Storage and Retrieval of Individual Genomes
(Extended Abstract)

Veli Mékinen* Gonzalo Navarro! Jouni Sirén* Niko Valiméaki*

Abstract

A repetitive sequence collection is one where portions of a base sequence of length
n are repeated many times with small variations, forming a collection of total length
N. Examples of such collections are version control data and genome sequences of
individuals, where the differences can be expressed by lists of basic edit operations.
Flexible and efficient data analysis on a such typically huge collection is plausible
using suffix trees. However, suffix tree occupies O(N log N) bits, which very soon
inhibits in-memory analyses. Recent advances in full-text self-indezing reduce the
space of suffix tree to O(N log o) bits, where o is the alphabet size. In practice, the
space reduction is more than 10-fold for example on suffix tree of Human Genome.
However, this reduction remains a constant factor when more sequences are added to
the collection

We develop a new self-index suited for the repetitive sequence collection setting.
Its expected space requirement depends only on the length n of the base sequence and
the number s of variations in its repeated copies. That is, the space reduction is no
longer constant, but depends on N/n.

We believe the structure developed in this work will provide a fundamental basis
for storage and retrieval of individual genomes as they become available due to rapid
progress in the sequencing technologies.

1 Introduction

Self-indexing [9, 5, 24, 19] is a new proposal for storing and retrieving sequential data. The
idea is to represent the text (a.k.a. sequence or string) compressed so that random access
to the content of the text is maintained, and pattern retrieval queries on the content of
the text are supported as well. The approach becomes especially interesting when applied
to dynamic collections of texts [3, 15].

A special case of a text collection is one which contains several versions of one or more
base sequences. Such collections are not uncommon; consider for example the requirements
for a standard wversion control system. An analogy to the storage and retrieval of version

*Department of Computer Science, University of Helsinki, Finland.
{vmakinen, jltsiren,nvalimak}@cs.helsinki.fi. VM and NV funded by the Academy of Finland
under grant 119815. JS funded by the Research Foundation of the University of Helsinki.

TDepartment of Computer Science, University of Chile, Chile. gnavarro@dcc.uchile.cl. Partially
funded by Millennium Institute on Cell Dynamics and Biotechnology (ICDB), Grant P05-001-F, Mideplan,
Chile.

Dagstuhl Seminar Proceedings 08261
Structure-Based Compression of Complex Massive Data
http://drops.dagstuhl.de/opus/volltexte/2008 /1674

control data is soon becoming reality in the field of molecular biology. Once the DNA
sequencing technologies become faster and more cost-effective, it may be that in the near
future the sequencing of individual genomes becomes a feasible task [4, 12, 21]. With
such data in hand, many fundamental issues become of top concern, like how to store,
say, 10,000 Human Genomes not to speak about analyzing them. For the analysis of
such collections of biological sequences, one would clearly need to use some variant of a
generalized suffiz tree [11] as that provides a variety of algorithmic tools to do analyzes in
linear or near-linear time. The memory requirement of such solution is unimaginable with
current random access memories and also challenging in permanent storage.

Self-indexes should, in principle, cope well with genome sequences as they contain high
amounts of repetitive structure. In particular, as the main building blocks of compressed
suffix trees [25, 23, 22, 7] they enable compressing the collections in consideration close
to their high-order entropy and enabling flexible analysis tasks to be executed. However,
there is a fundamental problem with the fact that the high-order entropies are defined by
the frequencies of symbols in their fixed-length contexts; these contexts do not change at
all when more identical sequences are added to the collection. Hence, these self-indexes
are not at all able to exploit the fact that the texts in the collection are highly similar.
Also, most self-indexes contain significant sub-linear terms that disappear very slowly with
the collection size growth.

In this paper, we propose a new self-index, that is suitable for storing highly repetitive
collections of texts, and a new compressed suffix tree based on it. Our scheme can also be
thought of as a self-index for a given multiple alignment of a sequence collection, where
one can retrieve any part of any sequence as well as make queries on the content of all
sequences aligned. The paper is structured as follows. Section 2 introduces the basic
concepts and goes through the related literature. Section 3 derives the bounds for the
backbone of the new self-index presented in Sect. 4. Section 5 describes a new strategy to
store suffiz array samples, using and improving a classical solution for persistent selection.
Section 6 shows how the newly derived structures can be applied to derive new compressed
suffix trees. Section 7 discusses the extension of the abstract problem studied in this paper
to the storage of real genomic sequence collections.

2 Basic Concepts and Background

A string S = S1, = s152---5, is a sequence of symbols (a.k.a. character or letter).
Each symbol is an element of a alphabet ¥ = {1,2,...,0}. A substring of S is written
Sij = 8iSi41...5;. A prefix of S is a substring of the form S; ;, and a suffiz is a substring
of the form S; . If i > j then S; ; = ¢, the empty string of length |¢| = 0. A text string
T =T, is a special string with ¢, = $. The lezicographical order “<” among strings is
defined in the obvious way.

