
08161 Abstracts Collection

Scalable Program Analysis

� Dagstuhl Seminar �

Florian Martin1, Hanne Riis Nielson2, Claudio Riva3 and Markus Schordan4

1 AbsInt, Saarbrücken, DE
martin@absint.com
2 DTU Lyngby, DK
riis@imm.dtu.dk

3 Nokia Helsinki, FIN
claudio.riva@nokia.com

4 TU Wien, AT
markus@complang.tuwien.ac.at

Abstract. From April 13 to April 18, 2008, the Dagstuhl Seminar 08161
�Scalable Program Analysis� was held in the International Conference
and Research Center (IBFI), Schloss Dagstuhl. During the seminar, sev-
eral participants presented their current research, and ongoing work and
open problems were discussed. Abstracts of the presentations given dur-
ing the seminar as well as abstracts of seminar results and ideas are put
together in this paper. The �rst section describes the seminar topics and
goals in general. Links to extended abstracts or full papers are provided,
if available.

Keywords. Static analysis, security, pointer analysis, data �ow analy-
sis, error detection, concurrency

08161 Executive Summary � Scalable Program Analysis

Motivation and Introduction

As the volume of existing software in the industry grows at a rapid pace, the
problems of understanding, maintaining, and developing software assume great
signi�cance. A strong support for analysis of programs is essential for a practical
and meaningful solution to such problems. Static analysis tools can make a huge
impact on how software is engineered but in an industrial context research must
be properly balanced with a focus on deployment of analysis tools.

Our goal was to bring together researchers from academia and industry to
discuss the strengths and weaknesses of state-of-the-art program analysis tech-
nology for industrial-sized software. To achieve that goal the seminar gathered 38
participants from 9 companies and 23 academic/research institutions.

Dagstuhl Seminar Proceedings 08161
Scalable Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2008/1576

2 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

Proceeding of the Seminar

The seminar started with two sessions on technological research challenges in in-
dustry and continued with more theoretical sessions, covering scalable shape
and pointer analysis, concurrent program analysis, source-level and scalable
instruction-level analysis, scalable path conditions, state-of-the-art techniques
in abstract interpretation for scalability, and type systems. Overall we had 28
talks, with a good diversity in topics, showing the many research directions and
applications of program analysis, also covering program synthesis with sketching,
using machine learning for scalable analysis, analysis for architecture reconstruc-
tion, and data-�ow analysis for multi-core architectures.

A high number of participants, about 50%, had also implemented their anal-
ysis technique in a tool. Some participants had already expressed some interest
in tool sessions before the seminar, but there were also concerns mentioned that
tool sessions can be a real show-stopper if too lengthy. To encourage lively discus-
sions, the tool sessions were preceded by discussion groups starting on Tuesday.
Each group consisted of 4�7 people, of which at least two people had already
indicated their interest in presenting a tool. Each group was asked to de�ne a
set of challenging questions to be asked about a program analysis tool. On the
the next day, Wednesday, we selected in a one hour discussion session in a demo-
cratic process a subset of the proposed questions to be answered by every tool
presenter on Wednesday/Friday.

The idea was that each presentation of a tool would start by answering those
selected 7 questions, providing some basis for comparing the tools, and to create
a common frame for each tool presentation. The presentations were kept to a
minimum in time, about 15 mins, and the presenters were asked to focus on the
most impressive analysis feature of the tool.

This format with preceding working groups worked out well, as it further
increased the interest in the tool sessions. We eventually scheduled 15 tool &
infrastructure presentations on Thursday and Friday.

The following 10 tools were presented:

� AiT (Florian Martin - AbsInt)
� ASTREÉ (Patrick Cousot - ENS - Paris)
� CodeSonar (David Melski - GrammaTech Inc.- Ithaca)
� Columbus (Arpad Beszedes - University of Szeged)
� EspC Concurrency Toolset (Jason Yue Yang - Microsoft Corp. - Redmond)
� Havoc (Thomas Ball - Microsoft Corp. - Redmond)
� Parfait (Cristina Cifuentes - Sun Microsystems Laboratories - Brisbane)
� PluggableTypes (Michael D. Ernst , MIT - Cambridge)
� SAFE (Eran Yahav - IBM TJ Watson Research Center - Hawthorne)
� Space Invader (Dino Distefano - Queen Mary College - London)

