A Virtual Layer for FPGA Based Parallel Systems (MP-SoCs)

Andreas Hofmann and Klaus Waldschmidt
J. W. Goethe-University, Technical Computer Sc. Dep.,
Box 11 19 32, D-60054 Frankfurt, Germany
E-mail: {ahofmann,waldsch}@ti.informatik.uni-frankfurt.de
published: Proceedings of the Work in Progress Session of 10th Euromicro DSD 2007

I. INTRODUCTION

Besides performance and time to market, robustness and
reliability are important design targets for modern Systems-
on-Chip (SoCs). Despite these features the power consumption
must be as low as possible. To meet these design goals parallel,
flexible, and adaptive architectures are required [1].

Today, dynamically reconfigurable FPGAs are well suited to
form a parallel architecture because they incorporate serveral
hard- and softcores. To efficiently use such multicore systems
a hardware independent system must be created which handles
all cores. Further, optimizing the power management the
number of active cores must be adapted dynamically to the
current workload. To make these features manageable and
augment the system with adaptivity a virtual layer is required
which hides the — due to runtime reconfiguration — changing
hardware system from the application software. The Scalable
Dataflow-driven Virtual Machine [2] is such a virtualization
of a parallel, adaptive and heterogeneous cluster of processing
elements (PE). Thus, it is well suited to serve as a managing
firmware for multicore FPGASs.

Il. A FIRMWARE CONCEPT FOR FPGAS

Besides the primary functions that a System-on-Chip (SoC)
should accomplish, e.g. speech encoding in a cell phone, their
design has to address a multitude of secondary requirements.
These requirements are important for most systems, merely
the weighting differs. Using FPGAs as a target platform for
SoCs adds an other important requirement: To make optimal
use of these reconfigurable systems an efficient management
of the reconfiguration process is necessary. The list of these
secondary requirements can be summarized as follows:

« performance and scalability

« support for parallelism

« adaptivity, robustness and reliablity

« energy efficiency

« support for runtime reconfiguration

« incorporation of heterogeneous components

As these requirements and therefore the techniques to
achieve them are common to a vast number of SoCs it is
beneficial to supply a generic module which manages these
features. To avoid an increase in complexity, provide flexibil-
ity, and improve portability the division of the functionality
into several layers is a possible solution. The aforementioned
generic module should therefore be implemented as a func-
tional layer between the system hardware and the application
software thus acting as a middleware.

Dagstuhl Seminar Proceedings 08141
Organic Computing - Controlled Self-organization
http://drops.dagstuhl.de/opus/volltexte/2008/1561

The middleware should provide a complete virtualization of
the underlying hardware. The application has no longer to be
tailored to the hardware, instead it is sufficient to tailor it to
the virtual layer. This virtual layer not only provides hardware
independence, it can also hide changes in the underlying hard-
ware due to reconfiguration. Such a middleware is specifically
well suited to be used as a managing firmware for FPGAs.

The Middleware concept

A fundamental decision in the design process of the
firmware is whether each PE on an FPGA forms an inde-
pendent building block of the parallel cluster or multiple PEs
are merged in a higher-order cluster element. The latter may
impose less overhead but the former eases the implementation
of adaptive features; in detail:

« coping with errors in the fabric

« reducing hotspots on the FPGA

« avoiding bottlenecks.

If each PE is augmented with a complete set of the virtu-
alization functions and therefore no PE is the sole provider
of any function, the system is much more flexible. If an
error is detected in some part of the FPGA the affected
PE can be disabled or reconfigured to avoid the erroneous
location without hampering the functionality of the cluster.
Furthermore, as each augmented PE provides its share of the
cluster management functionality, the number of bottlenecks is
reduced. The distribution of functionality can lead to a better
distribution of workload thus reducing the number of hotspots.

The logic resources and therefore the computing power of
the FPGA and the internal memory blocks can be distributed
evenly among all PEs. But there are resources which cannot
be efficiently split. The most important one is the external
memory. As FPGAs typically have only up to some hundred
kilobytes of internal memory, a lot of applications require
external memory. Therefore, the middleware should support
a multi-level memory architecture that is transparent to the
application software.

Besides external memory every interface of the FPGA
system to the outside world like ethernet or PCle cannot be
allocated to every PE. The middleware must manage these
resources on the cluster level.

The middleware should provide a complete virtualization
of runtime reconfigurable platform FPGAs. Therefore it has
to support the following primary features:

« Combine all PEs on the FPGA to create a parallel system.

« Provide task mobility between all PEs even if they are

heterogenous.



« Virtualize the 1/0-system to enable the execution of a task
on an arbitrary PE.

o Combine the distributed memory of each PE to form a
virtually shared memory.