We use the standard notion of empirical k-th order entropy Hy(T). For formal
definition, see e.g. [18]. For our purposes, it is enough to know the basic property
Hy(T) < Hip1(T) < -+ < Ho(T) < logo.

The compressors to be discussed are derivatives of the Burrows-Wheeler transform
(BWT) [2]. The transform produces a permutation of 7', denoted by T%*!, as follows: (i)
Build suffiz array [17] SA[1,n] of T', that is an array of pointers to all the suffixes of T in

the lexicographic order; (ii) The transformed text is T"%! = L, where L[i] = T[SA[i] — 1],
taking T'[0] = T'[n].

The BWT is reversible, that is, given 7% = L we can obtain T as follows: (a) Compute
the array C[1, o] storing in C[c] the number of occurrences of characters {$,1,...,¢— 1}
in the text T; (b) Define the LF mapping as follows: LF(i) = C[L[i]] + rankp;(L,1),
where rank.(L,i) is the number of occurrences of character ¢ in the prefix L[1,i]; (c)
Reconstruct T backwards as follows: set s = 1, for each n — 1,...,1 do t; < Li[s] and
s « LF[s]. Finally put the end marker ¢, < $.

Let a point mutation (or just mutation for now) denote the event of a symbol changing
into another symbol inside a string. We study the following problem.

Definition 1 Given a collection C of r sequences T* € C such that |T*| = n for each 1 <
k<rand Y i_,|T* = N, where T?,T3,...,T" are mutated copies of the base sequence
T containing overall s point mutations, the repetitive collection indexing problem is to
store C in as small space as possible such that the following operations are supported as
efficiently as possible: count(P) (How many times P appears as a substring of the texts in
C?); locate(P) (List the occurrence positions of P in C); and display(k,i,j) (Return
Ti)-

The above is an extension of the well-known basic indexing problem, where the collec-
tion only has one sequence T'. We call a solution to the basic indexing problem a self-index
if the index does not need T to solve the three queries above.

A comprehensive solution to the basic indexing problem uses the suffix array SA[1, n].
Two binary searches are enough to find the interval SA[sp, ep] such that count and locate
are immediately solved [17]. The solution is not as space-efficient as possible, since array
SA requires nlogn bits, and the solution is not yet a self-index, since T is needed.

The FM-index [5] is a self-index based on the Burrows-Wheeler transform. It solves
counting queries by finding the interval SA[sp, ep| that contains the occurrences of pattern
P. The FM-index uses the array C and function rank.(L,i) in the so-called backward
search algorithm calling function rank.(L,i) O(m) times. The two other basic indexing
problem queries are solved e.g. using sampling of SA and its inverse SA™!, and LF-mapping
to derive the unsampled values from the sampled ones. Many variants of the FM-index
have been derived that differ mainly in the way the rank.(L,i)-queries are solved [19].
For example, on small alphabet sizes, it is possible to achieve nH(1 + o(1)) space with
constant time support for rank.(L,) [6].

Now, the (repetitive) collection indexing problem can be solved using the normal self-
index for the concatenation T'#T?4 - - - T"$, where # is a special symbol not appearing in
Y. However, the space requirement achieved even with a high-entropy compressed index is
not attractive for the case of repetitive collections. For example, the solution by Ferragina
et al. [6] requires N Hy(C')+ o(N log o) bits. Notice that with the collection of Def. 1 and
with s = 0, Hy(C) ~ Hy(T'), and hence the space is about r times more than what the
same solution uses for the basic indexing problem.

In the sequel, we derive a solution whose space requirement depends on nHy, (instead
of NHy) and on s (instead of o(N logo)). Let us first consider a natural lower bound that
takes into account these specific problem parameters. Consider a two-part compression
scheme that first compresses T with a high-order compressor and then the rest of the

sequences by encoding the mutations needed to convert each other sequence into 7. The
lower-bound for any such compressor is

N — N
nHk(Tl)—i—log(n) + slogo ~ nHy(T') 4+ slog — + slogo (1)
s s

where the first part is the lower bound of encoding 7' with any high-order compressor,
second part is the lower bound for telling the positions of the mutations among the N —n
possible, and third part is the lower bound for listing the s mutations.

Finally, we show how to apply the collection indexes to turn the new fully-compressed
suffix trees [7, 22] into a space expressed in the framework of the lower bound in Eq. 1.

We assume o = polylog(N) throughout the paper.

The abstract problem with point mutations studied here has nothing to do with the
real variation occurring in genome sequences. However, all the techniques introduced can
be extended to the full set of mutation events. This will be discussed in Sect. 7.