The presented 5 infrastructures were interesting to the participants because
they provided a basis for building analysis tools:

� Bauhaus (Rainer Koschke - Universität Bremen)

Scalable Program Analysis 3

� LLNL-ROSE (Daniel J. Quinlan, Lawrence Livermore National Laboratory)
� LLVM (Vikram Adve - Univ. of Illinois - Urbana)
� SATIrE (Markus Schordan, TU Vienna)
� WALA (Steve Fink, IBM TJ Watson Research Center - Hawthorne)

An interesting experiment during the seminar was that the entire C++ source
code of the infrastructure LLNL-ROSE was used as test case for the Columbus
tool and the analysis results were presented in a tool session on the next day.

The tool presentations were mixed, some were hands-on with live presenta-
tions, others gave an in-depth view on the tool's capabilities without actually
running it. The presenters were asked to keep the presentation short, 10�15
minutes, and focus on some speci�c interesting feature of the tool. Overall, the
format worked well in keeping the audience's attention with every tool. It also
encouraged people from academia and industry to get into discussions after the
sessions regarding possible future applications and extensions of the tools.

Fun and Art

On Wednesday evening the participants took a well deserved break and visited
the nearby winery. A tour on the beautiful hills of the winery with an overview of
the history and state-of-the-art of wine making preceded the dinner. Discussions
about the selection of the picture that the seminar participants would try to do-
nate a share of, started at the dinner in the winery. Eventually Werner Rauber's
picture �Rotkohl 2� (�Red Cabbage�) was chosen, and 2 shares were donated by
the participants. Since the juice of red cabbage can be used as a home-made pH
indicator, turning red in acid and blue in basic solutions, it was considered to
by a good analogy to having an indicator for the tradeo� between precision and
run-time of an analysis.

Achievements of the Seminar

The seminar showed how broad the �eld of program analysis has grown over the
years. Traditionally used in optimizing compilers, program analysis has turned
into a major discipline with techniques and commercial tools supporting under-
standing, maintaining, and engineering of software. It often turned out that an
in-depth discussion of scalability requires further investigations. The scalability
of analysis techniques is a major issue as the size of software systems is rapidly
growing and the automatic analysis of those systems is becoming yet more im-
portant in future. Many questions were raised about scalability - to address the
scale of today's systems, analyses will have to be run as parallel programs in
future, posing themselves as problem of being scalable on multiple cores, but
also whether it can be applied to multiple parts of a system which may di�er in
structural properties of the code or even in used programming languages.

Raising awareness about the many faces of scalability is the major achieve-
ment of the seminar. As the seminar progressed, increasingly more questions
about scalability were raised, mostly asking for more extensive evaluations of

4 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

the methods & tools in future. Discussions about the need and development of
speci�c benchmarks for scalability were started and agreed to be continued past
the seminar by di�erent groups of the seminar. Carefully systematically designed
sets of test cases, accompanied by test cases from industry, was considered a good
setting for evaluating scalability.

Participation Statistics

The seminar was attended by 38 people from 11 countries, which were: Aus-
tralia (1), Austria (4), Denmark (1), Finland (1), France (4), Germany (7),
Great Britain (4), Hungary (1), Ireland (1), Korea (1), U.S.A. (13).

From Academia/Research Institutions 26 people were attending the seminar,
whereas from industry 12 people participated, representing 9 companies, which
were: AbsInt (Saarbrücken), Airbus (Toulouse), Berner & Mattner Systemtech-
nik (Berlin), Google Inc. (Mountain View), Grammatech Inc. (Ithaca), IBM
Research Center (Hawthorne), Microsoft (Redmond), Nokia (Helsinki), Robert
Bosch GmbH (Stuttgart), Sun Microsystems Lab (Brisbane).

Conclusion

The Dagstuhl seminar on �Scalable Program Analysis� was a tremendous success
with many fruitful discussions and new questions being raised. Several connec-
tions between industry and academia were formed and showed all signs that they
will �nd their continuation after the seminar. The seminar also showed that pro-
gram analysis and the question about scalability is cross-cutting many di�erent
communities. This was also re�ected by the diversity of the techniques presented
in talks and the tools as well. The cooperation of industry and academia, as be-
ing encouraged by many funding programs these days, will further help both
sides, to focus on new methods for addressing, characterizing, and comparing
scalability.

