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Abstract  

Background 
Many bioinformatics applications rely on controlled vocabularies or ontologies to 

consistently interpret and seamlessly integrate information scattered across public 

resources. Experimental data sets from metabolomics studies need to be integrated 

with one another, but also with data produced by other types of omics studies in the 

spirit of systems biology, hence the pressing need for vocabularies and ontologies in 

metabolomics. However, it is time-consuming and non trivial to construct these 

resources manually. 

Results 
We describe a methodology for rapid development of controlled vocabularies, a study 

originally motivated by the needs for vocabularies describing metabolomics 

technologies. We present case studies involving two controlled vocabularies (for 

nuclear magnetic resonance spectroscopy and gas chromatography) whose 

development is currently underway as part of the Metabolomics Standards Initiative. 

The initial vocabularies were compiled manually, providing a total of 243 and 152 

terms. A total of 5,699 and 2,612 new terms were acquired automatically from the 

literature. The analysis of the results showed that full-text articles (especially the 

Materials and Methods sections) are the major source of technology-specific terms as 

opposed to paper abstracts. 

Conclusions 
We suggest a text mining method for efficient corpus-based term acquisition as a way 

of rapidly expanding a set of controlled vocabularies with the terms used in the 

scientific literature. We adopted an integrative approach, combining relatively generic 

software and data resources for time- and cost-effective development of a text mining 
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tool for expansion of controlled vocabularies across various domains, as a practical 

alternative to both manual term collection and tailor-made named entity recognition 

methods. 

Background  
The lack of a suitable means for formally describing the semantic aspects of omics 

investigations presents challenges to effective information exchange between 

biologists [1-3]. The inherent imprecision of free-text descriptions of experimental 

procedures hinders computational approaches to the interpretation of experimental 

results. Controlled vocabularies and/or ontologies can be used as a means of adding 

an interpretative annotation layer to the textual information [4-6]. A controlled 

vocabulary (CV) is a structured set of terms (i.e. linguistic representations of domain-

specific concepts [7], and as such a means of conveying scientific and technical 

information [8]) and definitions agreed by an authority or a community. An ontology 

includes CV terms to refer to concepts at the linguistic level, but also utilises a richer 

semantic representation to characterise the ways in which these concepts are related 

[9]. Many scientific communities, including those operating in the metabolomics 

domain [10], have started developing ontologies for data annotation [11]. The 

Metabolomics Standards Initiative (MSI) [12, 13] Ontology Working Group (OWG) 

[14] has been appointed to establish a common semantic framework (i.e. a set of 

ontologies and their CVs) for metabolomics studies to be used to describe the 

experimental process consistently, and to ensure meaningful and unambiguous data 

exchange [15]. While providing a mechanism for coherent and rigorous structuring of 

domain-specific knowledge, it is necessary for ontologies and CVs in an expanding 

domain such as metabolomics to be easily extensible. The new knowledge, largely 

generated by high-throughput screening, is communicated through the biotechnology 
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literature, which can be exploited by text mining (TM) tools to facilitate the process of 

keeping ontologies and their CVs up to date [6, 16]. In this article we describe a TM 

approach for rapidly expanding a set of CVs maintained by the MSI OWG with terms 

extracted from the scientific literature, following initial term acquisition from sources 

such as domain specialists, literature, databases, existing ontologies, etc.  

The MSI OWG [17] aims to develop a set of ontologies and CVs in metabolomics as 

a direct support to the activities of other MSI WGs [15], which are responsible for: 

Biological Context Metadata, Chemical Analysis, Data Processing and Exchange 

Formats. The coverage of the domain has been divided in accordance with the typical 

structure of metabolomics investigations: 

• general components (investigation design; sample source, characteristics, 

treatments and collection; computational analysis), and  

• technology-specific components (sample preparation; instrumental analysis; 

data pre-processing). 

The ongoing standardisation endeavours in other omics domains, such as the Human 

Proteome Organization (HUPO) Proteomics Standards Initiatives (PSI) [18, 19], the 

Microarray Gene Expression Data Society (MGED) [20, 21] and other ontology 

communities under the Open Biomedical Ontologies (OBO) Foundry [22-24] 

umbrella can largely be re-used to describe the general aspects of metabolomics 

investigations. Therefore, the MSI OWG has focused initially on the technology-

specific components. Further, development activities in this sub-domain have been 

prioritised according to the pervasiveness of the analytical platforms used. 

A range of analytical technologies have been employed in metabolomics studies [25]. 