3 Using Runs as a Complexity Measure

Self-repetitions are the fundamental source of redundancy in suffix arrays, enabling their
compression. A self-repetition is a maximal interval SA[i,i + [] of suffix array SA having
a target interval SA[j,j + 1] such that SA[j +r] = SAli + 7] + 1 for all 0 < r < [. Let
W(i) = SA"YSA[i] + 1]. The intervals of ¥ corresponding to a self-repetition in the suffix
array are called runs. We have ¥(i + 1) = ¥(i) + 1 when both ¥(i) and ¥(i 4+ 1) are
contained in the same run.

Let Ry(T) be the number of runs in ¥ of text T" and R(T') = Rpy(T") the number
of equal letter runs in Tp,:. There is a strong connection between the quantities Ry and
Rput, namely Ry < R < Ry + o [14], allowing to use them interchangeably under most
circumstances. In addition to the trivial upper bound R < N, the bound R < NHj, + oF
for all k& by Makinen and Navarro [14] is relevant for low entropy texts.

We will now prove some further bounds for texts obtained by repeating and mutating
substrings of a base sequence. To simplify the analysis, we add a new character # such
that # < $ < ¢ for all ¢ € ¥. Furthermore, we assume that the ordering between two
occurrences of character # is decided by their positions in the sequence, making each
occurrence of # a different character in practice.

Definition 2 The r times repeated collection of base text T'=Ti, is T" = T'T?... 7",
where T" =T and T* =Ty 1% for all i <r.

Definition 3 The context Ct; of suffix T; ,, relative to text T is its shortest distinguishing
prefix, i.e., the prefiz that does not appear anywhere else in Ty 5, as a substring. Note that
Cr,; defines the position of T; ,, in the suffix array of T'.

Definition 4 Let 7" be a collection of r texts, each derived by mutations from a base
sequence T'. A significant prefix SP; ; of the suffiz starting at position j of sequence T" is
the shortest prefix not occurring anywhere else in 7" as a substring except possibly as a
prefix of some T]kn, k3.

1 e =—¢ e i
e e "

T A e,

: —

15 e S <>
T — e e

T e EE— G S)

e point mutations
mmmm cffect zones

<> distinguishing prefix X
O o such that Xa is a significant prefix
O Bza

Figure 1: An example of distinguishing and significant prefix concepts. Text T contains
a distinguishing prefix X which is repeated in its mutated copies 72,73, T* 75, and T".
Text T% has a mutation inside X. Due to other mutations, texts 7° and 77 now contain
X in some other positions, and hence X is not a significant prefix. However, extending
X with string a makes Xa unique to the original position of X, while the other two
occurrences of X are succeeded by string 8 # «. Hence, X« is a significant prefix, for o
being the shortest extension having the required property. The effect zones illustrate the
positions where the significant prefixes are affected by the mutations.

Figure 1 illustrates the definitions.

We show some basic results concerning the number of runs in repeated and mutated
texts. Proofs appear in the full version of the paper. Expected case proofs extend those
in [27, pp.263-265].

Lemma 5 For all texts T and all ™ > 1, Ry(T) = Ry(7T").

Proof. (Sketch) All suffixes corresponding to the same suffix of 7" are grouped together in
the suffix array of 7”. Each group is further ordered from the suffix of T to the suffix of
T". Hence there is one-to-one correspondence between the self-repetitions of suffix arrays
of Tand 77. [J

Lemma 6 Let 7" = T'T?...T" be a repeated collection and T' the collection created
by transforming t;-, for some 1 < i < r and 1l < j < n, into another character. Then
Ry(7T') < Ry(T")4+2c+1 = Ry(T)+2c+ 1, where ¢ is the number of significant prefizes
covering t;

Proof. (Sketch) The relative position of a suffix in the suffix array can change only if its
significant prefix has mutated. Each such suffix can interfere with a constant number of
runs. The ordering of suffixes sharing a significant prefix can change, but this does not
create additional runs. [J

Lemma 7 Let T' = Ty, be a random text. The expected length of the longest context is
O(log, n).

Proof. (Sketch) The expected number of non-overlapping repeats of length [is O(n? /o).
Markov’s inequality bounds the probability of having such a repeat of length c - log, n
exponentially in ¢~!. Overlapping repeats are handled in a similar manner. [J

Lemma 8 Let T" be the repeated collection of random text T = Ty, with total length
N = nr. Let 8" be T after s point mutations at random positions in T?T3---T". The
expected value of Ry(S") is at most Ry (T) + O(slog, N).

