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Abstract. We address graph decomposition problems that help the hy-
brid visualization of large graphs, where different graphic metaphors
(node-link, matrix, etc.) are used in the same picture. We generalize
the X-graphs of Y-graphs model introduced in [1] to formalize the prob-
lem of automatically identifying dense subgraphs ()-graphs, clusters)
that are prone to be collapsed and shown with a matricial representa-
tion when needed. We show that (planar, K3s)-recognition, that is, the
problem of identifying K5 subgraphs such that the graph obtained by
collapsing them is planar, is NP-hard. On the positive side, we show
that it is possible to determine the highest value of k such that G is a
(planar,k-core)-graph in O(m + nlog(n)) time.

Keywords. graph drawing, X'-graphs of Y-graphs, visualization of large
graphs.

1 Introduction

Diverse research fields as bioinformatics and social sciences point out that the
visualization and exploration of large graphs are key steps for the analysis of
the large amount of data that is nowadays available in electronic form. Such a
task, however, is still an elusive goal. In particular, it is difficult to accomplish
with standard graph drawing techniques, since the usual node-link represen-
tation, where entities are mapped to nodes and relations are mapped to links
between them, is often unable to convey both the high-level structure of the
graph (context) and its atomic details (focus).

* Work on this problem began at Dagstuhl Seminar No. 08191 “Graph Drawing with
Applications to Bioinformatics and Social Sciences”, May 2008.
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A recent trend is that of recurring to hybrid representations, where part of
the information is conveyed with the usual node-link metaphor and part of it
is conveyed by some other means, such as adjacency matrices, which are more
effective to represent very dense subgraphs [2]. This approach, although promis-
ing, urges for the automatic identification of those subgraphs that are prone to
be represented in a succinct way, a task that would be otherwise left to the user.

In this paper we tackle from a rigorous graph theoretic perspective the prob-
lem of identifying subgraphs (clusters) that are responsible for the visual com-
plexity of the drawing. We gather models and results from the literature and
add new pieces to fill in the theoretic scenario. Given a graph G = (V, E), we
consider both a “strong” model where the whole vertex set V' has to be parti-
tioned into clusters [1], and a generalization of it, that we call “weak” model,
where the vertex-disjoint clusters are not requested to be a partition of V.

In Section 2 we give basic definitions about (X', )-graph decompositions and
review known results. Section 3 is devoted to some special cases of the problem
where graphs of bounded size are involved in the strong model decomposition.
Section 4 contains a reduction from the Planar 3-Satisfiability problem [3] to
prove that it is NP-hard deciding whether a graph becomes planar by collapsing
some K5 vertex-disjoint subgraphs. Section 5 describes how to find the maximum
k such that there exists subgraphs of coreness k, which, when collapsed, yield a
planar graph. Finally Section 6 contains our conclusions.

2 Background

Given two graph classes X and Y, a graph G = (V, E) is an X -graph of Y-graphs
(or (X,Y)-graph, for short) if a family Vi, Vs, ..., V), of disjoint subsets of V,
called clusters, can be identified, such that:

1. every cluster induces a graph belonging to class ), and
2. the reduced graph G* obtained from G by collapsing each cluster into a single
vertex and replacing multiple edges with a single one is a graph of class X.

If subset Vq, V5, ...V}, are requested to be a partition of V', that is, if we add
the constraint that V=1, UVoU- - UV}, then we call G a strong (X, ))-graph,
otherwise we call G a weak (X,))-graph or, simply, an (X, ))-graph. The strong
model of X-graph of Y-graphs, also known as two level clustered graphs [4,5,6],
was introduced in [1].

Both for the strong model and for the weak one, by considering different fam-
ilies for X- and Y-graphs one obtains different (X', ))-decomposition problems
which have diverse importance with respect to applications or to the insight into
graph-theoretic decomposition problems.