Mass spectrometry (MS) is the most widely used analytical technology in 

metabolomics, as it enables rapid, sensitive and selective qualitative and quantitative 
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analyses with the ability to identify individual metabolites. In particular, the combined 

chromatography-MS technologies have proven to be highly effective in this respect. 

Gas chromatography-mass spectrometry (GC-MS) uses GC to separate volatile and 

thermally stable compounds prior to detection via MS. Similarly, liquid 

chromatography-mass spectrometry (LC-MS) provides the separation of compounds 

by LC, which is again followed by MS. On the other hand, nuclear magnetic 

resonance (NMR) spectroscopy does not require any separation of the compounds 

prior to analysis, thus providing a non-destructive, high-throughput detection method 

with minimal sample preparation, which has made it highly popular in metabolomics 

investigations despite being relatively insensitive in comparison to the MS-based 

methods. 

For MS, the MSI OWG will leverage previous work by the PSI MS Standards WG 

[26]. For chromatography, which is used in both proteomics and metabolomics, the 

MSI OWG is closely collaborating with the PSI Sample Processing Ontology WG. 

Consequently, the technologies the MSI OWG is currently focusing on are NMR and 

GC. These two technologies are used in this paper to illustrate the effectiveness of the 

proposed TM approach. 

The MSI OWG efforts are divided into two key stages: (1) reaching a consensus on 

the CVs, and (2) developing the corresponding ontology as part of the Ontology for 

Biomedical Investigations (OBI, previously FuGO) [27, 28]. In this paper, we focus 

on the first stage. Each CV is compiled in the following three steps: 

1. Compilation: An initial CV is created by re-using the existing terminologies 

from database models (e.g. [29, 30]), glossaries, etc. and normalising the terms 

according to some common naming conventions [31]. The result of this phase 
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is a draft CV encompassing terms of different types: methods, instruments, 

parameters that can be measured, etc. 

2. Expansion: In the highly dynamic metabolomics domain, experts often use 

non-standardised terms. Therefore, in order to reduce the time and cost of 

compiling a CV and to strive for its completeness, we use a TM approach to 

automatically identify additional technology-related terms frequently 

occurring in the scientific literature. 

3. Curation: The CV is discussed within the MSI OWG and is passed on to the 

practitioners in the relevant metabolomics area for validation in order to 

ensure the quality and completeness of the proposed CV. 

We expect the CVs to evolve in time by reflecting the changes in the domain and the 

availability of new literature, and therefore steps 2 and 3 should be iterated over in 

certain time intervals. 

Implementation  
A set of relevant tasks regarding CV term acquisition has been identified, including 

information retrieval, term recognition and term filtering. Figure 1 summarises the 

main steps taken in our TM approach to CV expansion. First, the information retrieval 

module is used to gather documents relevant for a given CV from the literature 

databases. Once a domain-specific corpus of documents has been assembled, it is 

searched for potential terms unaccounted for in the initial CV. Automatic term 

recognition is performed to extract terms as domain-specific lexical units, i.e. the ones 

that frequently occur in the corpus and bear special meaning in the domain. In order to 

reduce the number of terms not directly related to a given technology, and therefore 

not relevant for the given CV, we filter out typically co-occurring types of terms 

denoting substances, organisms, organs, diseases, etc. In contrast to the considered 
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analytical techniques, these sub-domains have more established CVs, which can be 

exploited to recognise these terms using a dictionary-based approach [32]. Each of the 

TM steps is described in more detail in the forthcoming sub-sections. 

Information retrieval 
Information retrieval (IR) implements the representation, storage and organisation of 

textual data to enable a user to access relevant pieces of information [33]. Biomedical 

experts regularly exploit IR to locate relevant information (most often in the form of 

scientific publications) on the Internet. Apart from general-purpose search engines 

such as GoogleTM
 [34], many IR systems have been designed specifically to query 

databases of biomedical publications (e.g. [35-39]) such as Medical Literature 

Analysis and Retrieval System Online (MEDLINE) [40] and PubMed Central (PMC) 

[41] (henceforth referred to together as PubMed), which provide peer-reviewed 

literature and make it freely accessible in a uniform format. MEDLINE distributes 

abstracts only, while PMC provides full-text articles. PubMed is accessible through 

Entrez [42], an integrated retrieval system that provides access to a family of related 

biomedical databases maintained by the National Center for Biotechnology 

Information (NCBI). 

Documents available in PubMed are indexed by Medical Subject Headings (MeSH) 

[43] terms (index terms are pre-selected to refer to the content of a document [33]). 

