SXSAQCT and XSAQCT: XML Queryable Compressors

Tomasz Miildner!, Christopher Fry?, Jan Krzysztof Miziotek?, Scott Durno?

1 Jodrey School of Computer Science, Acadia University, {tomasz.muldner, 062181f, 900390d}@acadiau.ca
2| AL, University of Warsaw, jkm@ibi.uw.edu.pl

Abstract: Recently, there has been a growing interest in queryable XML
compressors, which can be used to query compressed data with minimal
decompression, or even without any decompression. At the same time, there are
very few such projects, which have been made available for testing and
comparisons. In this paper, we report our current work on two novel queryable XML
compressors; a schema-based compressor, SXSAQCT, and a schema-free
compressor, XSAQCT. While the work on both compressors is in its early stage, our
experiments (reported here) show that our approach may be successfully
competing with other known queryable compressors.

1. Introduction

In this paper, we describe two novel techniques to deal with queryable XML
compression. Both techniques use the approach borrowed from other XML
compressors, which separate the document structure from the text values and
attribute values (collectively called data values). We then encode the document
structure to succinctly store information about the input document, and finally
apply appropriate well-known back-end data compressors to the document
structure and to the containers storing the data values. It is well known that on
average the structure represents between 10 and 20 percent of the size of the entire
document, and the remaining 80 percent represents text and attribute values.
However, the main focus of our work is on queryable compression, and so we
encode the document structure to support lazy decompression, i.e. during the
querying process of the compressed document; we attempt to decompress “as little
as possible”. Well-known XML compressors differ in using various granularity of the
container information; some compressors use a single container, while others tend
to create many separate containers for related values. The former approach is based
on the promise that standard data compressors achieve better results when they get
large data sets, but require complete decompression in order to perform a query. On
the other hand, the latter approach may suffer from poor compression ratios, but it
requires the decompression of only a few (possibly just one) containers. In our
approach, we attempt to strike a balance between these two extremes; using
containers that will be large enough so that they can be effectively compressed, but
at the same time the container structure does not require a full decompression to
answer a query. In addition, our design allows both; lazy decompression and

Dagstuhl Seminar Proceedings 08261
Structure-Based Compression of Complex Massive Data
http://drops.dagstuhl.de/opus/volltexte/2008/1673

performing operations directly on compressed data, without any decompression.

Because this is a report on currently on-going work, we do not provide a
description of related work and include only a few references to other papers on
queryable XML compression. This paper is organized as follows. Section 2
introduces basic terminology, and Section 3 introduces the two XML compression
techniques described in this paper. Section 4 provides a detailed description of a
grammar-based compression, while a grammar-free compression is described in
details in Section 5. Section 6 is on the format of the compressed documents, Section
7 on querying, and Section 8 gives results of testing of our compressors. Conclusions
and future work are described in Section 9.

2. Basic Terminology and Related Work

2.1 Terminology

In our paper, by the document order we mean the order defined by the occurrence of
nodes in the document, or in other words the order in which a SAX parser
encounters these nodes (which is the same as in in-order traversal of the document
tree). More formally, for two nodes x and y, x <y iff the opening tag of x precedes the
opening tag of y. Two absolute paths are called similar if they are identical, possibly
with the exception of the last component, which is the data value.

When comparing various XML compressors, it is important to provide their
various characteristics. In general, compressors can be characterized as:
- archivers, which concentrate on compression ratio and speed, while they tend to
disregard decompression speed (such compressors are also called asymmetric)
- lossless XML compressors, for which the only differences between the recreated
document and the input document are those permitted by the XML canonicalization
process (such as the order of occurrence of attributes), and lossy XML compressors,
for which the only differences between the recreated document and the input
document are those permitted by the XML canonicalization process, and, in addition
removal spurious whitespace
- online compressors used in network data exchanges, which concentrate on
compression/decompression speed, and online operations (i.e. the decompression
may start as soon as the first chunk of the compressed stream becomes available,
rather then decompressing offline when the entire decompression stream is
available)
- database applications, that concentrate on queryable compression with random
access, and decompression speed
- queryable compressors, that are either batch compressors, which know a priori the
so-called workloads (containing queries that can be used), to build data containers
in order to optimize queries, or interactive compressors, that can expect any kind of
queries.
In addition, compressors may or may not use indexing and/or caching (to our
knowledge, currently there are no such compressor available).

Using the above characterizations, our compressors are interactive,

queryable database applications, which use indexing and caching. In addition, we
support both, lossless and lossy compression.

When dealing with any kind of data compression, one compares their compressor
with other compressors, using a specific set of input documents. In this paper, we
follow [Skibinski] and for our experiments, we use the Wratislavia XML corpus from
this paper.