Only for the strong model it makes sense considering the case when X-graphs
are general graphs, that is, when they are not constrained, since with such a
hypothesis any graph is an (X, ))-graph in the weak model. More generally,
for their impact on applications it is worth exploring cases when X-graphs are
“low-density” graphs; planar graphs; connected graphs with bounded or specified
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number of nodes; and directed acyclic graphs. Also, the cases when X-graphs
are trees, paths, cycles, and bounded size graphs are interesting from a more
theoretic perspective.

Similarly, regarding the families of )-graphs, we signal as important for ap-
plications the cases when )-graphs are “high-density” graphs, as, for exam-
ple, graphs with high clustering coeflicient; k-cores; cliques; complete bipartite
graphs; k-connected graphs; strongly connected digraphs; and stars. We recall
that the clustering coefficient of a graph G = (V, E) is defined as %, and
that a graph has core k if all its vertices have degree at least k.

Again, from a more theoretic perspective, the cases when Y-graphs are trees,
paths, cycles, and bounded size graphs are interesting.

X-graphs
Y-graphs tree non-trivial path | single k-tree ‘ single k-star
paths NP-complete [5] NP-complete [6]
cycles NP-complete [5] NP-complete [6]

bounded paths| Polynomial [5]
]

bounded cycles| Polynomial [5

Table 1. Known results for paths and cycles V-graphs in the strong model.

Table 1 summarizes known results in the strong model when )-graphs are
paths or cycles. In [5] it is shown that deciding if it is possible to collapse paths or
cycles in such a way that the reduced graph is a tree is NP-complete. Conversely,
if the length of the paths (cycles) is bounded by a constant the problem is
polynomial [5]. In [6] it is proved that, for a given integer k > 2, it is NP-complete
to decide whether or not a graph is a path of length k — 1 of paths (cycles), and
that it is NP-complete to decide whether or not a graph is a k-star or a k-clique
of paths (cycles). In contrast, in [6] it is shown that k-graphs of paths (cycles)
can be recognized in polynomial time when the inputs are restricted to graphs
of bounded treewidth.

X-graphs
Y-graphs | general graph | planar graph 3-cycle cycle
cliques NP-hard [7,4] |[NP-hard [1]|Polynomial if diameter > 3 [1]
3-cliques |NP-complete [§]

Table 2. Known results for cliques )-graphs in the strong model.
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Table 2 summarizes known results when Y-graphs are cliques in the strong
model. Recognizing planar graphs of cliques is NP-hard [7,4]. This problem stays
NP-complete even if the planar graph is restricted to be a cycle of length three,
although for cycles of length greater than 5 the problem is polynomial [1].

X-graphs
Y-graphs tree bounded size
cliques NP-hard (Sec. 3)
bounded size|O(n) (Sec. 3)| O(1) (Sec. 3)

Table 3. Results discussed in this paper for the strong model.

Table 3 summarizes results discussed in this paper for the strong model. We
show that while considering bounded size Y-graph may yield to efficiently de-
cidable (X,))-graphs, for example when ) is the class of trees, on the other
hand, having a bounded size X-graph does not necessarily make the correspond-
ing recognition problem easier (recognizing a bounded size graph of cliques is
NP-hard).

Regarding the weak model introduced in this paper, we explored some cases
when dense Y-graph are involved (see Table 4). In particular, we observe that
identifying cliques in large graphs may lead to a very effective strategy for infor-
mation visualization. In fact, when the user is able to tell that a subset of nodes
is a clique, its internal edges are understood and do not need to be explicitly dis-
played. Unfortunately, recognizing (planar, K5)-graphs is NP-hard (Section 4).
This result parallels the analogous result for the strong model [7,4].

The k-core of a graph G(V, E) is the graph obtained by recursively removing
vertices of degree less than k. Let n and m be the number of vertices and edges
of G, respectively. In Section 5 we show that there exists an O(m + nlog(n))
algorithm to find the maximum k such that the reduced graph obtained by
collapsing each connected component of the k-core of G is planar.

