parameters as were reported in the publications. We also controlled
for object scale and orientation.

The methods to which we compare do not predict tight bounding boxes, so we
cannot usefully measure localization performance using the percentage overlap
metric. Instead, we measure the percentage of times that the predicted object
centroid falls within the labeled bounding box, across the test set. Otherwise,
we followed a similar experimental procedure as described in Section 7.1. The
results are shown in Figure 6.

These experiments demonstrate that the localization task on the wrench data
is a challenging one. Figure 6 shows that the PGG model outperforms the other
5 We also tried treating each wrench type as its own object class; the results were

similar to the one-class case.
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systems by a significant margin on this dataset. It seems that, especially for
small training set sizes, this task is indeed nontrivial; therefore we may conclude
that the good performance of the PGG model is promising.

Nonetheless, it is important to point out that both of the systems we com-
pared against learn their appearance models, while we assume a pre-specified
set of models. Although it may seem that our approach has an advantage due
to the extra supervision, several recent authors have shown that choosing primi-
tive parts automatically based on data outperforms using hand-chosen primitive
parts (notably, Crandall and Huttenlocher [6]). Thus, it seems possible that
learning our appearance models would result in even better performance, and
this is an important area of future work.
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