4 Run-Length FM-index for Repetitive Collections

Recall that FM-index requires table C' and function rank.(L,) on the Burrows-Wheeler
transform L = T""* to support pattern search. The Run-Length FM-Index (RLFM) [14]
uses a reduction such that L[1, N] is replaced by L/[1, R], where equal-letter runs are
compressed into one symbol. Two bit-vectors B and B’ of length N, each having R bits
set, and a table Cp analogous to C, are stored as well. Using rank and select on these
bit-vectors and on L’ is enough to simulate the corresponding operations on L [14], where
select.(X,7) =i is such that rank.(X,i) = j and X[i| = ¢

The original proposal [14] uses 2N + o(N) bits for B and B’ to support constant
time binary rank and select. Then (negligible) 20 log N bits are used for C' and Cp, and
Rlogo(1 + o(1)) bits for the wavelet tree [8, 6] of L' to support constant time rank.()
under polylog(N) size alphabets.

The space can be improved using the so-called BSD representation for B and B’:

Lemma 9 ([10]) Given a bit vector B of u bits containing b 1-bits, a binary searchable
dictionary representation (BSD) requires |gap(B)|4+O(|gap(B)|/logb) = |gap(B)|(1+0(1))
bits of space and supports rank queries in tar = AT (u,b) time, where AT (u,b) equals

log b log 1 log b
O|[min 8) osloel log log b, log log b + 987)
log log b’ log log log u loglog u

and select in O(loglogb) time. In the worst case, length of the gap encoded sequence
lgap(B)] is blog(u/b) + O(bloglog(u/b)) bits. O

We have immediately the following result, by noticing that for us b = R and u = N.

Lemma 10 Given a collection C and a concatenated sequence T of all the sequences T €
C, let R be the number of runs in the BW-transformed sequence T of T. The RLFM
data structure for the sequence T can be represented in (Rlog o + 2R log %)(1 +o(1))+
(@) (Rlog log %) bits of space. The queries rank.(T*",i), select.(T*!, z) and retrieving
the symbol t?Wt, for all 1 < i < N, are solved in O(t g) time. In particular, the structure
supports count(P) in time O(|P|tLg), where t g = tar = AT(N, R). O

5 Suffix Array Samples

To support the other two functions of the repetitive collection indexing problem, namely,
display() and locate(), we need to be able to map the suffixes of the text into suffix array
indexes and vice versa. The standard solution [19] in self-indexes is to sample every d-th
suffix of each text in the collection in an array D[1, N/d + 1], such that D[i] = SA™!(id),
mark the locations D[i] into a bit-vector B[1, N], such that B[D[i]] = 1 for all 1 < i <
N/d+ 1, and store the samples in the suffix array order in a table S[1,rank; (B, N)], such
that S[rank, (B, DI[i])] = id.

Then display(k,i,j) works as follows. Let SP[k] be the starting position of 7% in
the concatenated sequence T = T'T?---T". Value D[(SP[k] + j)/d + 2] = e tells us that
the nearest sampled suffix after Tgp(y)4; v is stored at suffix array index SA[e]. Following
LF-mapping starting at position e reveals us backwards a substring that covers Tf] in
time O(tLF(d +5—1+ 1))

Function locate (P) works in a similar fashion; first backward search is applied to find
the range SA[sp, ep| containing the occurrences of the pattern P and SA[i] is computed
for each sp < i < ep as follows. If suffix SA[i] is not sampled (B[i] = 0), then LF-
mapping is applied until an index j is found where SA[j] is sampled (B[j] = 1). Then
SA[i] = S[ranki(B,j)] + ¢, where ¢ < d is the number of times LF-mapping was applied.
This takes time tsa = O(tLgd).

The space required by the standard solution is O((N/d)log N + N) bits, which can be
reduced to O((IN/d)log N) by using Theorem 9; this changes the time for locate() into
tsa = O((tLr + taT)d), where tar = AT(N, N/d).

Our objective is to have all time requirements in O(polylog(N)) which holds only with
the above approaches if we assume r = O(polylog(N)); then d can be chosen as rlog N to
make O((N/d)log N) = O(n), i.e., independent of N as we wish.

5.1 Improving Space for display()

We will store samples only for T, that is, table D[1,n/d + 1] has the suffix array entry of
every d-th suffix T}, stored at D[i] = SA~!(id).

To be able to use the same samples for other texts in the collection, we mark the
locations of mutations into bit-vectors. Let M¥[1, |T*|] be a bit-vector where the locations
of the mutations inside T* are marked. The mutated symbols are stored in another array
M S¥[1,rank; (M*,|T*|)] in their order of occurrence in T*.

Consider now a query display(k,i,j). The substring TZlJ is extracted using the sam-
ples just like in the standard approach. It is easy to see that while extracting Tiljj, the
mutations stored for T% can also be extracted using rank-function on MF¥. Table M S*
occupies overall slog o bits. Bit-vectors M* can be represented using Theorem 9 in overall
slog Ng" (14+0(1))+O (sloglog st”) bits. What we gain is that O((N/d) log N) becomes
O((n/d)logn).