X-graphs
Y-graphs planar graph
5-cliques NP-hard (Sec. 4)
k-core graphs (max k)|O(m + nlog(n)) (Sec. 5)

Table 4. Results discussed in this paper for the weak model.
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3 Bounded-size Graphs

Both from a theoretical perspective and from a more practical one, it would be
interesting to explore the case when the X'-graphs or the )-graphs involved have
bounded size. In this section we show a positive and a negative result for the
strong model. On the positive side, we show that it is easy to decide whether
the vertices of a given graph can be partitioned into bounded-size clusters such
that their collapse yields a tree.

Theorem 1. There is an O(n) algorithm to recognize whether or not the vertices
of a graph can be partitioned into bounded-size clusters such that the reduced
graph is a tree.

Proof sketch: Let G(V,E) be a graph such that a family of disjoint subsets
Vi,Va,...,V of V, with |V;| < k, can be identified so that the reduced graph
G* is a tree. Observe that G has tree-width at most k. The proof of Theorem 2
in [5] can be adapted to this case. O

On the negative side, we show that by restricting to bounded size X-graphs
the recognition problem in the strong model can still be NP-hard for certain
classes of Y-graphs.

Theorem 2. It is NP-hard to decide whether or not the vertices of a graph can
be partitioned into cliques such that the reduced graph has bounded-size.

Proof sketch: Consider problem Partition into cliques (see, for example, Problem
GT15 of [8]). The instance of such a problem is a graph G = (V,E) and a
positive integer K < |V|. The question is whether the vertices of G can be
partitioned into k < K disjoints sets Vi, Vo, ...,V such that, for 1 <i < k, the
subgraph induced by V; is a complete graph. This problem, also called Clique
cover, is proved to be NP-complete by a reduction of Graph k-colorability [8].
A reduction from Graph 3-colorability with the additional constraint that the
graph is connected can be used to prove the statement. O

4 Planar Graphs of Cliques

Recognizing a planar graph of cliques is NP-hard in the strong model [7,4]. In
this section we show that (planar, K5)-recognition is NP-hard also in the weak
model.

Theorem 3. It is NP-hard to decide whether or not a graph can be made planar
by collapsing vertex-disjoint Ks5 subgraphs.

To prove the theorem we use a reduction from the Planar 3-Satisfiability
problem [3]:
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Fig. 1. An instance of PLANAR 3SAT is composed by a 3SAT formula with all
positive literals, such as (x1 V xa V x3) A (22 V 23V 24) A (1 V 23 V 25), and a
corresponding planar graph, represented in the figure.

Problem: Planar 3-Satisfiability (P3SAT)

Instance: A set of clauses cq,...,c¢, each one having three literals from
a set of Boolean variables x1,...,x,. A plane bipartite graph
G(Va, Vg, E) where nodes in V4 correspond to the variables while
nodes in Vp correspond to the clauses (hence, |V4| = n and
|[Vi| = m). Edges connect clauses to the variables of the literals
they contain. Moreover, G(Va, Vg, E) is drawn without intersec-
tions on a rectangular grid of polynomial size in such a way that
nodes in V4 are arranged in a horizontal line that is not crossed
by any edge (see Fig. 1).

Question: Can truth values be assigned to the variables x4, ..., x, such that
each clause has at least one true literal?

First, we first describe how to construct the instance of the (planar,Kj5)-
recognition problem starting from an instance of the P3SAT problem. Second,
we show that the first problem admits a solution if and only if the second does.

Suppose Ip3sar is an instance of the P3SAT problem with n Boolean vari-
ables and m clauses. The corresponding instance I(,ianar,i5) 18 built by glueing
together variable gadgets and clause gadgets, linked by transmission gadgets and
optional-switch gadgets.