MeSH is a CV consisting of hierarchically organised terms that serve as descriptors to 

index and annotate documents. This permits direct access to relevant documents at 

various levels of specificity, thus improving the performance of IR in terms of speed 

as well as precision and recall. Entrez uses automatic term mapping to match terms 

against the MeSH hierarchy and to expand a query with (near-)synonyms and 
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subsumed terms. For example, all of the following terms are explicitly listed as terms 

matching Magnetic Resonance Spectroscopy in MeSH: 

• In Vivo NMR Spectroscopy 

• Magnetic Resonance 

• MR Spectroscopy 

• NMR Spectroscopy 

• NMR Spectroscopy, In Vivo 

• Nuclear Magnetic Resonance 

• Spectroscopy, Magnetic Resonance 

• Spectroscopy, NMR 

• Spectroscopy, Nuclear Magnetic Resonance 

Similarly, a query searching for information on Gas Chromatography can be 

expanded automatically to include Gas Chromatography-Mass Spectrometry as a 

more specific term (see Figure 2). 

While the use of the MeSH for indexing and query expansion in Entrez is 

undoubtedly useful, these benefits cannot be fully exploited for the particular problem 

of accessing articles describing research that utilizes some analytical technology. In 

particular, an analytical technique employed in metabolomics is unlikely to be the 

main focus of the reported studies. Consequently, the corresponding documents may 

not necessarily be indexed with technology-related MeSH terms. Further, the abstracts 

of such articles are more likely to report the actual findings rather than the 

technology-specific experimental conditions applied. These parameters are usually 

described in the Materials and Methods section or as part of the supplementary 

material. Hence, two points arise when retrieving documents containing information 

pertinent for analytical techniques deployed in metabolomics studies. First, it is 
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important to search full-text articles as opposed to abstracts only. For this reason we 

used PMC, which provides access to full-text articles, in addition to MEDLINE, 

which offers only abstracts. Second, it is necessary to go beyond MeSH terms in 

query formulation. This problem is alleviated using the following assumption: terms 

denoting related concepts tend to co-occur within textual documents [44, 45]. On this 

basis, terms from an initially compiled CV can be combined in a search query to 

retrieve additional documents that describe research that utilises a technology, i.e. the 

ones that do not necessarily deal with the technology per se and thus may not be 

indexed by technology-related MeSH terms. To achieve this, we index the literature 

with the CV terms. Each CV term is used to search the literature via Entrez. As a 

result, each term is mapped to a set of documents it matches. This information is 

stored in a local database using the following structure described in SQL: 

CREATE TABLE index 

( 

  term  VARCHAR(200) NOT NULL, 

  document  VARCHAR(50)  NOT NULL 

); 

A cut-off point (this is a configurable parameter; the specific values used in our case 

studies are reported in the Results & Discussion section) is set to remove the non-

discriminatory terms, i.e. the ones that return too many documents. These are likely to 

be broad terms not limited to a specific analytical technique, and consequently 

introducing unwanted noise in the context of the domain-specific corpus. For 

example, in the case of the NMR CV, the mean number of abstracts returned was 

2,772 with the median being just 0, which is due to the fact that the NMR CV was 

constructed using a considerable number of terms coming from database schemata. 

These terms are semi-formal in the sense that they do not necessarily reflect the 
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terminology used in the literature, e.g. AMIX VIEWER & AMIX-TOOLS and JEOL 

NMR instrument. On the other extreme, terms returning the maximal number of 

abstracts (set to 50,000) were: analysis, characteristic, concentration, Delta, 

instrument, method, reference, software, states and tube. The following SQL query 

can be used to identify such terms: 

SELECT   term, COUNT(document) AS matching_documents 

FROM     index 

GROUP BY term 

WHERE    matching_documents >= D; 

where D is chosen a cut-off point. Having removed such terms from further 

consideration from the IR point of view, a cut-off point (as before, this is a 

configurable parameter, and the specific values used in our case studies are reported 

in the Results & Discussion section) is set to remove the documents that do not 

contain a sufficient number of the CV terms. The following SQL query can be used to 

identify such documents: 

SELECT   document, COUNT(term) AS matching_terms 

FROM     index 

GROUP BY document 

WHERE    matching_terms <= T; 

where T is chosen a cut-off point. For example, some of the documents with the 

highest number of matching terms from the NMR CV were [46-48]. 