3. Introduction to SXSAQCT and XSAQCT

In this section we provide a general introduction to our compression techniques,
and in the following sections we provide more details about each of them. Our
compressors are used as follows. First, the input file is compressed, using either
lossless or lossy compression. Then the user can start a session, during which the
compressed file is queried and/or decompressed to recreate the original file.

3.1. Compression using Schema-based Queryable Compressor: SXSAQCT

The first technique is grammar-based, i.e. it assumes that the compressor and the
decompressor (as well as the query compressor) share the description of the
grammar. (However, we also consider a scenario, in which the schema needs to be
sent to the decompressor). Since, we use XML Schema to specify a grammar, we call
this compressor; Schema-based Queryable Compressor, or SXSAQCT (pronounced
sexact). Given an acyclic/non-recursive schema S (our future work will concentrate
on removing this limitation, and allowing recursive schema) we create a schema
tree (Ts). Then, given a document D valid in S, we encode the information about the
XML document by performing a single SAX traversal of D and annotating Ts, thereby
creating an annotated tree (Tap). At the same time, data values are written to
various data containers. Note that Tap provides a faithful but succinct
representation of the input document D (in general, the document tree is short but
wide, while Tap is much narrower). Next, Tap is compressed, by first writing its
annotations to one container, and the tree Tp without annotations (which we call a
skeleton tree) to another container, and then compressing both streams using
standard (possibly different) data back-end compressors, to create the compressor’s
output Cp.

This approach resembles a permutation-based approach, in which a
document is re-arranged to localize repetitions. However, in our work, Tap
preserves all information about the ordering of elements, and a single container
stores only related data values (specifically, we use a single container to store text
values for all similar paths. Each container may be compressed using different back-
end compressor (depending on the type of value in the container). In other words,
our approach is in a sense a homomorphic approach, but similar paths are “glued
together”.

Our schema-based approach is summarized in Figure 3.1. For any schema
definition that gives an element s, a choice, such as minOccurs != maxOccurs, the
element s will have an appended *. Element s is called dirty if it has an appended *;
otherwise it is called clean.

Schema S

Document D
(_' Schema Tree Ts)

/ Annotated Tree Tap Containers

Annotations Skeleton Tree Tp

/

Compressor output Cp

Figure 3.1. The basic architecture of SXSAQCT

Example 1. Consider a schema S, in which the root is labeled ‘a’; it's an unbounded
sequence of ‘b’s , where each b is a sequence of an unbounded sequence of ‘e’s, one
‘c’, and an unbounded sequence of ‘d’s. The schema tree Ts is shown in Figure 3.2.

Figure 3.2. The schema tree for schema S

Now, consider the document D valid in S shown in Figure 3.3.

Figure 3.3. The document D valid in S

The annotated tree Tap, which represents D is shown in Figure 3.4.

Figure 3.4. The annotated tree Tap
m

Note that our tests have showed that for six files from the Wratislavia XML
corpus, the uncompressed tree St is very small (ranging from 37 to 313 nodes) and
takes little space, specifically it takes between 383 and 3495 bytes. More details on
the results of our experiments are provided in Section 8).

3.2. Compression using Schema-free Queryable Compressor: XSAQCT

The second technique is grammar-free, and we call our compressor XSAQCT
(pronounced exact). Here, given an XML document D, we perform a single SAX
traversal of D, and create an annotated tree Tap. Therefore, even though in this
approach the grammar for D is not provided, we build a concise representation of
the structure and the related containers, and then use the same technique as for
SXSAQCT. Note that XSAQCT can analyze containers to determine the type of the
values stored in each container, in order to decide on a specific back-end
compressor to compress this container. The schema-free approach is summarized in
Figure 3.5.

Document D

(¥

Annotated tree Tap Containers
Annotations Skeleton Tree Tp

L

Compressor output Cp

Figure 3.5. The basic architecture of XSAQCT

3.3. Decompression

Both techniques use the same, or very similar, decompression steps. First, the
compressed document Cp is decompressed into three kinds of containers;
respectively the annotation container, the skeleton tree container, and the
containers with text and attribute values. Then, these containers are used to re-
create the original document D.

3.4. Attributes and Mixed Content

In this section, we describe handling of attributes and mixed content. Attributes are
treated as if they were elements, i.e. their names (preceded by “@”), and annotations
are recorded in Tap. Figure 3.6 shows a simple document with various text nodes,
including mixed contents (the top of the figure), and the tree Tap and text containers
(the bottom of the figure).

o |

Loz} [T T 1] [T

Figure 3.6. Handling mixed content

Nodes of the tree are marked (with an asterisk, in Figure 3.6) if the corresponding
element has mixed content, and in such a case empty text (shown as a box
containing “0”) is inserted in the text container when needed. Note that the figure

3.6 shows the logical format for the annotated tree Tap, the actual implementation
details are provided in Section 6.