5.2 Improving Space for locate()

We use the same strategy as for display(), sampling only 7! regularly, but this time we
need to sample also parts of the other texts as discussed next.

Let us first consider the case of r-identical texts. We know that the suffixes
Tpl’n7 Tim ..., Iy, will all be consecutive and in the same order in SA. Hence, once every
d-th suffix of T is sampled, we can reveal any SA[i] by applying LF-mapping at most d
times until finding an entry j such that SA[;’] is sampled for some j' < j and j — j' < r.
Checking whether this is the case is identical to j — selecti (B, ranki(B,j)) < r, where B
is the bit-vector marking the locations of the sampled suffixes of 7' in SA. Then SA[j]
corresponds to suffix T g[mnkl(B.j)+en’ where S is the table storing the sampled suffixes
in the order they appear in SA, ¢ < d is the number of times LF-mapping was applied,
and k = j — select1(B,ranky(B,j)) + 1.

Generalizing the scheme to work under mutations is non-trivial. We introduce a strat-
egy that splits the suffixes into two classes A and B such that class A suffixes are computed
via T samples and for class B we add new samples from all the texts. Recall Lemma 6;
Class B contains the ¢ suffixes whose significant prefixes overlap one or more mutations.
Class A contains all other suffixes.

Let us first consider the case when SA[i] is a class B suffix. Class B suffixes form at
most s disjoint regions in texts T k, 2 < k < r. We sample every d-th suffix inside each
of these regions. The suffix array indexes containing these sampled suffixes are marked
in a bit-vector E[1, N], and a table SB[1,rank;(E, N)] stores these sampled suffixes in
the order they appear in SA. Retrieving SA[i] is completely analogous to the standard
sampling scheme by using S in place of S and E in place of B. The space is bounded by
O((¢/d)log N), which is O(((slog, N)/d)log N) in the average case.

Computing SA[i] for class A suffixes is more challenging than in the case of r identical
texts when all suffixes were class A. The problem can be divided into the following sub-
problems: (i) Not all sampled suffixes of T will have counterparts in all the other texts.
Hence, we need to store explicitly a list Q[rank;(B,SA™[id])] = kiks - -- k, denoting texts
Tk Tk2 Tke p < r, that correspond to a sampled suffix Tlldn However, this takes
too much space. (ii) Class B suffixes break the order of the suffixes aligned to the same
sampled T suffix, making it difficult to know, once at SA[j], whether there is a sampled
suffix of T at some position SA[j'] close enough.

Let us consider subproblem (ii) first. The solution is to explicitly mark all class B
suffixes in SA into a bit-vector F'[1, N], and to store for each sampled suffix Tlldn its lexico-
graphic rank e among the suffixes in the list Q[rank;(B,SA™[id])] = kiks - -- kp, that is, e
such that k. = 1. Now, consider again the situation where SA[i| belongs to class A and LF
mapping has brought us to entry SA[j]. Let us compute prev = select, (B, rank;(B, j)),
succ = selecty(B,ranki(B,j) + 1), dprev = (j — prev) — (ranki(F, j) — rank;(F, prev)),
and dsucc = succ— j— (rank, (F, succ) —rank, (F, j)). Let Q[rank (B, prev)] = kiky--- k)
and e be such that k. = 1. If dprev < p — e then k.4 gprey is the number of the text where
suffix SA[j] belongs to. This follows from the fact that the effect of class B suffixes is elim-
inated using rank, so it remains to calculate how many class A suffixes there are between
the sampled suffix and current position. If this number is smaller than (or equal to the)
the number of suffixes with rank higher than that of SA[prev] in the list Q[rank; (B, prev)],
then (and only then) SA[j] belongs to the same list. Analogously, one can check whether
SA[j] belongs to the list Q[rank: (B, succ)] = kiks - - - ky of SA[succ]. After at most d-steps
of LF-mapping the correct @Q-list is found. The additional space needed is O(clog @)
bits for the BSD of bit-vector F'.

Finally, we are left with subproblem (i): the lists Q[1],Q[2],...,Q[n/d] occupy in
total O((n/d)rlogr) bits. We will next improve the space to O(slogs) bits modifying a
classical solution by Overmars [20] to k" element/rank searching in the past. The proof
of Theorem 12 reviews the original structure and the proof of Theorem 13 shows how to
make it more space-efficient and confluental persistent (see [13] for background).