Scalable Program Analysis 5

Systematic Testing of Concurrent Programs with CHESS

Thomas Ball (Microsoft Corp. - Redmond, US)

In this talk, I'll present work by Madan Musuvathi and Shaz Qadeer of my group
on radically improving how we test multi-threaded concurrent programs. Using
ideas from direct model checking of executables, they have created an automated
tool called CHESS that systematically explores the thread schedules of a concur-
rent program. CHESS incorporates several novel algorithms including iterative
context bounding, which prioritizes the search to schedules with fewer context
switches �rst, and fair stateless model checking, which guarantees that the tool
will correctly handle programs that depend on fair scheduling to terminate and
will �nd all livelocks in �nite state programs. I will demonstrate a version of
CHESS I have created for .NET programs and talk about our vision for making
debugging of concurrent programs a �rst-class activity supported by all levels of
the software stack.

Keywords: Concurrency, threading, model checking, testing, debugging

Full Paper:
http://research.microsoft.com/projects/chess/

Value Flow Graph Analysis with SATIrE

Gergö Barany (TU Wien, AT)

Partial redundancy elimination is a common program optimization that attempts
to improve execution time by removing super�uous computations from a pro-
gram. There are two well-known classes of such techniques: syntactic and se-
mantic methods. While semantic optimization is more powerful, traditional al-
gorithms based on SSA from are complicated, heuristic in nature, and unable to
perform certain useful optimizations. The value �ow graph is a syntactic program
representation modeling semantic equivalences; it allows the combination of sim-
ple syntactic partial redundancy elimination with a powerful semantic analysis.
This yields an optimization that is computationally optimal and simpler than
traditional semantic methods.

This talk discusses partial redundancy elimination using the value �ow graph.
A source-to-source optimizer for C++ was implemented using the SATIrE pro-
gram analysis and transformation system. Two tools integrated in SATIrE were
used in the implementation: ROSE is a framework for arbitrary analyses and
source-to-source transformations of C++ programs, PAG is a tool for generat-
ing data �ow analyzers from functional speci�cations.

Keywords: Partial redundancy elimination, value �ow analysis, source-to-source
optimization

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1570

http://research.microsoft.com/projects/chess/
http://drops.dagstuhl.de/opus/volltexte/2008/1570

6 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

Architecture reconstruction and quality measurement in
telecom software - an experience report

Arpad Beszedes (University of Szeged, HU)

We present the source code analysis toolset Columbus, which has been developed
at the Software Engineering Department of the University of Szeged, Hungary
with cooperation of the Nokia Research Center (the owner of rights is Front-
EndART Ltd., a spin-o� company of the university). Columbus is used as part
of our methodology for quality assurance of IT systems, speci�cally quality as-
sessment based on source code, and architecture reconstruction, �aw detection.
Our industrial partners utilizing this technology range from telecommunications
software to �nancial systems, and other types of applications. Furthermore, we
participate in quality assurrance of di�erent open source projects as well.

One of our most important international partners is Nokia, with which many-
years R&D cooperation is maintained in various �elds including source code anal-
ysis, compiler optimization and embedded systems development in open source
environment. During the period of 1998-2001 the basic Columbus technology has
been developed, while in consecutive projects between 2005-2007 we performed
the analysis of di�erent Nokia software, including proprietary and open source
as well, for architecture reconstruction and quality assessment. In this talk, an
overview of the technology will be given and expreiences will be reported about
this particular industrial application.

Keywords: Source code analysis, quality assessment, architecture reconstruc-
tion, Columbus

Joint work of: Beszedes, Arpad; Riva, Claudio

Dependence Cluster Causes

Dave Binkley (Loyola College - Baltimore, US)

A dependence cluster is a maximal set of program components that all depend
upon one another. For small programs, programmers as well as static-analysis
tools can overcome the negative e�ects of large dependence clusters. However,
this ability diminished as program size increases. Thus, the existence of large de-
pendence clusters presents a serious challenge to the scalability of modern soft-
ware. Recent ongoing work into the existence and causes of dependence clusters
is presented. A better understanding of clusters and their causes is a precur-
sor to the construction of more informed analysis tools and ideally the eventual
breaking or proactive avoidance of large dependence clusters.