4. SXSAQCT: Schema-based XML Queryable Compressor

In this section, we first describe the algorithm, that for the given non-recursive
schema S creates a schema tree Ts. Then, we describe the parts of the compressor
and the decompressor, which differ from the general description given in Section 3.

4.1. Building a Schema Tree

We start with an example of a schema based on shakespeare.xsd from [Skibinski].
Example 4.1.

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="PLAYS">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="PLAY" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="PLAY">
<xs:complexType>
<xs:sequence>
<xs:element ref="TITLE" />
<xs:element name="FM">
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="FM">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="P" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="P" type="xs:string" />
<xs:element name="TITLE" type="xs:string" />
</xs:schema>

The resulting schema tree is shown in Figure 4.1.

Plays

Play*

Title FM

P*

Figure 4.1. Handling mixed content

Algorithm 4.1. Converting XML Schema to a Schema Tree

The schema has a root <xs:schema> then a series of <xs:element>'s. The
<xs:element>'s can contains other elements (as well as complexTypes, sequences,
etc.) It can also contain references to other elements. If a reference is found, a place
holder SchemaNode is created with the type reference, which will later be replaced
with a real SchemaNode. We assume that a schema is stored in a file called
schemafile.

The algorithm performs the following three steps:

1. Create a graph for every child c of the root <xs:schema>, this will include c's child,
grandchildren, etc.

2. Replace all references with “real” nodes

3. One of the children of the <xs:schema> will be the root node of the graph. Find it.

Step 1.
Global variables:

SchemaGraph schemagraph;

void parse() {
Map map = new Map();
for every child c of <xs:schema> {
schemagraph = new SchemaGraph();
generateGraph(child, null);
//generate the graph of c and store it in global schemagraph
map.put(child.getName(), schemagraph);
//store the graph of c in map

void generateGraph(Element element, SchemaNode parentNode) {
SchemaNode localNode; //the new node to create
if(element is a <xs:element>) {
if(element has attribute “name”
localNode = schemagraph.addNode(element.getName(), parentNode);
else if(element has attribute “ref”)
localNode = schemagraph.addNode(
element.getReference(), parentNode).setType(Reference);
if(element maxOccurs == “unbounded” || element minOccurs == “0" ||
element minOccurs != maxOccurs) localNode.setDirty(true);
}
for every child c of element {
if(c is a <xs:element> || <xs:complextype> || <xs:sequence> ||
<xs:simpleContent> || <xs:extesion> || <xs:all> || <xs:choice> ||
<xs:attribute>) {
//so far we ignore everything that is not one of these
//if localNode was set call generateGraph with localNode as the parentNode of ¢
if(localNode != null) generateGraph(c, localNode);
//else use the old parentNode,
// this lets us skip over schema elements that don't
//get added to the graph like complextype
else generate(c, parentNode);

}

generateGraph() using the above example is used as follows:

generateGraph(<xs:element name ="PLAYS”>, null) {
localNode = schemagraph.addNode(PLAYS, null);
//so PLAYS is the root of schemagraph
for every child c of PLAYS {
c = <xs:complexType>
generateGraph(c, PLAYS);
}

}
generateGraph(<xs:complexType>, PLAYS) {

for every child c of <xs:complexType> {
Cc = <xXs:sequence>
generateGraph(c, PLAYS);

}

}
generateGraph(<xs:sequence>, PLAYS) {

for every child c of <xs:sequence> {
c = <xs:element maxOccurs="unbounded" ref="PLAY" />

generateGraph(c, PLAYS);

}

}
generateGraph(<xs:sequence>, PLAYS) {

localNode = schemagraph.addNode(PLAY, PLAYS);
//play is added as a child of PLAYS
localNode.setType(Reference);
localNode.setDirty(true);

}

After finishing step 1, the map is shown in Figure 4.2 (where & indicates a
reference).

Plays Play FM Title P

VAN

&Play* &Title &FM &P

Figure 4.2. Completion of Step 1.

Step 2.
/IReplace all references with actual nodes
combineGraph(Map map) {
Queue queue = new Queue;
for each SchemaGraph g in map
queue.enqueue(Q);
while(!queue.isEmpty()) {
SchemaGraph currentGraph = queue.dequeue();
SchemaNode node = null;
Iterator<SchemaNode> iter = currentGraph.getDFSlterator();
while(iter.hasNext()) {
SchemaNode temp = iter.next();
if(temp.isReference()) {
node = temp;
break;

}

}
if(node !'=null) {
queue.enqueue(currentGraph);
/lthe graph may still contain references so try it again
currentGraph.replace(temp, map.get(temp);
IIreplace the reference temp with the actual temp from the map

10

¥

Table 4.1 shows graphs used in this example.