Definition 11 Let E(t) = efel--- e, € R* = {1,2,...,7}* be a sequence of elements at
time point t € H, where H C H = {1,2,...,h}, such that E(t) can be constructed from

prev), tprev = max{t’ € < t}, by deleting some e or inserting a new ele-
E(t ¢ t € H|t <t}, by deleting P or inserting !
ment e € R between some ezpjfv and ezprw The persistent selection problem is to construct

a static data structure D on {E(t)|[t € H} that supports operation select(t,k) = el. The
online persistent selection problem is to maintain D such that it supports insert(t,e, k) and
delete(t, k), where value t must be at least max(H); The confluental persistent selection
problem allows value t to be any t € H also for insertions and deletions;

Theorem 12 ([20]) There is a data structure D for the online persistent selection prob-
lem occupying O(x(log xlog h+logr)) bits of space and supporting select(t, k) in O(log x)
time, and insert(t,e, k) and delete(t, k) in amortized O(log x) time, where x is the number
of insertion and deletion operations executed during the lifetime of D.

Proof. (Sketch) The structure D is a variant of balanced binary tree that stores subtree
sizes in its internal nodes, enhanced with path copying and fractional cascading to support
persistance: Consider a tree 7 (¢) for storing elements of E(¢) in its leaves and having
subtree sizes stored in its internal nodes. Selecting the k-th leaf equals accessing ez. It is
easy to find that leaf by following the path from the root and comparing k with the sum
of subtree sizes of nodes that remain hanging left side of the path; if at node v the current
sum plus subtree size of the left child of v is smaller than k, go right, otherwise go left.
Now, consider an insertion to produce E(t) from E(tprev). To produce 7 (¢) one can add
a new leaf to 7 (tprev) and increment the subtree sizes by one on the path to the new leaf.
To make this change persistent, the idea in [20] is to copy the old subtree size information
into a new field on each node on the path and increment that. The field is labeled with
the time ¢ and also pointers are associated to the corresponding fields on the left and right
child of the node, respectively. Here corresponding means a field whose time-stamp is
largest ¢’ such that ¢’ < t. Analogous procedure is executed for deletions, except that the
corresponding leaf is not deleted, but only the subtree sizes are updated accordingly. This
procedure is repeated over all time points and the tree is rebalanced when necessary. The
rotations to rebalance the tree require merging the lists of fields storing the time-stamped
information. The cost of rebalancing can be amortized over insertions and deletions [20].
The root of the tree stores the time-stamped list as a binary search tree to provide O(log x)
time access to the entries. The required space for the tree itself is O(z log xlogh) bits as
each of the x updates creates a new field occupying O(log h) bits for each of the O(logz)
nodes on the path from root to the leaf. In addition, each leaf contains a value of size logr
bits. J

Theorem 13 There is a data structure D for the persistent selection problem occupying
O(z(log x +1log h+logr)) bits of space and supporting select(t, k) in O(log z) time. There

is also an online/confluental version of D that occupies the same space, but select(t,k)
takes O(log? x) time, and insert(t,e, k) and delete(t, k) take amortized O(log? x) time.

Proof. We modify the structure of Theorem 12 by replacing the time-stamped lists of fields
in each node of the tree with two partial sums that can be represented succinctly. Let
SY = 58785, -+ s}, be the list of subtree sizes stored in some node v, where sj = 0. Let
Sv = (Y — s3)(sY — 8Y)--- (8pv — S8pv_q1). We represent Sv via succinct data structure for

(dynamic) partial sums to support operations select(S?, i) = S%_, §Y

j=15; = s;. In addition,
we construct a bit-vector BY[1, k] where B"[i] = 1 if and only if the change s} came from
the right child of v. Notice that we do not need the explicit fractional cascading links
anymore, as we have the connection select(S?,i) = select(S!,i —i') + select(S",i'), where
l-ir, right? ¢ = ranki(B",i), and | and r are the left and right children of v. That is,
select(gl ;i —14") and select(gl,i’) are the subtree sizes of nodes | and r, respectively, at
the same time point as s7. In the root of the tree we keep the original binary search tree
to map the parameter ¢ to its rank ¢ and after that the formulas above can be used to
compare subtree sizes to value of parameter k. Notice also that confluental insert and
delete are immediately provided if we can support dynamic select on Sv and dynamic
rank on BY.

Let us consider how to provide select(S?,i) = sV. First notice that Y et Z;il 8 =
O(xlog x) because each insertion or deletion changes the subtree size by one on O(log x)
nodes. Hence, we can afford to use unary coding for these values. We represent each Sv by
a bit-vector IV = f(87)f(85)--- f(5}.), where f(x) = 1* if x > 0 otherwise f(z) = 077,
and by a bit-vector G = 10/GDI=110lf (DI ... 10lf 5= Then select(5?,i) equals
2-rank (F",j —1) — (j — 1), where j = select;(G",i+1). That is, > .+ (|F*| +|G[)(1 +
0(1)) = O(xlog z) bits is enough to support constant time select on all subtree sizes, when
the tree is static. In the dynamic case, select takes O(log x) time [1]. Same analysis holds
for bit-vectors B".