Keywords: Data Dependence, Control Dependence, Slice, Cluster

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1571

http://drops.dagstuhl.de/opus/volltexte/2008/1571

Scalable Program Analysis 7

Average Case Analysis of Some Elimination-Based
Data-Flow Analysis Algorithms

Johann Blieberger (TU Wien, AT)

The average case of some elimination-based data-�ow analysis algorithms is an-
alyzed in a mathematical way. Besides this allows for comparing the timing
behavior of the algorithms, it also provides insights into how relevant the under-
lying statistics are when compared to practical settings.

Keywords: Average case analysis, elimination-based data-�ow analysis algo-
rithms, reducible �ow graphs

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1572

Synthesis with Sketching and the Counterexample-Guided
Inductive Synthesis Algorithm

Rastislav Bodik (Univ. California - Berkeley, US)

The talk will explore how a programmer can (i) encode his insight into a syn-
thesizer and (ii) how to turn a veri�er into a synthesizer.

The talk is an overview of the project on program synthesis with sketching:
http://sketch.cs.berkeley.edu/wiki/

Keywords: Program synthesis, veri�cation, language design

Parfait - Designing a Scalable Bug Checker

Cristina Cifuentes (Sun Microsystems Laboratories - Brisbane, AU)

We present the design of Parfait, a static layered program analysis framework for
bug checking, designed for scalability and precision by improving false positive
rates and scale to millions of lines of code. The Parfait framework is inherently
parallelizable and makes use of demand driven analyses.

In this paper we provide an example of several layers of analyses for bu�er
over�ow, summarize our initial implementation for C, and provide preliminary
results.

Results are quanti�ed in terms of correctly-reported, false positive and false
negative rates against the NIST SAMATE synthetic benchmarks for C code.

Keywords: Static analysis, demand driven, parallelizable

Joint work of: Cifuentes, Cristina; Scholz, Bernhard

http://drops.dagstuhl.de/opus/volltexte/2008/1572

8 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1573

See also: Proceedings of the ACM SIGPLAN Static Analysis Workshop (SAW),
12 June 2008

A Scalable Technique for Characterizing the Usage of
Temporaries in Framework-intensive Java Applications

Bruno Dufour (Rutgers Univ. - Piscataway, US)

Framework-intensive applications (e.g. Web applications) heavily use temporary
data structures, often resulting in performance bottlenecks. Blended program
analysis enables practical, e�ective analysis of large framework-based Java ap-
plications for performance understanding. Blended analysis combines a dynamic
representation of the program calling structure, with a static analysis applied
to a region of that calling structure with observed performance problems. We
present an optimized blended escape analysis to approximate object lifetimes
and thus, to identify these temporary data structures and their uses. Empirical
results show that this optimized analysis on average prunes 37% of the basic
blocks in our benchmarks, and achieves a speedup of up to 8 times compared
to the original analysis. Newly de�ned metrics quantify key properties of tem-
porary data structures and their uses. A detailed empirical evaluation o�ers the
�rst characterization of temporaries in framework-intensive applications. The
results show that temporary data structures can include up to 12 distinct object
types and can traverse through as many as 14 method invocations before being
captured.

Keywords: Java, performance understanding, blended analysis

Joint work of: Dufour, Bruno; Ryder, Barbara; Sevitsky, Gary

Scalable pluggable types

Michael D. Ernst (MIT - Cambridge, US)

A type system is valuable only if it helps developers to �nd and prevent problems
in their programs. Progress in type systems has been hampered by a lack of
realistic evaluation: many interesting type systems have been proposed without
a demonstration of bene�ts in practice. The di�culty of building a robust and
scalable implementation of a type system may be part of the reason for the lack
of experimentation.

In order to help the research community to progress, and in particular to
help us evaluate our own proposed type systems, we have built a framework
for implementing custom (pluggable) type systems in the context of the Java

http://drops.dagstuhl.de/opus/volltexte/2008/1573

Scalable Program Analysis 9

language, as plug-ins to a Java compiler. Using the framework, a type system
designer can implement a new type system just by overriding a few methods, or
for simple type systems entirely declaratively. We have also designed extensions
to the Java syntax and class�le format that are planned for inclusion in Java 7.
These are crucial to the usability and backward compatibility of a pluggable
type system.