Table 4.1 Graphs used for shakespeare.xsd.

Queue currentGraph temp action
{Plays, Play, FM, Title, P} null
{Play, FM, Title, P} Plays &Play Replace &Play with
Play
Plays Play FM Title P
Play &Title &FM &P*
&Title &FM
{FM, Title, P, Plays} Play &Title Replace &Title with
Title
Plays Play FM Title P
Play Title &FM &P*
&Title &FM
{Title, P, Plays, Play} FM &P Replace &P with P
Plays Play FM Title P
Play Title &FM p

/N

&Title &FM

11

{P, Plays, Play, FM} Title null
{Plays, Play, FM} P null
{Play, FM} Plays &Title
{FM, Plays} Play &FM
{Plays, Play} FM null
{Play} Plays null
{3 Play null
The resulting graph is shown in Figure 4.3.

Plays Play FM Title

P]aly Tltle/ \FM pr

N

Title

FM

Figure 4.3. Resulting graph for the example.

12

No action

No action

Replace &Title with

Title

Replace &FM with FM

Do nothing

Do nothing

Do nothing

Step 3
We look at each graph in map and take the largest one (i.e. the graph that contains all the
other graphs).

SchemaGraph largestGraph(map) {
for every SchemaGraph g in map
get the size of g (number of nodes or depth)
return g with largest size

}
largestGraph() for our example return Plays, and is shown in Figure 4.4,
Plays
Play*
Title FM

P

Figure 4.4. Completion of Step 3.
m

4.2. Compression and Decompression

Here, we describe compression and decompression processes for SXSAQCT, see
Section 6 for more details of the compression stream Cp. There are two compression
modes, respectively resulting in:

1. lower compression rate, but faster query/decompression times. In this mode,
the complete annotation tree is stored in Cp, and so the decompressor does not
store any information about the schema.

2. higher compression rate, but slower query/decompression times. In this mode,
only the partial annotation tree is stored in Cp and so the decompressor needs
some information about the schema, in order to restore the complete annotation
tree. Here, either a schema tree is shared, or only a schema file is shared (and so
the schema tree needs to be restored). This mode is particularly useful for an
environment where multiple documents are submitted for querying and
compression, and it is assumed that all these documents are valid in the same
schema (the complete annotation tree can be restored when the first document
is submitted and then cached).

In the former mode, there are two possibilities:

13

1. The compressor and the decompressor share the schema file. In this case, the
decompressor needs to restore the schema tree

2. The compressor and the decompressor do not share the schema file, but they
share the schema tree. In this case, the decompressor needs to restore the
schema tree.

Recall, that the annotator SAX-es D and annotates Ts, to create Tap. We start by
describing some properties of Tap. Let N be a node of Tap, annotated by [ay,...,ax]; i.e.
ann(N) = [a3,...,ak].
Then, the following properties hold:
1) H(D)= H(Tap), where H(T)- the height of T
2) For each node N of Tap, with children cy,...,.cm

a) Fori=1,..,m, |ann(ci)| = {N}, where {N} = sum of ay,...,ax

B) in D, there are {N} nodes, nj,..,ngny labeled by N, for each such node

lann(ni)| = {N}
C) Letcy,...cx be children of N in Tap and let ann(¢;) = [ij1,..-,Cj,m]
Then, the node n; in D has the following children:
i1j children labeled by c1

ixj children labeled by cx

We assume that the compressor’s annotator annotates only dirty nodes, and at
initialization, ann(s) =[-1], for each such node.
To describe the details of the annotator, we use the following notations:
- given ann(s) =[iy,...,i], we set last(s) = ix
- we define ann(s) +=1ito be:
If i==-1 then append “-1” to the sequence ann(s)
If i==0 and last(ann(s)) == -1, then last(ann(s)) becomes 0 (i.e. here “-1+0=0")
If i==1 and last(ann(s)) == -1, then last(ann(s)) becomes 1 (i.e. here “-1+1=1")
Otherwise, increment last(ann(s)) by i.
- by child(s) we mean the “next-to-be-served” (in SAX order) child of s.

In each step of the annotator, there will be the “current” element d in D and node s
in Ts, which are “synchronized”; i.e. they have the same tag path. The algorithm
given below considers two cases, depending on whether we move down or up. We
say that sync(d) == s, if d and s are synchronized. When we go down in D, from d to
d1, and s is current in St, we have to find s1 in St, such as sync(d1)==s1

The two parts of the annotator, respectively going down (in D), and going up, are
described below (both parts share a global variable temp).