4.1 The Transmission Gadget

The transmission gadget is the basic tool of the whole construction and is also
used to transmit a truth value from variable gadgets to clause gadgets. As such,
it has the property of admitting two different states. Fig. 2.a shows a section of
the transmission gadget, which is composed by a sequence of K5’s each sharing
two vertices with the following K5 and other two vertices with the preceding K.
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The remaining forth vertex is used to form a path that links together all K3’s
in even position (odd-position) of the sequence.

Fig. 2. The transmission gadget (a) transmitting a true value (b) and trans-
mitting a false value (c).

Conventionally, we say that a transmission gadget transmits a true value
(transmits a false value, respectively) when its K5’s in even position (odd posi-
tion, respectively) are collapsed. Figs. 2.b and 2.c show the transmission gadget
when transmitting a true value and a false value.

In order for the reduced graph to be planar, each K5 must be either collapsed
or adjacent to a collapsed K5 in such a way that, after the adjacent Kj is
collapsed, the removal of multiple edges removes the Kj itself from the graph.
Fig. 3 shows that in order to obtain a planar reduced graph, either all K5’s in even
position or all K5’s in odd position need to be collapsed (small pentagons in the
figure represent collapsed K3’s). In other words, the property of transmitting
a true or false value is a global property for the transmission gadget, that
is, a transmitted true value can not be changed into a false value without
introducing a non-planarity.
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Fig. 3. The transmission gadget can not change the transmitted value from true
into false or vice versa (a). In fact, in this case the reduced graph has a Kj
subdivision and hence is not planar (b).

4.2 The Variable Gadget

The wariable gadget is built by closing a transmission gadget into a cycle (see
Fig. 4). Since either K5’s in even position or K5’s in odd position can be col-
lapsed to yield a planar reduced graph, the variable gadget admits two states,
corresponding to the two truth values for the corresponding Boolean variable.

T /FAT/RANT/RANT/RANT/RNT /R 7
F F
TAF/ s \F /T \F/s\F /1 \F /4 \F/ T

Fig. 4. The variable gadget is composed by a transmission gadget closed into a
cycle. When T-labeled K5 are collapsed its value is true. When F-labeled Kj
are collapsed its value is false.

4.3 The Junction Gadget

The junction gadget is used to attach to a variable gadget in order to extract its
truth value and transmit it towards the clause gadgets. Fig. 5 shows the junction
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Fig. 6. The junction gadget transmitting a true value.

gadget, where the sequence of K5’s in the lower part of the figure corresponds to
the portion of the variable gadget to which the junction gadget is attached, and
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Fig. 7. The junction gadget transmitting a false value.

Fig. 8. The junction gadget changing the transmitted true value to a false
value. A non-collapsible K5 yields non-planarity.

the sequence of K35’s at the top of the figure is the starting point of a transmission
gadget that heads towards the clause gadget.

Figs. 6 and 7 show that the reduced graph is planar if the truth value ex-
tracted from the variable gadget is coherent the the truth value of the transmis-
sion gadget heading towards the clause gadget. Conversely, Figs. 8 and 9 show
that if such truth values are not coherent the reduced graph is not planar. In
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Fig. 9. The junction gadget changing the transmitted false value to a true
value. A K5 subdivision yields non-planarity.

fact, the K5 drawn with thick lines in Figs. 8 can not be collapsed, since two of
its vertices are, in their turn, collapsed K5. Analogously, the K5 subdivision of
Fig. 9 can not be removed from the reduced graph, since subdivisions can not
be collapsed.

4.4 The Optional-Switch Gadget

The optional-switch gadget is used to weaken the constraints on some trans-
mission gadget. Namely, the role of optional-switch gadgets is that of allowing
some transmission gadgets to switch from a true state to a false state, but
not allowing the opposite, that is to switch from a false state to a true state.
Details on where to place optional-switch gadgets are given in Section 4.5 when
clause gadgets are described.