We have used our framework to build a set of type checkers for Java and to
evaluate the type systems they embody. Our checkers have been run on multiple
programs of more than 200 KLOC, and on many smaller ones. The experiments
in some cases validated our design and in other cases pointed out weaknesses.
These insights would have been impossible to achieve without using the type
systems in a realistic setting.

Full Paper:
http://groups.csail.mit.edu/pag/jsr308/

Snugglebug

Steve Fink (IBM TJ Watson Research Center - Hawthorne, US)

We describe a new project at IBM Research applying program analysis to im-
proving software quality for large Java applications. We are building a tool that
infers partial speci�cations and involves the user in a speci�cation feedback loop,
in order to acquire richer speci�cations to drive bug �nding and test case genera-
tion. The tool relies on symbolic underapproximate analysis to derive candidate
speci�cations, �nd bugs, and generate JUnit tests as concrete witnesses. This
talk will give an overview of our approach and discuss work-in-progress with
aggressive interprocedural symbolic analysis and test case generation respecting
object-oriented APIs.

Scalable Analyses via Machine Learning: Predicting
Memory Dependencies Precisely

Lars Gesellensetter (TU Berlin, DE)

Program analysis tackles the problem of predicting the behavior or certain prop-
erties of the considered program code. The challenge lies in determining the
dynamic run-time behavior statically at compile time.

While in rare cases it is possible to determine exact dynamic properties al-
ready statically, in many cases, e.g., in analyzing memory dependencies, one can
only �nd imprecise information.

To overcome this problem, we look at the dynamic run-time behavior and
use Machine Learning (ML) techniques to learn the relationship between static
program features and dynamic run-time behavior.

http://groups.csail.mit.edu/pag/jsr308/

10 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

ML yields highly scalable predictors, which are safely applicable when er-
roneous predictions merely have an impact on program optimality but not on
correctness. Once trained, these predictors can be used in a static compiler.

In this extended abstract, I present our approach to mitigate the impact of
the memory gap using ML techniques and speculative optimizations.

The memory gap denotes the fact that over the last decade, computer per-
formance is increasingly dominated by memory speed, which did not manage
to keep pace with the ever increasing CPU rates. We consider novel speculative
optimization techniques of memory accesses to reduce their e�ective latency. We
trained predictors to learn the memory dependencies of a given pair of accesses,
and use the result in our optimization to decide about the pro�tability of a given
optimization step.

Keywords: Program Analysis, Memory Dependencies, Speculative Optimiza-
tion, Machine Learning

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1574

Automatic inference of Java's non-null annotations

Thomas Jensen (IRISA - Rennes, FR)

We present a semantics-based automatic null pointer analysis for inferring non-
null annotations of �elds in object-oriented programs. The analysis is formulated
for a minimalistic OO language and is expressed as a constraint-based abstract
interpretation of the program which for each �eld of a class infers whether the
�eld is de�nitely non-null or possibly null after object initialization. The analysis
is proved correct with respect to an operational semantics of the minimalistic
OO language. This correctness proof has been machine checked using the Coq
proof assistant. Experiments with a prototype implementation for Java byte code
show that the analysis is capable of analysing large code bases such as Soot.

Data-Flow Analysis for Multi-Core Computing Systems: A
Reminder to Reverse Data-Flow Analysis

Jens Knoop (TU Wien, AT)

The increasing demands for highly performant, proven correct, easily maintain-
able, extensible programs together with the continuous growth of real-world pro-
grams strengthen the pressure for powerful and scalable program analyses for
program development and code generation. Multi-core computing systems o�er
new chances for enhancing the scalability of program analyses, if the additional
computing power o�ered by these systems can be used e�ectively. This, however,
poses new challenges on the analysis side. In principle, it requires program anal-
yses which can be easily parallelized and mapped to multi-core architectures. In

http://drops.dagstuhl.de/opus/volltexte/2008/1574

Scalable Program Analysis 11

this paper we remind to reverse data-�ow analysis, which has been introduced
and investigated in the context of demand-driven data-�ow analysis, as one such
class of program analyses which is particularly suitable for this.

Keywords: Multi-core computing systems, scalable program analysis, reverse
data-�ow analysis, demand-driven data-�ow analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1575

Program Analysis on Binaries in Industrial Practice

Florian Martin (AbsInt - Saarbrücken, DE)

AbsInt is active in the area of program analysis on binary executable code for
since years. The analyzers are used widely in area of safety critical systems like
in the avionics and automotive area.