1. Moving down from d to d1 (which now becomes current in D). The invariant here
is: child(s)!=NULL

s1 = (temp == null) ? s.LeftChild : temp;
//initialize s1 to the first child of s or to temp - which is the last child visited

14

while(1) { // d1is current in D, s is current in S, need to find synchronized s1
if(sync(d1)==s1) {
ann(sl) +=1;
break;
}
// take care of the subtree rooted at s1
if(s1 !=temp) ann(sl) +=0;
s1 = s1l.rightSibling //get the next child of s
}
temp = NULL;
s =s1; // synchronized

2. Moving up from d to d1 (which now becomes current in D).

// take care of remaining children of s
if(temp==NULL) t = s.LeftMostChild; else t = temp.RightSibling;
for(; t != NULL; t = t. RightSibling;)
ann(t) += 0;
for every child t of current s
ann(t) +=-1;
temp =s;
s = parent(s);

5. XSAQCT: Schema-free XML Queryable Compressor

In this section, we describe a process of building an annotated document tree, given
an input document D, but with no knowledge of the grammar for D.

5.1. Building an Annotated Document Tree

We will say that a document D has a cycle if there exists a node n in D such that there
are two children x and y of n, which satisfy this condition: x <y and y < x (here, “<”
denotes the document order). If there are cycles, then add in Tap a “dummy tag
name”, here denoted by $, which will be used to avoid cycles. The document tree
may have dummy nodes, and if so they will be removed by the decompressor to

recreate the original document.

Example 5.1. Document D (which has cycles on x and y) is shown in Figure 5.1.

Figure 5.1. Sample document D

The annotated document tree (with dummy nodes) is shown in Figure 5.2

100110

Figure 5.2. The annotated document tree.

The restored document (with the dummy nodes) is shown in Figure 5.3.

Figure 5.3. Restored document D
m

To describe details of the process of building the annotated document tree, we use
the following notations:

1
2)

3)

4)

ann($)+=1 means: if the annotation of $ ends with “” then append “1,”;
otherwise append “,”

ann(x)+= 1 (for another annotation) means: if this annotation ends with “”
then append “0,”; otherwise append “,”

There is a table T, each row has 3 entries: a full path, a graph associated with
this path, as in the previous description, (possibly one node of this graph is
“current” - see below), and an annotation for $ (this entry may be empty)
“close(absolute path p)” means: for each node x in the graph associated with
p perform ann(x)+=1, and also if path p has a non-empty annotation for “$”
then perform ann($)+=1

16

5) “cycle(x)” means that we are considering the node x and adding x to the
graph would create a cycle (e.g. if we have a graph: a< b and we want to add
a this would create a cycle a<-b<-a)

Algorithm 5.1

Input: An XML document D.

Output: An annotated document tree Tap

Method:

1) Going up from the node x to y: if x was the last (rightmost) child of y and so
the next action would be going up to the parent of y, then close(x) and unset
the current node in the graph

2) Going down to node x:

- try to add x to the appropriate graph (see example below)
- if a cycle would be created then close(x) (see 4) above), then add 1 to
ann(x), and increment by 1 the annotation of $ (if such annotation does not
exist or it ends with “”, then create it and initialize to 2)
- if no cycle would be created, then add x to the graph (a new node, or just
increment the annotation of existing x), and make it current node in the
graph

3) After completion, check annotations and add leading 0’s for regular nodes
and 1’s for dummies (i.e. $’s).

Example 5.2. Here, we use indices for explanations, e.g. al is just a.

Figure 5.4. Sample document D

Table 5.1 shows all major steps in creating the annotated document tree for the
document D from Figure 5.4; for each step there is a description (if needed) saying
which node of the document is encountered during the SAX traversal, wherever
there is a change then a path and its graph (the graph is not shown if it is empty),
and the annotation of $ if it exists. The current node is underlined. Entries for leaves
(where graphs are empty) are omitted. When appropriate, we show below the path
and the graph; e.g. (/r a[l]) indicates the graph consisting of a single node a,
annotated by 1, for the path “/r”). Only the paths/graphs that have changed from the
previous step are shown. Sometimes “empty graphs” are omitted.