The optional-switch gadget, shown in Fig. 10.a, is obtained from the trans-
mission gadget by removing some edges. While Fig. 10.b shows that it allows to
change a transmitted true value into a false value, Figs. 11.a and 11.b show
that a transmitted false value can not be changed into a true value without
introducing a non-planarity in the reduced graph.

Of course, a similar optional-switch gadget can be built that allows a false
value to be switched into a true value but not wvice versa. In fact, it suffice
flipping the optional-switch gadget of Fig. 10.a around the horizontal axis. We
call this version of the gadget negative optional-switch gadget, and the basic
version of the gadget positive optional-switch gadget.
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Fig. 10. The optional switch gadget (a) allows a transmitted true value to be
changed into a false value (b). Observe that, although the drawing in (b) is
not planar, the graph represented can be easily drawn without intersections.

4.5 The Clause Gadget

Consider a clause with three literals (I3 A ly Al3) from three Boolean variables
xr1, T2, and x3. By using junction gadgets, we attach three transmission gadgets
to the variable gadgets corresponding to x1, x2, and x3, respectively. If [;, with
i € {1,2,3}, is a non-negated (negated, respectively) literal of x;, we insert a
positive optional-switch gadget (negative optional-switch gadget, respectively)
into the transmission gadget before it reaches the clause gadget. Hence, we can
assume that the clause gadget has at most a single true literal. If more than
one transmission gadget corresponding to a true literal arrives a clause gadget,
we can use the optional-switch gadgets to change the values of all but one true
literals.

Fig. 12 show the construction for the clause gadget. The clause gadget con-
sists of a Ko which shares two vertices with the “last K5” of each transmission
gadget. Here, by “last K5” of the transmission gadget of literal [;, we mean a
K5 in odd position if [; is the non-negated literal of z;, and a K5 in even posi-
tion if [; is the negated literal of z;. Hence, if literal I; is true, the last K5 of
its transmission gadget which attaches to the Ky is not collapsed in any planar
drawing of the reduced graph.

Fig. 13 shows that if all literals are false, that is, if all the K5 attached to
the Ky are collapsed, then a non-collapsible Kg is part of the reduced graph,
which is therefore non-planar.
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Fig. 11. The optional switch gadget does not allow a transmitted false value
to be changed into a true value. When the change happens between the Kj
labeled b and the K5 labeled e of Fig. 10(a), the K3 3 subdivision identified by
the vertices into squares and circles implies non-planarity (a). Also, when the
change happens between the K5 labeled d and that labeled g, a K3 3 subdivision
implies non-planarity of the reduced graph (b).

Conversely, Fig. 14 shows that if a single literal is true, that is, if the last K5
of its transmission gadget is not collapsed, a K5 can be collapsed to transform
the clause gadget into a triangle yielding a planar reduced graph (see Fig. 15).

4.6 Proof of Theorem 3

By using the gadgets given in the previous sections, starting from an instance
Ipgsar of the P3SAT problem we build an instance I(,anar, i) Of (planar, Ks)-
recognition. Based on such construction Theorem 3 can be proved by showing
that the Ip3sar instance admits a solution if and only if the I(pjanar, i) instance
admits a solution and that the whole construction can be obtained in polynomial
time.

Namely, given a truth assignment for the Boolean variables that satisfies
instance Ip3sar, we determine the state of each variable gadget, collapsing K5’s
accordingly. We select a true literal for each clause, and collapse the last K5’s of
the transmission gadgets corresponding to unselected literals of the same clause.
Therefore, each clause gadget admits a final K5 collapse that will transform it
into a triangle. The truth values propagate from the variable gadgets towards
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complete graph
with these
nine nodes

Fig. 12. The clause gadget for clause (z V y V —z). Before arriving the clause
gadget, the transmission gadgets for variables x and y have a positive optional-
switch gadget inserted, and the transmission gadget for variable z has a negative
optional-switch inserted. Therefore, if variables x and y are true, they may arrive
the clause gadget with true or false values. If variable z is false, it may arrive
the clause gadget with a true or a false value.

the clause gadgets possibly taking advantage of the optional-switch sections. The
obtained reduced graph is planar.

