Scalable Analyses via Machine Learning:
Predicting Memory Dependencies Precisely

Lars Gesellensetter

Software Engineering for Embedded Systems,
Institute for Software Engineering and Theoretical Computer Science,
Technical University of Berlin, FR 5-6,
Franklinstr. 28/29, 10587 Berlin, Germany
lgeselle@cs.tu-berlin.de
http://pes.cs.tu-berlin.de/

Abstract. Program analysis tackles the problem of predicting the be-
havior or certain properties of the considered program code. The chal-
lenge lies in determining the dynamic run-time behavior statically at
compile time. While in rare cases it is possible to determine exact dy-
namic properties already statically, in many cases, e.g., in analyzing
memory dependencies, one can only find imprecise information. To over-
come this problem, we look at the dynamic run-time behavior and use
Machine Learning (ML) techniques to learn the relationship between
static program features and dynamic run-time behavior. ML yields highly
scalable predictors, which are safely applicable when erroneous predic-
tions merely have an impact on program optimality but not on correct-
ness. Once trained, these predictors can be used in a static compiler.

In this extended abstract, I present our approach to mitigate the impact
of the memory gap using ML techniques and speculative optimizations.
The memory gap denotes the fact that over the last decade, computer
performance is increasingly dominated by memory speed, which did not
manage to keep pace with the ever increasing CPU rates. We consider
novel speculative optimization techniques of memory accesses to reduce
their effective latency. We trained predictors to learn the memory depen-
dencies of a given pair of accesses, and use the result in our optimization
to decide about the profitability of a given optimization step.

Keywords. Program Analysis, Memory Dependencies, Speculative Op-
timization, Machine Learning

1 Overview

Program Analysis tackles the problem of predicting the behavior or certain prop-
erties of programs. This is inherently difficult for static analyses, since they have
to determine the dynamic run-time behavior statically at compile time. While in
special cases, static analyses can predict the dynamic behavior exactly, most of
the time precision has to be sacrificed for scalability, in order to process real-life

Dagstuhl Seminar Proceedings 08161
Scalable Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2008/1574



2 L. Gesellensetter

software. For analyses that have to be safe (i.e., must not err), this means that
the result is an overapproximation of the actual behavior.

For some applications, this may suffice. For the analysis of memory depen-
dencies (also known as alias analysis), however, the imprecision of the analysis
has a significant impact on optimization potential and therefore on run-time per-
formance. Hence, very precise analyses are vital for good performance results.
This is especially important in presence of the Memory Gap.

The Memory Gap, also known as Memory Wall, describes the fact, that,
while both CPU and memory speed have been growing exponentially over the
past decades, the speed of memory did not manage to keep pace with that of
CPUs. As a consequence, the CPU may have to wait several hundred cycles until
a value has been fetched from memory. This has dramatic consequences on the
run-time performance, which is now increasingly limited by memory accesses (as
opposed to by CPU clock rate). This development has already been predicted
in the 90s. However, on modern general-purpose architectures, where programs
can process huge and complex data, the processor still can stall a huge fraction
of its running time due to the memory gap.

This shows that compiler optimizations for memory accesses are heavily re-
quired. However, the imprecise results of alias analyses pose severe restrictions
on the optimization. The problem is that the analyses have to consider all pos-
sible run-time behavior (whether or not it may actually occur). This directly
motivates the use of speculative optimization techniques. The idea is to ignore
unlikely dependencies speculatively, which yields more potential for optimization
and, eventually, also for performance improvements. Of course, it is important
to cope with the case that an ignored dependency does occur at run-time. This
has to be detected by specific checks, which will trigger in the positive case the
execution of so-called recovery code, which will re-issue instructions as neces-
sary to ensure program correctness. Since misspeculation poses an overhead, it
is important to derive a precise cost model to decide whether or not speculation
should be applied at a certain point. This requires precise information about
memory dependencies.

To this end, state-of-the-art alias analyses are not sufficient for two reasons:
First, as mentioned above, they are too imprecise w.r.t. the false dependencies
reported. Second, they only have a binary or at most ternary notion of depen-
dency: absent, maybe present, present. This is too coarse for the optimization.
What we need is an analysis that reports the degree of a given memory de-
pendency, e.g. as a number in the interval [0,1]. This degree can be thought
of as an annotation in the Data Dependency Graph. Since we consider specula-
tive optimizations, wrong analysis results are admissible. Hence we can trade off
correctness of the analysis for precision.

We propose to use ML techniques to yield the dependency analysis. Super-
vised learning allows us to learn the relationship between features or properties
of an object and its associated class. In our case, the features are the properties
of two instructions which may access to the same memory, and the class is the
resulting dependency degree (e.g., classes from 0 to 10). In training, a model



Scalable Analyses via Machine Learning 3

is built, which represents the encountered data with minimal error. This model
can then be used to predict dependencies for new, unseen data. We simply have
to collect the training data by profiling, train an ML classifier, and eventually
we get an oracle for memory dependencies. This oracle can then be used by our
speculative optimization to improve program performance.

We collected the training data for a set of benchmarks and performed pairwise
validation, using established ML techniques for classification learning. Prelimi-
nary results show that the dependency degree can be predicted with a low error
for unseen data. The next step which we are currently working on is to feed this
information into the speculative optimization and to measure the improvement
gained from the oracle. We expect that this will significantly mitigate the im-
pact of the memory gap, since the latencies of expensive loads will be masked
by other instructions.



	Scalable Analyses via Machine Learning: Predicting Memory Dependencies Precisely
	Lars Gesellensetter 