17

Table 5.1. Trace of the execution of Algorithm 5.1

1 Root r Graph /r
2 |al (/r, a[1])
(/rla, empty)
3 |sl (Irfa, s[1])
4 Go up to al; close(/r/a), unset current (Irla, s[1,]
5 Go to b1, add a new node b to the (/r, a[1]<- b[1])
graph for /r and an edge between b and
a
6 Gototl (r/b/, t[1])
7 | Gotoxl (/riblt, x[1])
8 Go to y1; try to add an edge betweeny | (/r/b/t, x[1]<-y[1])
and x (because X is current)
9 | Go to x2: this would have created a (/r/bft, x[1,1]<-y[1,]) 3[2]
cycle. Use a rule for a cycle (above)
10 | Go up to t1, no occurrence of y (/r/blt, x[1,1,]<-y[1,0,]) $[2,]
Close /r/b/t: no current anymore.
11 | Gotobl, close /r/b/ (/rfb, t[1,])
12 | a2: cycle (/r, a[1,1]<-b[1,]) $[2]
13 | s2 (Irfa, s[1,1])
14 | ul (/rlals, u[l])
15 | Go up to s2: close (/rfals, u[1,])
16 | s3: (/rfa, s[1,2])
17 | wl: the graph consists of 2 isolated (/rfals, u[1,] w[1])
nodes (because it had no current
before)
18 | u2, no cycle (/rfals, w[1]<-u[1,1])
19 | s3: close (/rfals, w[1,]<-u[1,1,])
20 | z1 (Irfa, s[1,2]<-z[1])
21 | a2: close (Irfa, s[1,2,]<-z[1,])
22 | a3 (Ir, a[1,2]<-b[1,]) $[2]
23 | z2 (Irla, s[1,2,]<-z[1,1])
24 | s4: cycle (Ir/a, s[1,2,0,1]<-2[1,1)]) 3[2]
25 | Close /rlals (/rfals, w[1,0,]<-u[1,1,0,])
26 | Upto a3; close (Irla, s[1,2,0,1,]<-2[1,1,0,]) | $[2,]
27 | b2: (/r, a[1,2]<-b[1,1]) 3[2]
28 | t2: (/r/b, t[1,1])
29 | Up to b2: close (Ir/blt, x[1,1,0,]<-y[1,0,0,]) | $[2,1]]
30 | Up: close (/r/b, t[1,1])
31 | b3 (Ir, a[1,2]<-b[1,2]) $[2]
32 |t3 (/r/b/, t[1,1,1])
33 |y2 (/r/blt, x[1,1,0,]<- $[2,1,1]

y[1,0,0,1])

18

34 | Up: close (/r/blt, x[1,1,0,0,]<- $[2,1,1,]
y[1,0,0,1])
3% |4 (/r/b, 1[1,1,2])
36 | x3 (/r/blt, x[1,1,0,0,1]<- $[2,1,1]
y[1,0,0,1])
37 |y3 (/r/blt, x[1,1,0,0,1]<- $[2,1,1]
y[1,0,0,1,1])
38 | Upto t4: close (/r/blt,x[1,1,0,0,1,]<- $[2,1,1,1)]
y[1,0,0,1,1])
39 | Upto b3: close (/rib, t[1,1,2,])
40 | ad: cycle (Ir, a[1,2,1]<-b[1,2,]) $[3]
41 | Finish: close /r/a and then /r (/rfa, s[1,2,0,1,0,]<- $[2,1]
z[1,1,0,0,])
(/r, a[1,2,1,]<-b[1,2,0,]) 3$[3,]

Note: we will add leading 0’s and 1's when creating the annotated document tree in
order to make sure that the number of positions in the annotations is correct. The
annotated document tree created from the above table is shown in Figure 5.5.

Figure 5.5. The incomplete annotated document tree

The annotated document tree in which leading 0’s are added to node annotations
and leading 1’s are added to $’s annotations is shown in Figure 5.6.

19

[1.2.1]

[1.1.21]

Figure 5.6. The complete annotated document tree

The restored document tree obtained from the complete annotated tree, in which
dummy nodes are not removed is shown in Figure 5.7.

4] 7] B
E
A ['
olaa
|
1
I G oRnEn

Figure 5.7. The restored document tree (dummy nodes are not removed).

[t is easy to see that removing dummy nodes from the tree shown in Figure 5.7 will
produce the original document tree shown in Figure 5.4.
O

5.2. Compression and Decompression

The decompressor has the following logical passes (the actual implementation is
different, see below):
- data decompressor to restore Seq
reannotator, re-ann() which re-annotates the skeleton tree Tp to
restore Tap
- restorer, which uses Tap to output the decompressed file
Below, we provide two versions of the decompressor; one, which will be geared
towards increasing decompression time, possibly at the expense of compression

20

rate, and the other, which will provide faster decompression but may increase the
compression rate.

5.2.3 Version I: Higher Decompression Rate

In this version, the annotated tree is first re-annotated, and then used to output the
restored document.