The IR module based on the methods described above is encoded in Java. The Java 

application takes advantage of E-Utilities [42], a web service which enables the users 

to run Entrez queries and download data using their own applications. The 

information gathered about terms, documents and their relations is stored in a local 

database (DB) hosted on a PostgreSQL [49] system. By storing the mappings between 

terms and documents, the querying ability of the DB management system can be 
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combined with that of Entrez. The local DB is also accessible via Java applications 

(using the JDBC protocol – a standard SQL DB access interface). Hence, all our 

implemented IR modules can be incorporated into customised workflows [50]. 

Term recognition 
In the literature dealing with terminology issues, a term is intuitively defined as a 

phrase (typically a noun phrase [7, 51]): (1) frequently occurring in texts restricted to 

a specific domain, and (2) having a special meaning in the given domain [52]. Bearing 

in mind the potentially unlimited number of different domains and the dynamic nature 

of newly emerging ones (many of which expand rapidly together with the 

corresponding terminologies, as is the case in metabolomics), the need for efficient 

term recognition becomes apparent. Manual term recognition approaches are time-

consuming, labour-intensive and prone to error due to subjective judgement. These 

shortcomings can be addressed by automatic term recognition (ATR), the process of 

annotating an electronic document with a set of terms extracted from the document 

[53]. Here, we emphasise that ATR refers to the computer-based extraction of terms 

from a domain-specific corpus as opposed to merely matching the corpus against a 

dictionary of terms [54]. It has been suggested that scientific corpora can be used as 

reliable sources for terminology construction exploiting [8]: 

• the growing number of electronic corpora,  

• efficient NLP tools (such as part-of-speech taggers, parsers, etc.), 

• linguistically and/or statistically based ATR procedures, and 

• the fact that domain experts often use terms that have not been standardised, 

and as such are not included into standardised dictionaries. 

The lack of terminological standards is especially apparent in the rapidly expanding 

domain of metabolomics, e.g. there is no exact consensus on what constitutes a 
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metabolite name although naming conventions do exist for some entities, e.g. the 

Chemical Entities of Biological Interest (ChEBI) dictionary that is emerging for small 

molecules [55]. Still, these are only guidelines and as such do not impose restrictions 

on domain experts. 

Manual term recognition is performed by relying on conceptual knowledge, i.e. 

humans identify terms by relating them to the corresponding concepts. It is currently 

not feasible to implement an ATR approach following such a paradigm due to the lack 

of appropriate knowledge representation systems and the difficulty of automatically 

performing “intelligent” tasks. For these reasons, ATR approaches resort to other 

types of knowledge that can provide clues about the terminological status of a given 

natural language clause [56]. Generally, the knowledge used for ATR may involve 

two types of information: 

• internal: morphological, syntactic, semantic and/or statistical knowledge about 

terms and/or their constituents (nested terms, words, morphemes), and  

• external: linguistic and/or statistical knowledge regarding the term context, 

together with the knowledge contained in external resources, such as 

electronic dictionaries, ontologies, corpora, etc. 

ATR methods typically combine two approaches: linguistic (or symbolic) and 

statistical (or numeric) [51]. Linguistic approaches to ATR usually involve pattern 

matching to recognise candidate terms by checking if their internal structure conforms 

to a predefined set of morpho-syntactic rules. Statistical methods rely on at least one 

of the following hypotheses regarding the term usage [7]: 

• specificity: terms are likely to be confined to a single or few domains,  

• absolute frequency: terms tend to appear frequently in their domain, and 
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• relative frequency: terms tend to appear more frequently in their domain than 

in general. 

Statistical approaches are prone to extracting not only terms, but also other types of 

collocations (sequences of words co-occurring more frequently than would be 

expected by chance) [57]: functional, semantic, thematic and others, e.g. “…to play 

an important role in…”. This problem is typically remedied by employing linguistic 

filters to extract candidate terms from a corpus, which are then ranked using statistical 

methods. 

In this work, we utilised the C-value method [58], publicly accessible at [59] to the 

TM community via a web service. It first applies syntactic pattern matching to select 

term candidates, e.g. noun phrases having the structure described by the following 

regular expression: 

( ADJ  | N )+  |  ( ( ADJ  | N )*  [ N  PREP ]  ( ADJ  | N )* )  N 

where ADJ, N and PREP denote adjective, noun and preposition respectively. The C-

value of each candidate term t is then calculated as: 
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where | t | is the length of t in words, f(t) is t’s frequency of occurrence and S(t) is the 

set of other term candidates containing t as a sub-phrase. All candidates whose C-

value exceeds a certain threshold are proposed as domain-specific terms by this 

method. The threshold chosen will affect the performance of ATR in terms of 

precision and recall, which are calculated as P = A / (A + B) and R = A / (A + C), 

where A is the number of true positives (correctly recognised terms), B is the number 

of false positives (phrases incorrectly recognised as terms) and C is the number of 

false negatives (non-recognised terms). Higher thresholds will typically result in 
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higher precision and lower recall, and vice versa, lower thresholds will increase the 

recall at the expense of precision. In general, a threshold used should be corpus-

specific (e.g. the average C-value found in the given corpus), as the C-value of each 

term candidate also depends on the corpus.  