The talk will present the challanges and some solutions which enabled the
analysis of large real systems.

Scalable instruction-level analysis for two security
applications

Stephen McCamant (MIT - Cambridge, US)

Commonly static analyses are sound by construction, and other aspects of their
design trade o� between precision and scalability; but that is not the only pos-
sible approach. I'll describe two analyses that were designed from the start to
scale to large and complex programs by doing a limited amount of work at the
instruction level. Of course, care is still needed to make them sound, and there
are still trade o�s involving precision or related goals. Though they share many
design principles with classic static analysis, the application areas are also a bit
di�erent: one is a static rewriting to add runtime sandboxing checks, and the
other is a mainly dynamic analysis (with some static aspects) for quantitatively
measuring information �ow. (Papers about these tools appeared/will appear in
Usenix Security 2006 and PLDI 2008 respectively.)

Keywords: Binary analysis, software-based fault isolation, secure information
�ow

Full Paper:
http://groups.csail.mit.edu/pag/pubs/pitts�eld-usenix2006-abstract.html

Full Paper:
http://groups.csail.mit.edu/pag/pubs/secret-max-�ow-pldi2008-abstract.html

http://drops.dagstuhl.de/opus/volltexte/2008/1575
http://groups.csail.mit.edu/pag/pubs/pittsfield-usenix2006-abstract.html
http://groups.csail.mit.edu/pag/pubs/secret-max-flow-pldi2008-abstract.html

12 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

See also: `Evaluating SFI for a CISC Architecture' by Stephen McCamant
and Greg Morrisett. In 15th USENIX Security Symposium, (Vancouver, BC,
Canada), August 2-4, 2006.; `Quantitative Information Flow as Network Flow
Capacity' by Stephen McCamant and Michael D. Ernst. In Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Imple-
mentation, (Tucson, AZ, USA), June 9-11, 2008.

Towards Distributed Memory Parallel Program Analysis

Daniel J. Quinlan (LLNL - Livermore, US)

Our work presents a parallel attribute evaluation for distributed memory parallel
computer architectures where previously only shared memory parallel support
for this technique has been developed. Attribute evaluation is a part of how
attribute grammars are used for program analysis within modern compilers.
Within this work, we have extended ROSE, a open compiler infrastructure, with
a distributed memory parallel attribute evaluation mechanism to support user
de�ned global program analysis required for some forms of security analysis
which can not be addresses by a �le by �le view of large scale applications.
As a result, user de�ned security analyzes may now run in parallel without
the user having to specify the way data is communicated between processors.
The automation of communication enables an extensible open-source parallel
program analysis infrastructure.

Keywords: Parallel computing, attribute evaluation, program analysis

Joint work of: Quinlan, Daniel J.; Barany, Gergö; Panas, Thomas

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1568

Source-To-Source Analysis with SATIrE: an Example
Revisited

Markus Schordan (TU Wien, AT)

Source-to-source analysis aims at supporting the reuse of analysis results sim-
ilar to code reuse. The reuse of program code is a common technique which
attempts to save time and costs by reducing redundant work. We want to avoid
re-analyzing parts of a software system, such as library code. In the ideal case the
analysis results are directly associated with the program itself. Source-to-source
analysis supports this through program annotations. Further more, to get the
best out of available software analysis tools, we aim at enabling the combination
of the analysis results of di�erent tools. In order to allow this, tools must be
able to process another tool's analysis results. This enables numerous applica-
tions such as automatic annotation of interfaces, testing of analyses by checking

http://drops.dagstuhl.de/opus/volltexte/2008/1568

Scalable Program Analysis 13

the results of an analysis against provided annotations, domain aware analysis
by utilizing domain-speci�c program annotations, and making analysis results
persistent as annotations in source code.

The design of the Static Analysis Tool Integration Engine (SATIrE) allows to
map source code annotations to its intermediate program representation as well
as generating source code annotations from analysis results that are attached
to the intermediate representation. The technical challenges are the design of
the analysis information annotation language, the bidirectional propagation of
the analysis information through di�erent phases of the internal translation pro-
cesses, and the combination of the di�erent analyses through the plug-in mecha-
nism. In its current version SATIrE targets C/C++ programs. In this paper we
present the approach of source-to-source analysis and show in a detailed example
analysis how we support this approach in SATIrE.