Conversely, suppose to have decided that [(pianar i5) 18 planar when certain
K5’s are collapsed. Observe that each clause gadget is adjacent to a non-collapsed
last K5 corresponding to a true literal. Determine the corresponding truth as-
signment. The transmission gadgets (each one with its optional-switch gadget
inserted) guarantees that if a literal is true for a clause, the corresponding vari-
able gadget is coherently collapsed into a true variable gadget. Hence, the truth
assignment determined by the true literals satisfies instance Ipsgar.

5 Planar Graphs of k-Cores

A graph G(V, E) is a (planar,k-core)-graph in the weak model if a family V;, V5, . ..

of disjoint subsets of V' can be identified, such that every cluster induces a graph
with coreness k£ and the reduced graph obtained by collapsing the clusters is
planar.

It is trivial to observe that any graph is a (planar,k-core)-graph for some k.
In fact, any graph is a (planar,1-core)-graph. The following lemma holds.

7Vh
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Fig. 13. The clause gadget when all literals are false, that is, when x = false,
y = false, and z = true. The Kj yields non-planarity for the reduced graph.
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Fig. 14. The clause gadget when one literal is true (x = true, y = false, and
z = true). A further K5 can be collapsed.

Lemma 1. A (planar, k-core)-graph is also a (planar, (k-1)-core)-graph.

Proof sketch: Let G(V, E) be a (planar, k-core)-graph. Consider the graph G7,
obtained by collapsing k-cores and removing multiple edges and the analogous
graph G} _, obtained by collapsing (k-1)-cores. Observe that Gj_; can be ob-
tained from G} by contracting some edges and removing self-loops. As edge-
contraction does not increase the genus of a graph, the planarity of G} implies
the planarity of G_;. Hence, G is also a (planar, (k-1)-core)-graph. d
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Fig. 15. The clause gadget when one literal is true (x = true, y = false, and
z = true). After contraction the resulting graph is planar.

Observe that higher values of k correspond to smaller clusters. Hence, it is
interesting for applications searching for the maximum & such that G(V, E) is
a (planar,k-core)-graph, which corresponds to searching for the smaller clusters
such that the reduced graph is planar.

Theorem 4. Let G(V, E) be any graph. It is possible to determine the highest
value of k such that G is a (planar,k-core)-graph in O(m + nlog(n)) time, with
n=1|V| and m = |E|.

Proof sketch: Compute the core number of each vertex. This operation can be
performed in O(m) time. Rearrange the adjacency lists of all vertices based on
decreasing core numbers. This operation can also be performed in O(m) time by
inserting all entries into a single array, sorting them in linear time, for example
with a bucket sort, and reinserting them back into the adjacency lists. Perform a
binary search for k € [1,n] combined with a planarity test on the reduced graph.
The latter operation can be performed in O(nlog(n)) time. O

6 Conclusions

We addressed several decomposition problems in the X'-graph of )-graph model,
where subgraphs of a specified type ) have to be identified with the purpose
of collapsing them and yielding a reduced graph of type X. We generalized
the definition of (X, ))-graph given in [1] by considering both the case when
clusters are a partition of the vertices of the input graph (strong model) and the
case when clusters are only required to be disjoint subsets of the vertices (weak
model).
We showed both positive and negative results.
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On one hand, we showed that it is NP-hard to decide whether or not a graph
is a bounded-size graph of cliques in the strong model, and that it is NP-hard
to decide whether or not a graph is a planar graph of K5 in the weak model.

On the other hand, we showed that there is a linear time algorithm to rec-
ognize whether or not a graph G is a tree of bounded-size graphs in the strong
model and there is an O(m + nlog(n)) time algorithm to determine the highest
value of k such that G is a (planar,k-core)-graph in the weak model. We think
that the latter result is promising for applications that are based on hybrid
visualization techniques.
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