By its definition, the C-value method favours longer and more frequent phrases that 

are not typically nested within a relatively small set of other phrases. Obviously, the 

C-value method relies primarily on the frequency of term usage and their general 

syntactic properties rather than exploiting orthographic, morphological and lexical 

features of specific named entities. For example, while protein names may vary 

significantly between authors, some general characteristics still apply [60, 61]: 

• distinctive orthographic characteristics of protein names such as capital letters, 

digits, special characters (e.g. p54 SAP kinase), 

• keywords (e.g. protein, receptor, etc.) describing the protein function in multi-

word protein names (e.g. Ras GTPase-activating protein, EGF receptor), and 

• morphological principles for naming proteins, such as highly abundant affixes 

-ase, -in, etc. (e.g. hexokinase, haemoglobin). 

Opting for a similar named entity recognition approach would significantly increase 

the time and cost of developing CV term acquisition methods, as these would have to 

be re-implemented for specific domains. Moreover, the type of terms sought may not 

necessarily exhibit sufficiently discriminatory textual properties [32]. 

On the other hand, a generic ATR approach (such as the C-value method) can be 

manipulated to extract terms that are more likely to be of the required type by 

targeting only relevant documents, and within them specific sections potentially dense 

with terms of the given type. This can be followed by additional filtering of terms, 

known to be of different and not directly relevant semantic types to the ones needed, 
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by using lexical resources of these terms where such resources exist. This issue of 

ATR targeting only relevant documents has been addressed by the IR module 

described in the previous section. A domain-specific corpora is produced as a result of 

IR by using either MeSH or CV terms in the search queries over collections of either 

abstracts or full-text articles in PubMed.  

Further, it is particularly important to target only sections that are likely to contain 

terms relevant for an analytical technology as a preparation step for ATR in order to 

increase its precision. Therefore, when using full-text documents we reduce them to 

the Materials and Methods sections, which are recognised automatically utilising 

PMC’s XML format in which articles are distributed. Once a domain-specific corpus 

is obtained, the C-value terms are extracted and further inspected to see if they include 

any terms known to belong to other sub-domains not directly related to the analytical 

technology under investigation, in which case they can be safely filtered out. 

Term filtering 
Given the initially compiled CVs for NMR and GC, we automatically obtained terms 

loosely related to these two analytical techniques by applying IR to compile a 

technology-specific corpus, followed by ATR to extract a list of terms from the 

corpus in a way described in the preceding sub-sections. Manual inspection of the 

extracted terms revealed typical types of terms frequently co-occurring with the 

NMR- and GC-specific terms, namely those denoting substances, organisms, organs, 

conditions/diseases, etc., which are not of direct interest for the analytical technology 

per se. Examples of such terms automatically extracted by the C-value method are: 

amino acid, linseed oil, pancreatic juice, blood glucose, cell wall, Halophilic 

bacterium, Streptomyces antibioticus, systemic hypertension, cervical dislocation, etc. 

Unlike analytical techniques, many of which are relatively recent, some of these 
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terminologies are relatively stable with respect to the number of new terms being 

introduced, e.g. Linnaean taxonomy [62] classifies living organisms in a systematic 

manner. 

The Unified Medical Language System [63] is a multi-purpose resource merging 

information from over 100 biomedical source vocabularies developed for different 

purposes. By providing uniform access (including a web service) to terms belonging 

to various sub-domains of interest, UMLS aims to facilitate the development of 

information systems for text processing in biomedicine via a semi-formal 

representation of domain-specific knowledge in order to process, retrieve, integrate, 

and aggregate biomedical data and information contained in the relevant literature 

[64]. It currently contains 1.4 million concepts named by 7.2 million terms, organised 

into a hierarchy of 135 semantic types and interconnected by 54 different relations. 