In summary, the tree in the root takes O(z log h) bits, and support rank for t in O(log x)
time. The bit-vectors in the main tree occupy O(zlogx) bits and make a slowdown of
O(1) or O(logx) per node depending on the case. The associated values in the leaves
occupy O(zlogr) bits. O

Combining Lemmas 8 and 10 with Theorem 13 applied to sampling gives us the main
result of the paper:

Theorem 14 Given a collection C and a concatenated sequence T of all the r sequences
T" € C, there is a data structure for the repetitive collection problem taking

N N
(Rlogo + 2R log E)(l +0(1))+0O (Rlog log E)

+O(slog, N log .)+ O(slogs)+ O(rlog N)

N
log, N

+O0(((slog, N)/d)log N) 4+ O((n/d)logn)

bits of space in the average case. The structure supports count(P) in time O(|P|tLr),
locate(P) in time of count(P) plus O(d(t g +taT)+1log s) per occurrence, display(k,i, j)
in time O((d + j — i + 1)(tLp + taT), computing SA[i] and SA™'[(k,4)] in time tspn =
O(d(tLr + taT) + log s), and T(SA[i]) in time O(AT (N, o)), where t,p = AT (N, R).

10

Proof. (Sketch) The discussion preceding persistent selection developed data structures
occupying O(slog, N log ﬁ) + O(((slog, N)/d)log N) bits to support parts of the
remaining locate() operation. These are larger than the ones for display(). Theorem 13
provides a solution to the subproblem (i): we can replace the lists Q[1], Q[2], ..., Q[n/d] by
persistent select, where the s mutations cause insertions and deletions to the structure (as
they change the rank of a text between two samples). There will be s such updates, and
on any given position 7 of the text 7" (including those that are sampled) one can select
the k-th text aligned to that suffix in O(log s) time. The space usage of this persistent
structure is O(slog s). Finally, SA[i] computation is identical to locate(), but computation
of SATY[(k, 5)] is not yet supported. Computation of SA™![(k, j)] resembles the display
operation in the case t;‘? belongs to an area where a sampled position is at distance d.
Otherwise one must follow closest sampled position after tjl- to suffix array, and use at most
d times the LF-mapping to find out SA™'[(1,5)]. Now, to find the rank of text T* with
respect to that of text T in the persistent tree of Theorem 13 storing the lexicographic
order of suffixes aligned to position j, one can do the following. Whenever a new leaf
is added to the persistent tree, associate to that text position a pointer to this leaf.
These pointers can be stored in O(slogs) bits and their locations can be marked using
slog g(l +0(1)) space, so that one can find the closest location to (k, j) having a pointer,
using rank in tat time. Following this pointer to the persistent tree leaf, and continuing to
the root of the tree (and back), one can compute the rank of the leaf (text T*) in O(log s)
time. Computing the rank of (1, 7) is analogous. By comparing these two ranks, one can
find the correct index in the vicinity of SA™Y[(1,)] making a select() operation on the
bit-vector F' used for locate() operation. The overall time is the same as for computing
SA[i]. Finally, with a gap-encoded bit vectors storing tables C' and Cp, the operation
T[SA[i]] works in AT (N, o) time. O

Figure 2 illustrates the use of persistent selection for the samples.

The confluental version of Theorem 13 can be used to handle dynamic samples (see
116]).

6 Run-Length Compressed Suffix Tree

The entropy-bounded compressed suffix tree of Fischer et al. [7] uses an encoding of LC P-
values (lengths of longest common prefixes of SA[i] and SA[i + 1]) that consists of two
bit-vectors of length N each containing R bits set. In addition, only o(N) bit struc-
tures and normal suffix array operations are used for supporting an extended set of suf-
fix tree operations. We can now use Theorem 14 to support suffix array functionality
and Theorem 9 to store LC P-values in 2R log% +0 (R log log %)) bits. Thus, adding
2R log % +0 (Rlog log %)) + o(N) bits to the structure of Theorem 9, one can support
all the suffix tree operations listed in [7] in O(polylog(N)) time.

7 Discussion

We considered only point mutations on DNA, although there are many other types of mu-
tations, like insertions, deletions, translocations, and reversals. The runs in the Burrows-

11

g : :
1 ——— e e e
T -, 5 e : — e ; ;
T q. : ! : : : ;
T e C®
o ——e —e
T — i e : e ; :
3 6 6 6 | 2 2 |
-2 3 2 2 4 I l .
| | 1 1 6 4 3 3
5 4 4 4 5 6 4 4
7 5 5 5 3 £ 6 8
7 3 7 5 T 6
7 5 T

@ mutations
mmm effect zones

Figure 2: Persistent selection and changes in the lexicographic order of sampled suffixes.
Text T has been sampled regularly and the pointers to the sampled suffixes are stored
with respect to the BWT sequence. Each such pointer is associated a range containing
the occurrences of the same significant prefix in the mutated copies of T'. The relative
lexicographic order of these aligned suffixes (shown below the sampled positions) change
only when there is a mutation effect zone between the sampled positions; when an effect
zone starts, the corresponding text is removed from the list, and when it ends (with the
mutation), the text is inserted to the list with a new relative lexicographic order.