Keywords: Source-to-source analysis, ARAL, Annotation Language

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1569

Full Paper:
http://www.complang.tuwien.ac.at/markus/satire

Scalable Path Conditions In Dependence Graphs

Gregor Snelting (Universität Karlsruhe, DE)

Path Conditions are necessary conditions for information �ow between two pro-
gram points. They are useful for eg software reengineering or software security
analysis. Path conditions are generated from program dependence graphs. Naive
generation of path conditions does however not scale, in particular if it is sup-
posed to be context sensitive and object sensitive.

The talk recalls fundamentals of path conditions, presents algorithmic tech-
niques (based on interval analysis in PDGs and BDDs) to tame complexity,
describes precise path conditions for dynamic dispatch, and discusses examples
and case studies.

Keywords: Program dependence graphm path condition, security analysis,
information �ow control

See also: G. Snelting, T. Robschink, J. Krinke: E�cient Path Conditions in De-
pendence Graphs for Software Safety Analysis. ACM Transactions on Software
Engineering and Methodology 15(4), October 2006, pp. 410 - 457 .

http://drops.dagstuhl.de/opus/volltexte/2008/1569
http://www.complang.tuwien.ac.at/markus/satire

14 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

Airbus' Experience in static Analysis

Jean Souyris (Airbus - Toulouse, FR)

Airbus' centre of competence "Avionics and simulation products" uses static
analyzers on certi�ed avionics programs and plans to use more on the next
generation of avionics software products. This has been possible thanks to its
involvement in research projects together with labs like Pr. Cousot's one at Ecole
normale superieure de Paris.

Keywords: Avionics - Certi�cation - Abstract Interpretation

Static Program Analyses at Berner & Mattner

Joachim Wegener (Berner & Mattner Systemtechnik - Berlin, DE)

Thr presentation will give an overview on typical static analysis projects per-
formed for customers and the tools used. Experiences with existing tools will be
described and existing weaknesses explained.

Joint work of: Wegener, Joachim; Schmidt, Michael; Sthamer, Harmen

QVM: An E�cient Runtime for Detecting Defects in
Deployed Systems

Eran Yahav (IBM TJ Watson Research Center - Hawthorne, US)

Coping with software defects that occur in the post deployment stage is a chal-
lenging problem: bugs may occur only when the systems uses a speci�c con�gu-
ration and only under certain usage scenarios. Nevertheless, halting production
systems until the bug is tracked and �xed is often impossible.

Thus, developers have to try to reproduce the bug in laboratory conditions.
Often the reproduction of the bug consists of the lion share of the debugging
e�ort.

In this paper we suggest an approach to address the aforementioned problem
by using a specialized runtime environment (QVM, for Quality Virtual Machine).
QVM e�ciently detects defects by continuously monitoring the executions of
the production system. QVM enables the e�cient checking of violations of user-
speci�ed correctness properties, e.g., typestate safety properties, Java assertions,
and heap properties pertaining to ownership.

QVM is markedly di�erent from existing techniques for continuous monitor-
ing by using a novel overhead manager which enforces a user-speci�ed overhead
budget for quality checks. Existing tools for error detection in the �eld usually
disrupt the operation of the deployed system. QVM, on the other hand, provides

Scalable Program Analysis 15

a balanced trade o� between the cost of the monitoring process and the mainte-
nance of su�cient accuracy for detecting defects. Speci�cally, the overhead cost
of using QVM instead of a standard JVM, is low enough to be acceptable in
production environments.

We implemented QVM on top of IBM's production Java Virtual Machine (J9)
and used it to detect and �x various errors in real-world applications.

Keywords: Virtual machine, dynamic analysis, overhead management, software
quality

Joint work of: Yahav, Eran; Vechev, Martin; Arnold, Matt

Verifying Dereference Safety via Expanding-Scope
Analysis

Eran Yahav (IBM TJ Watson Research Center - Hawthorne, US)

This paper addresses the challenging problem of verifying the safety of pointer
dereferences in real Java programs. We provide an automatic approach to this
problem based on a sound interprocedural analysis. We present a staged expand-
ing-scope algorithm for interprocedural abstract interpretation, which invokes
sound analysis with partial programs of increasing scope. This algorithm achieves
many bene�ts typical of whole-program interprocedural analysis, but scales to
large programs by limiting analysis to small program fragments. To address cases
where the static analysis of program fragments fails to prove safety, the analysis
also suggests possible annotations which, if a user accepts, ensure the desired
properties.