The following semantic types in the UMLS proved relevant to our problem of 

detecting technique-specific terms in a subtractive approach: Organism, Anatomical 

Structure, Substance, Biological Function and Injury or Poisoning. Given these 

semantic types as part of the input to the term filtering module (implemented as a Java 

application), the subsumed terms are automatically selected from the latest version of 

the UMLS thesaurus. Then, a simple pattern matching approach is applied to filter out 

these terms and their variations. For example, the filtering approach helped identify 

the following “outliers” amongst terms extracted by the C-value method: 

experimental rat, bovine heart muscle, maternal blood sera specimen, farmworker 

pesticide exposure, arterial carbon dioxide tension, etc., simply by matching the 

UMLS terms from the above mentioned classes (e.g. rat, bovine, heart, muscle, blood, 

pesticide, carbon dioxide, tension). 
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Output 
We have described an integrative approach combining relatively generic software 

(e.g. Entrez for IR, C-value for ATR) and data resources (e.g. UMLS as a semantic 

network of biomedical terms) for the rapid development of a TM tool for automatic 

expansion of CVs as a practical alternative to tailor-made named entity recognition 

methods (see discussion above). An HTML report is generated as a result of the 

automated CV expansion (see Figure 3 for an example report generated for the NMR 

CV). The report summarises the output of each module described earlier, i.e.: 

• the number of documents collected by the IR module with a link to the list of 

their citation details (see Figure 4) and cross-references to the actual 

documents in PubMed (see Figure 5), 

• the size of the final text corpus with a link to the corresponding ASCII file (see 

Figure 6), and 

• the number of new terms extracted by ATR with a link to the list of terms 

sorted by their C-values. 

Terms extracted from four different corpora are also amalgamated into a single, 

alphabetically ordered list (see Figure 7, left-hand side window). To aid the curation 

of automatically extracted terms and their incorporation into the CV, the context of a 

term can be obtained on-the-fly. The context should help the curator interpret the 

intended meaning of a term and provide clues useful for generating its textual 

definition. The context of a term rather than its definition may be more crucial for the 

association of a term with its correct meaning [65]. Terms sharing the same context 

are likely to have similar (or even the same) meaning [66]. Conversely, different 

contexts of the same term may point to the problem of term ambiguity (the same term 

denoting different concepts). Less drastically, the context may “deviate” the meaning 

of a term by emphasising only certain aspects of a term (e.g. insulin can be interpreted 
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as both hormone and pharmacological substance). Bearing in mind the importance of 

contextual information in determining the correct meaning of a term and hence its 

position in a CV, we deployed a practical solution: all new terms reported are linked 

to MedEvi [67], a service providing local context (extracted from MEDLINE) for 

query terms [68]. Clicking on a term launches a query to MedEvi, which in turn 

returns the aligned concordance (words used in a context) lines together with some 

handy features such as lists of co-occurring keywords and terms (see Figure 7, right-

hand side window). 

Results & discussion  
We performed two case studies to evaluate the effectiveness of the proposed CV 

expansion approach using the two CVs for NMR and GC, which are currently under 

development as part of the MSI OWG activities. The initial CVs were compiled 

manually by the MSI OWG members, providing a total of 243 and 152 terms for 

NMR and GC respectively. In addition to these terms, we hand-picked the MeSH 

terms (Magnetic Resonance Spectroscopy and Chromatography, Gas) relevant for the 

techniques of interest by using the web-based MeSH browser. We used the given 

MeSH terms to retrieve documents from PubMed that have been manually annotated 

with these terms. A complementary IR approach was based on the search queries 

combining the CV terms: at least 3 and 7 matching terms for abstracts and full papers 

respectively. 

Tables 1 and 2 provide the IR and ATR results. The top two rows refer to the IR 

approach used for collecting a corpus of relevant documents. The use of MeSH and 

CV terms to conduct searches over abstracts and full-text documents results in a total 

of four corpora, whose numerical properties are described in separate columns. The 

size of each corpus is given as the number of documents retrieved and its size in KBs 
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(rows three and four). Although freely available for browsing, for most articles in 

PMC the publisher does not allow downloading of the text in XML format; neither 

does PMC allow bulk downloading in HTML format. Hence, we were able to process 

only a small number of full-text documents (the numbers in brackets refer to these 

papers). Total numbers of C-value terms extracted from each corpus are given in the 

bottom two rows, one referring to the total number of terms recognised by the C-value 

method and the other referring to the number of these terms remaining after applying 

the filtering approach based on the available knowledge about their semantic types. 