Reannotator
Global variable, called number, initialized to 1.

re-ann(SkeletonTreeNode current) {
for every child c of current {

if(clean(c))
annotate c with “number” of 1's;

else { // dirty c
fetch “number” digits from Seq and

store into the sequence “els”;

annotate c with “els”;
number = sum of all digits in “els”;

}
re-ann(c);
}
number = sum of all digits in the annotation of n;
}
Restorer

re-ann(root of SkeletonTreeNode);
output <tag of the root>

d-dfs(root of SkeletonTreeNode);
output <\end of tag for the root>

where d-dfs() is described below.
Notations:

ann(n): first digit in the annotation of the node n

- chop(n): remove the first digit in the annotation of n (always 0)

- dec(n): decrement by one the first digit in the annotation of n (never
0)

- LC(n) and RS(n): respectively the leftmost child and right sibling of n

d-dfs(SkeletonTreeNode c) {

Node n;
n= LC(c);

21

while(n <> 0) {

if(ann(n)>0) {
output “<” + tag_of n + “>”"
d-dfs(c);
} else
chop(n);
n = RS(n);
}
dec(c);

output “<\” + tag_of_c + “>”
if(ann(c)==0) chop(c);
else {

output “<” + tag_of c + “>”
d-dfs(c);

5.2.4 Version ll: Faster Decompression Time

The above restorer uses both tail and non-tail recursion, with tail recursion easy to
remove. Below, we show a decompressor, which no longer requires that the
skeleton tree to be re-annotated; instead we assume that the tree stores “pointers”
to the complete annotation stream, i.e. ann(c) points to the first integer in the
annotation stream. Therefore, instead of executing two separate passes; first re-
annotating and then restoring, here we restore the original document in a single
pass.

To remove recursion, we maintain a stack storing pairs of nodes (c,n), and
assume we have three stack operations; empty(), push(c,n), (c,n)=pop(). Our tests
showed that a non-recursive version executed on files from the Wratislavia corpus
were between 10 and 40 percent faster that the recursive version.

int b; // global flag;
annotate(SkeletonTreeNode c) {

Node n;

while(1) { // simulate recursion
b=0;
n= LC(c);

while(1) { // simulate returning from non-tail recursion
while(n <> 0) {
if(ann(n)>0) {
output “<” + tag_of n + “>”"
push(c,n);
b=1; // will jump
c=n;

22

break;

} else
chop(n);
// returning from recursion here
n = RS(n);
}
if(b == 1) break; // to go to the outer loop and start all over
dec(c);

output “<\” + tag_of _c + “>”
if(ann(c)==0) chop(c);
else {
output “<” + tag_of c + “>”
break;
}
if(empty()) return; // done
(c,n) = pop();
n = RS(n);

}

Note that the above code modifies annotations using functions chop() and dec(), but
our implementation maintains counters, and does not modify the annotation
sequence (for more details, see Section 6.)

6. Structure of Cp and Containers

In this section, we first describe the details of the compressed document Cp, and
then various containers stored in Cp.

6.1 Compressed Document

The compressed document Cp starts with a one-byte long header, used to specify
various options used for compression, querying and decompression, and is
described below.

For both SXSAQCT and XSAQCT, the header provides the following information, as to

whether:

1. labels of the annotation tree are stripped from the annotation tree, and stored in
a separate (compressed) container, or stored together with the (compressed)
annotation tree

2. offsets are absolute, or they are relative to the previous offset

3. the annotation tree is combined with the annotations and then compressed, or
separate containers are created and then compressed

4. integer numbers are represented using variable-size-integers, VSIs, or they are

23

stored in four bytes

5. Text and attribute value containers are stored in a dfs-order (for the annotated
document tree), or each node of the annotated document tree stores the
information as to where its container is located in the compressed document

Details of the header file are as follows (below, S stands for a schema file and A
stands for the annotation sequence, Ts stands for a schema tree and Tp for a
skeleton tree; the corresponding bit is set to 1 if the information given in the second
row is provided, and it is set to 0 otherwise):

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

S stored | Ts) labels offsets |A&Tp | VLI containers
or stored | stored | stripped | absolute | merged | integers | are in dfs-
shared order

In more details, the first two bits have the following interpretation:

e 10, if Sis stored in Cp and Ts is not stored in Cp (in this case bit 2 has be to set
to 0, to indicate that Tp is not stored)

e 11, if Sis not stored in Cp but its URI is stored there, and Ts is not stored in Cp
(in this case bit 2 has be to set to 0, to indicate that Tp is not stored)

* 01, if neither S nor its URI are stored in Cp, and Ts is stored in Cp (in this case
bit 2 has be to set to 0, to indicate that Tp is not stored)

e 00, if neither S nor its URI are stored in Cp, and Ts is not stored in Cp (in this
case bit 2 has be to set to 1, to indicate that Tp is stored)

Note that the following 20 bit combinations are currently unused and left for the
future allocations (below, x stands for one or more “don’t care” bits):
1. Four combinations of the form 101x, 111x, 011x, and 000x
2. Sixteen combinations; four of the form 100x00x, 100x10x, 100x11x,
100x01x, then four more similar combinations with respectively 11, 01 and
00 in front (if Tp is not stored then the information about labels and merging
are irrelevant)
These 20 combinations are used to represent:
* 8 possible back-end compressors for annotations
* 9 possible back-end compressors to compress Tp (one of these combinations
indicates no compression)
The header is followed by (the information given below may or may not appear
depending on the values stored in the header; all the containers are compressed):
1. One of: the UR], the schema, or the schema tree.
Annotation container
The annotated tree (see below for more details)
The container storing labels of this tree
A sequence of compressed containers, storing text and attribute values; each
container is preceded by its length.