« Manage the reconfiguration of the FPGA.

o Adjust the number of active PEs at runtime.

« Hide the actual number of PEs from the application to
ease programming.

o The firmware has to provide dynamic scheduling as well
as code and data distribution.

I1l. REALIZATION

In this section the realization of the presented virtualization
concept is described which is under developement. Due to its
features which match the requirements specified in Section II,
the SDVM [2] was chosen as a basis. Thus, the firmware for
FPGA-based reconfigurable systems is called SDVMF.

A. The Scalable Dataflow-driven Virtual Machine (SDVM)

The SDVM is a dataflow-driven parallel computing middle-
ware. It was designed to feature undisturbed parallel com-
putation flow while adding and removing processing units
from computing clusters. Applications for the SDVM must
be cut to convenient code fragments. The code fragments and
their frames (a data container for parameters) will be spread
automatically in the cluster depending on the data distribution.

Each processing unit which is encapsulated by the SDVM
virtual layer is called a site and acts as an autonomous member
of the cluster. The sites consist of a number of modules with
distinct tasks and communicate by message passing. Currently,
the SDVM is implemented as a UNIX-daemon to be run on
each participating machine, creating a site each.

The SDVM is a convenient choice as a middleware for
FPGAs due to several distinguishing features. The two most
important features are that the SDVM cluster can be resized
at runtime without disturbing the parallel program execution,
and each site in a cluster can use a different internal hardware
architecture. These two features are the basis for the runtime
reconfiguration ability of the system.

A reconfiguration cycle in such a system starts with the
site occupying the area to be reconfigured dropping out of the
running cluster. The displacement of data and code objects is
managed by the SDVM middleware. After loading the new
configuration the newly created site, now having a different
architecture, joins the cluster and is automatically included in
the ongoing runtime distribution of the workload. On FPGAs
which support continuous operation of the unchanged part of
the logic fabric, the other sites” operations are not disturbed.

B. Different realization schemes

The SDVM is to be ported to run on an FPGA. There are
two primal possibilities to use the reconfigurable area provided
by the FPGA.

1) The available resources on the FPGA are used up

by configuring additional processing units. Thus, the

SDVM SDVM SDVM
site site site
Hard- Soft- Soft- custom
core core core [~ function

‘ network on chip ‘

Fig. 1. Each core is encapsulated by a SDVM site. The sites are
implemented as software running on the cores.

SDVM cluster consists of more sites and a higher
parallelism can be achieved.

2) The FPGA fabric is used to implement custom function
units, each attached to and therefore controlled by one
of the cores. The function units conform to specific code
fragments which are to be executed often. The supported
functions of the custom function units can be changed
at runtime by reconfiguration.

The different approaches can be combined (see Fig. 1). For a
start the first possibility will be implemented. The next step
will be the implementation of support for code fragments
realized in hardware. This is especially aided by the fact that
both the Microblaze and the PowerPC hardcore provide a fast
low-level interface to the FPGA logic fabric. In this way the
middleware still runs as software on the core while the data
processing is shifted to specialized hardware (i.e. the logic
fabric). Eventually, the realization of the middleware functions
as hardware modules will be examined in future.

C. Technical challenges

As the virtualization layer will be implemented in software
which runs on the PE of each site the memory footprint
is a main concern. Therefore the existing SDVM C++-
implementation is going to be reimplemented targeting the
basic operating system kernel XMK. As the number of sites
changes due to reconfiguration, a reconfiguration-aware on-
chip network connecting the sites has to be developed.

IV. CONCLUSION

In this paper the concept of a virtualization layer for
FPGAs was presented which separates applications to be run
from the underlying hardware. The virtual layer is used to
exploit runtime reconfiguration and parallelism of currently
available FPGAs on system level. It is based on the SDVM,
a middleware for computer clusters and multicore chips. Due
to its features, the FPGA may reconfigure itself at runtime to
adapt to changing conditions and requirements.

REFERENCES

[1] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and W. Stechele,
“Towards a framework and a design methodology for autonomous soc.”
in ARCS Workshops, U. Brinkschulte, J. Becker, D. Fey, C. Hochberger,
T. Martinetz, C. Miiller-Schloer, H. Schmeck, T. Ungerer, and R. P. Wiirtz,
Eds. VDE Verlag, 2005, pp. 101-108.

[2] J. Haase, F. Eschmann, and K. Waldschmidt, “The SDVM - an approach
for future adaptive computer clusters,” in 10th IEEE Workshop on De-
pendable Parallel, Distributed and Network-Centric Systems (DPDNSO05),
Denver, Colorado, USA, Apr. 2005.