By amalgamating all filtered terms, a total of 5,699 and 2,612 new terms were 

acquired for NMR and GC respectively. The bottom rows in Tables 1 and 2 show 

their distribution across the four corpora. Note that the total number of new terms 

does not correspond to the sum of these numbers due to duplication of terms extracted 

from different corpora. Given a type of search terms (i.e. MeSH or CV terms), we 

compared the ATR results acquired from abstracts and those obtained from Materials 

and Methods sections of full-text articles. We determined that the overlap between the 

terms extracted from abstracts and those from the body of full-text articles was 2% on 

average. By further contrasting the results acquired from abstracts and full-text 

articles, we determined the average ratio between the number of acquired technology-

specific terms and the corpus size was 16.25 for full-text articles and only 0.13 for 

abstracts. This comparison confirms that the Materials and Methods sections 

represent a significant source of technology-specific terms and also emphasises the 

benefits that can result from making full-text articles available to TM applications for 

the benefits of the overall biomedical community. 

The preliminary results are available at [14], where the potential CV terms are 

accessible to the metabolomics community for comments and curation. The official 
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version of the NMR CV has been made publicly available at [22] as part of the NMR 

ontology. We have to note that the integration of new terms into the MSI CVs has 

only just started and a full evaluation can only be published later on the web pages. 

Nevertheless, we performed a preliminary evaluation using the following setup. For 

each case study, we selected a test set of 100 terms chosen randomly from the 

resulting set of candidate CV terms. Each test set was evaluated independently by two 

domain experts. Each term from the test sets was scored from 1 to 5 reflecting an 

expert opinion about the degree to which the term in question is related to the 

technology described by the CV: 1 – no, definitely; 2 – no, probably; 3 – don’t know / 

not sure; 4 – yes, probably; 5 – yes, definitely. The detailed evaluation results are 

given in Additional File 1, where a reader can find the score given to each term by 

each of the curators. We also provide a mean score for each evaluated term and we 

measure the agreement between the curators by giving the score difference for each of 

the terms. The mean and median values for all scores are summarised in Tables 3 and 

4. In both cases, the mean value of the average score was around 3.5 with the average 

difference in scores given by two curators not being greater than one. The distribution 

of the scores is shown in Figures 8 and 9. From these results we extract the fact that in 

the case of NMR 51 terms were deemed relevant (having an average score greater 

than 3), 22 terms were undecided (having an average score of 3) and 27 terms were 

deemed irrelevant (having an average score less than 3). Similarly, in the case of GC 

we obtained 61 positive examples, 35 negative ones and 4 undecided. By projecting 

these numbers to the total of 5,699 candidate NMR terms extracted, we estimate the 

numbers of relevant, undecided and irrelevant terms to be 2,906, 1254 and 1539 

respectively. For the total of 2,612 candidate GC terms, it is projected that 1,593 will 

be relevant, 104 undecided and 914 irrelevant. By including ≈2,900 positive examples 
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into the NMR CV (initially containing 243 terms) and ≈1,600 new terms into the GC 

CV (initially containing 152 terms), both CVs can be effectively expanded by more 

than ten times the original size simply by curating terms as opposed to the process of 

CV term collection using interviewing techniques and reading the relevant literature. 

In addition to the preliminary quantitative evaluation, we also provide some 

qualitative remarks about our approach TM approach to CV expansion, which will be 

taken into account in order to improve the functionality of the tool. Some of the 

extracted terms were “incomplete”. For example, the term comparative NMR as found 

in the result list lacks the headword to be of sufficient understandability and to get 

inserted into a CV, e.g. as its concordance (http://www.ebi.ac.uk/tc-

test/textmining/medevi/results.jsp?query=%22comparative%20nmr%22&submitbutto

n=Submit) reveals this term should be comparative NMR analysis or comparative 

NMR study. This is due to the term variation phenomenon when the same concept is 

designated by more than one term. When such term candidates are processed 

separately, their C-values are distributed across different variants providing separate 

frequencies for individual variants instead of a single frequency unifying all of the 

variants. Hence, in order to make the most of the statistical part of the C-value 

method, term candidates need to be normalised prior to statistical analysis [69]. 

Further, the CV expansion process can be helped by a different way of presenting the 

resulting terms. Having the candidate terms clustered according to their head noun 

phrases (e.g. experiment, assay, spectrum, chemical shift) would facilitate term 

integration and hierarchical structuring of the CV. 

Conclusions  
We described an integrative approach combining relatively generic, public software 

and data resources for time- and cost-effective development of a TM tool to aid the 
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expansion of CVs across various domains. This should serve as a practical alternative 

to both manual term collection and tailor-made named entity recognition methods. 