Gk wn

24

There is a special byte, called a node mask (NM) added to each node of Tap, which
represents the following values (which may or may not be significant, depending on
the value of the Cp header):

bit 0: O clean, 1 dirty

bit 1: (used only for clean nodes, which have all annotations equal), 0 if VLI
representing each annotation is not equal to 1, and in this case is stored following
NM, and 1 if each annotation is equal to 1

bit 2: 0 regular, 1 dummy

bit 3: 0 attribute, 1 element

bit 4: 0 if no mixed content, 1 if mixed

bits 5,6,7: 8 possible data compressors

Note that the following bit combinations are currently unused and left for the future
allocations:

1. Combinations for attributes of the form xxx0x

2. Combinations for dummy elements of the form xx1x

The entire tree Tap is implemented using the leftmost-child right-sibling
representation in the array. Each node of Tap stores the following information:

- leftmost child

- right sibling

6.2 Containers

During the compression, when the original document is parsed for the first time, the
implementation maintains buffers, which are flushed to containers when they
become full. (In the future, we will experiment with various sizes of buffers.)
Figure 3.6 shows homogenous containers for nodes with mixed contents may
require scanning the annotation container in order to answer queries such as
/a/b[2]/*. To avoid this scanning process and facilitate such queries, containers
may be further sub-divided into sub-containers. Here, we will consider two
possibilities:
» fixed sub-containers created by the compressor (at the expense of storing the
additional information in the annotation tree)
e creating sub-containers on demand, during the querying process and storing
this information in the cache.

7. Querying

Since at the time of writing this report, our query processor was under
development, here we provide only some ideas about its design.

We assume lazy initialization of the compressed document Cp; i.e. when the user
performs a query for the first time, the initialization process takes place:

1) The skeleton tree and the container storing labels are retrieved from Cp,
decompressed and used to restore Tp, in internal memory, in a form of an
array;

2) As we mentioned in Section 6, the tree Tap is implemented using the
leftmost-child right-sibling representation in the array. The array used to
represent tree Tap is now complemented by the second parallel array, which,
for each node of this tree stores the following data:

a) integer values representing the left-sibling and the parent (to facilitate

use of various axes for queries)

b) one-bye long node masks

c) three-bytes long relative offsets into annotations
Note that other containers storing text and attributes values are not decompressed
during the initialization.
We assume that the compressor creates a separate container for similar paths, and
each container has a header storing its compressed length (these containers are
then concatenated). We also assume that each container is compressed (by the
standard data compressor, appropriate for the kind of data used in this container)
separately.

Example 6.1

Here, we consider querying for semi-leaves for the document D shown in Figure 6.1,
with the containers (stored consecutively in the dfs-order order) as shown in Figure
6.2.

Figure 6.1. Sample document D

e & d

t4 t5 t1 2] [6 t3

Figure 6.2. Text containers for D
Now, consider the following query: /a/b/c. From the skeleton tree Tp shown in

Figure 6.2, we know that the container for “c” is the second one, and so retrieve it,
and decompress.

26

Figure 6.3. Skeleton tree for D O

8. Results of Experiments with XSAQCT and SXSAQCT

The initial implementation of our compressors was completed using Java and
Xerces. The results of our experiments are reported in Table 8.1.

Table 8.1 Results of our experiments

uwm shakespeare lineitem SwissProt enwikinews enwikibooks dblp
St Nodes 43 155 37 394 50 50
Dummy
Nodes 0 9 0 2 0 0
St size
(unc) 384 1,051 383 3,495 467 467 2,
St size
(com) 211 309 200 779 251 251
Compr.
time 1.246 3.651 4.426 29.836 7.652 23.279 39.85
Init PAQ 0

313

10

248

570

compr % 0.00315 0.0002643 0.000235 0.000188 0.000003783 0.0000009829 0.0000550

9. Conclusion and Future Work

In this paper, we described our current work on two new queryable XML
compressors. While this work is in its early stage, the design of these compressor
and the results of our experiments indicate that they may successfully compete with
other known queryable XML compressors. Our future work includes:

* Rewriting the code using C++ rather than Java

* Handling recursive schema

* Analyzing containers to determine the best back-end data compressor

* Building a complete query processor

References

[Skibinski] P. Skibinski, Sz. Grabowski, and]J. Swacha - "Effective asymmetric XML compression”, Software -
Practice & Experience, 2007/2008.

27