Wheeler transform change only for those suffixes whose lexicographic order is affected by a
mutation. In all mutation types (except in reversals) the effect to the lexicographic order
of suffixes is identical to point mutations, so the expected case bounds limiting the length
of significant prefixes extend easily to the real variation occurring in genomes [16]. Reverse
complementation is easy to take into account as well, by adding the reverse complement
of the base sequence to the collection.

The base structure (RLFM index) for counting queries is universal in the sense that it
does not not need to know what and where the mutations are. This observation has been
experimentally verified with throughout experimentation on version control data and on
DNA sequences [26].

However, the structures for display() and locate() require the alignment of each
sequence with the base sequence to be given; for succinctness we considered the easy
case of identical length sequences and point mutations, where the alignment is trivial to
compute. Just allowing the sequences to be of different length makes the alignment a non-
trivial task. We show in the full paper [16] how to store the alignments space-efficiently

12

and support display() and locate() analogously to the case of point mutations covered
here.

In the full paper [16], we also show how to make all the structures dynamic, solving
the dynamic repetitive collection problem, where sequences can be inserted and deleted to
and from the collection. In that case, the space bound remains the same and all time
requirements are multiplied roughly by a logarithm factor. A major future challenge
remains: How to remove the near linear o(N) factor from compressed suffix tree space
complexity?

References

[1] D. Blanford and G. Blelloch. Compact representations of ordered sets. In Proc. 15th
SODA, pages 11-19, 2004.

[2] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

[3] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for
dynamic text collections. ACM Transactions on Algorithms, 3(2), 2007.

[4] G. M. Church. Genomes for all. Scientific American, 294(1):47-54, 2006.

[5] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552-581, 2005.

[6] P. Ferragina, G. Manzini, V. Makinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

[7] J. Fischer, V. Mékinen, and G. Navarro. An(other) entropy-bounded compressed
suffix tree. In Proc. 19th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 5029, pages 152-165, 2008.

[8] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th SODA, pages 841-850, 2003.

[9] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378-407,
2006.

[10] A. Gupta, W.-K. Hon, R. Shah, and J.S. Vitter. Compressed data structures: Dictio-
naries and data-aware measures. In DCC ’06: Proceedings of the Data Compression
Conference (DCC’06), pages 213-222, 2006.

[11] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[12] N. Hall. Advanced sequencing technologies and their wider impact in microbiology.
The Journal of Experimental Biology, 209:1518-1525, 2007.

13

[13]

[14]

[15]

[16]

H. Kaplan. Handbook of Data Structures and Applications (D. P. Mehta and S. Sahni
Eds.), chapter 31: Persistent Data Structures. Chapman & Hall, 2005.

V. Makinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40-66, 2005.

V. Mikinen and G. Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms (TALG), 4(3):Article 32, 2008.

V. Maékinen, G. Navarro, J. Sirén, and N. Viliméaki. Run-length compressed in-
dexes for repetitive sequence collections. Technical Report Technical Report C-
2008-42, Department of Computer Science, University of Helsinki, Finland, 2008.
http://hdl.handle.net/10138/1158.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993.

G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407-430, 2001.

G. Navarro and V. Makinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

M. H. Overmars. Searching in the past, i. Technical Report Technical Report RUU-
CS-81-7, Department of Computer Science, University of Utrecht, Utrecht, Nether-
lands, 1981.

E. Pennisi. Breakthrough of the year: Human genetic variation. Science, 21:1842—
1843, December 2007.

L. Russo, G. Navarro, and A. Oliveira. Dynamic fully-compressed suffix trees. In
Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS
5029, pages 191-203, 2008.

L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. 8th
Latin American Symposium on Theoretical Informatics (LATIN), LNCS 4957, pages
362-373, 2008.

K. Sadakane. New text indexing functionalities of the compressed suffix arrays. Jour-
nal of Algorithms, 48(2):294-313, 2003.

K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589-607, 2007.

J. Sirén N. Valimaki, V. Makinen, and G. Navarro. Run-length compressed indexes
are superior for highly repetitive sequence collections. In Proc. of 15th Symposium on
String Processing and Information Retrieval (SPIRE 2008), LNCS, 2008. To appear.

M. S. Waterman. Introduction to Computational Biology. Chapman & Hall, University
Press, 1995.

14