The software makes use of web services to access three key resources: 

• Entrez for IR, 

• C-value for ATR, and 

• UMLS as a semantic network of biomedical terms. 

It is disseminated under an open-source licence. Originally developed to the 

specification of the MSI OWG, it is still generic enough to be applied for the 

expansion of other CVs in biomedicine simply by changing the input parameters: 

• the initially compiled CV, 

• the MeSH terms that reflect the domain of the CV, and 

• the UMLS semantic types of terms indirectly related to those covered by the 

CV. 

The output terms are presented to the user in HTML format so they can be inspected 

through a web browser, in which the context of each term as used in the scientific 

literature can be explored through the hyperlinked MedEvi service (a web-based 

search tool for the MEDLINE corpus) in an effort to aid the curation of the potential 

CV terms. 

Availability and requirements 
Project name: CVexpand 

Project home page: http://mcisb.org/resources/CVexpand/ 

Operating system(s): Platform independent 

Programming language: Java (version 1.6) 

Other requirements: Access to SQL database 

License: Academic Free License v3.0 
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Any restrictions to use by non-academics: None 

List of abbreviations used  
ATR automatic term recognition 

CV controlled vocabulary 

DB database 

GC gas chromatography 

GC-MS gas chromatography – mass spectrometry 

HUPO human proteome organization 

HTML hypertext markup language 

IR information retrieval 

JDBC Java database connectivity 

MEDLINE medical literature analysis and retrieval system online 

MeSH medical subject headings 

MGED microarray gene expression data society 

MS mass spectrometry 

MSI metabolomics standards initiative 

NMR nuclear magnetic resonance 

OBI ontology for biomedical investigations 

OBO open biomedical ontologies 

OWG ontology working group 

PSI proteomics standards initiative 

PMC PubMed Central 

SQL structured query language 

TM text mining 

UMLS unified medical language system 
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XML extended markup language 
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Figures 

Figure 1  - The flow of data in a TM approach to CV expansion 
The information retrieval (IR) module is used to gather a corpus of documents 

relevant for a given CV from the literature databases. Automatic term recognition 

(ATR) is applied against the corpus to extract terms as domain-specific lexical units. 

Some of the extracted terms not directly related to the CV are filtered out by using the 

knowledge about typically co-occurring types of terms.  

Figure 2  - A sub-tree of the MeSH hierarchy 
We show part of the MeSH hierarchy relevant for the two CVs (i.e. NMR and GC) 

considered. 
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Figure 3  - An HTML report summarising CV expansion results 
 

Figure 4  - Citation details of the retrieved documents 
 

Figure 5  - A full-text document retrieved from PMC 
 

Figure 6  - A corpus of “Materials and Methods” sections 
 

Figure 7  - A list of automatically extracted terms with links to their 
concordances 
 

Figure 8  - Distribution of evaluation scores for NMR 
 

Figure 9  - Distribution of evaluation scores for GC 
 

Additional Files 

Additional File 1  - Evaluation results: each test set was evaluated 
independently by two domain experts. Each term from the test sets was scored 
from 1 to 5 reflecting an expert opinion about the degree to which the term in 
question is related to the technology described by the CV: 1 – no, definitely; 2 
– no, probably; 3 – don’t know / not sure; 4 – yes, probably; 5 – yes, definitely.  
 

Tables 

Table 1  - Term acquisition results for NMR 

search terms MeSH CV 
IR 

document type abstracts full papers abstracts full papers 

corpus 
size documents 122,867 6,125 (141) 1,613 758 (29) 
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KBs 113,191 663 2,047 270 

before filtering 5,602 6,215 124 2,601 
C-value 
terms 

after filtering 2,298 3,257 61 1,385 

Table 2  - Term acquisition results for GC 

search terms MeSH CV 
IR 

document type abstracts full papers abstracts full papers 

documents 60,338 1,351 (79) 3,948 1,383 (58) 
corpus 

size 
KBs 42,418 68 3,012 97 

before filtering 2,708 811 2,442 1,114 
C-value 
terms 

after filtering 567 348 1,323 526 

 

Table 3  - Evaluation of term acquisition results for NMR 

score by curator #1 by curator #2 mean between 
#1 & #2 

difference between  
#1 & #2 

mean 3.81 3.19 3.5 0.88 

median 4 3 3.5 1 

 

Table 4  - Evaluation of term acquisition results for GC 

score by curator #1 by curator #2 mean between 
#1 & #2 

difference between  
#1 & #2 

mean 3.06 3.79 3.425 0.93 

median 4 4 4 1 

 

 

 
 