Experimental evaluation on a number of Java programs shows that we are
able to verify 90% of all dereferences soundly and automatically, and further
reduce the number of remaining dereferences using non-nullness annotations.

Keywords: Null dereference, veri�cation, abstract interpretation

Joint work of: Loginov, Alexey; Yahav, Eran; Chandra, Satish; Fink, Stephen;
Rinetzky, Noam; Nanda, Mangala Gowri

SAFE / SAFE Mining / SALSA

Eran Yahav (IBM TJ Watson Research Center - Hawthorne, US)

This presentation summarizes the work of many people on a number of related
projects in IBM Research. In particular, this is a brief summary of our papers
from ISSTA'06, ISSTA'07 and ISSTA'08.

16 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

Keywords: Typestate, veri�cation, abstract interpretation, aliasing

Full Paper:
http://www.research.ibm.com/people/e/eyahav/publications.html

Scalable Shape Analysis For Systems Code

Hongseok Yang (Queen Mary College - London, GB)

Pointer safety faults in device drivers are the number one cause of crashes in
operating systems code. In principle, shape analysis tools can be used to prove
the absence of this type of error. In practice, however, shape analysis is not
used due to the unacceptable mixture of scalability and precision provided by
existing tools. In this talk, I will describe a new join operation for the separation
domain which aggressively abstracts information for scalability yet does not lead
to false error reports. The operator is a critical piece of a new shape analysis
tool that provides an acceptable mixture of scalability and precision for industrial
application.

Experiments with our tool on whole Windows and Linux device drivers
(�rewire, pci-driver, cdrom, md, etc.) represent the �rst working application
of shape analysis to whole industrial programs�and the beginning of the end
for the largest problem plaguing the correctness of systems code.

This is joint work with Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron
Cook, Dino Distefano and Peter O'Hearn.

Keywords: Shape Analysis, Program Veri�cation, Abstract Interpretation, Sep-
aration Logic

Joint work of: Yang, Hongseok; Lee, Oukseh; Berdine, Josh; Calcagno, Cris-
tiano; Cook, Byron; Distefano, Dino; O'Hearn, Peter

Taming Win32 Threads with Static Analysis

Jason Yue Yang (Microsoft Corp. - Redmond, US)

The battle against concurrency bugs poses a serious challenge across the soft-
ware industry. To help developers tackle concurrency issues, we have developed a
concurrency toolset based on static analysis technologies, comprising (1) an an-
notation language Concurrency SAL, 2) concurrency checkers EspC and Global
EspC, which employ single-function and cross-function analyses respectively, and
3) an annotation inference tool CSALInfer. In this talk, we describe how to use
this toolset to detect a variety of concurrency bugs including deadlocks, race
conditions, Win32 locking errors, and atomicity violations.

http://www.research.ibm.com/people/e/eyahav/publications.html

Scalable Program Analysis 17

Programmer-assisted program analyses

Daniel von Dincklage (Google Inc. - Mountain View, US)

Modern object-oriented languages have complex features such as dynamic class
loading that make analyses di�cult.

In practice programmers rarely use these complex features in their full gen-
erality. As a consequence, analyses that would produce precise results with the
author's intended semantics are often inapplicable since the analyses need to
handle the full generality of these features.

A programmer can sidestep this problem by placing annotations into his
program: Annotations communicate the intended semantics to the analyses and
enable analyses that would otherwise be imprecise.

In practice, using annotations is di�cult because the programmer must guess
(i) which annotations to place and (ii) where to place the annotations. Thus, it
is unlikely that he will guess correctly and place an annotation that actually
makes an analysis more preicse.

We present a system that makes it feasible for a programmer to improve
the precision of analyses and thus speed up his program by placing annotations.
Our system �rst recommends which analyses the programmer should enable and
then guides the programmer towards which annotations he should place to enable
many optimizations.

Keywords: Annotation, optimization, analysis

	08161 Abstracts Collection Scalable Program Analysis --- Dagstuhl Seminar ---
	 Florian Martin, Hanne Riis Nielson, Claudio Riva and Markus Schordan

