
An In-Memory XQuery/XPath Engine

over a Compressed Structured Text Representation

Angela Bonifati Gregory Leighton Veli Mäkinen Sebastian Maneth

Gonzalo Navarro∗ Andrea Pugliese

Abstract

We describe the architecture and main algorithmic design decisions for an XQuery/XPath
processing engine over XML collections which will be represented using a self-indexing approach,
that is, a compressed representation that will allow for basic searching and navigational oper-
ations in compressed form. The goal is a structure that occupies little space and thus permits
manipulating large collections in main memory.

1 Generalities

In principle we will aim at a static representation, because it will be significantly faster and easier
to program (a good part already exists). Only for the text we will use a dynamic representation at
construction time, so as to permit building the index in compressed form.

Let u be the total length of the collection (measured in symbols), n be the total number of
nodes, Σ the collection alphabet and σ its size, t the total number of different tag and attribute
names. In the mixed text model there are 2n − 1 texts, but say there are d < 2n nonempty ones.
Logarithms will be in base 2 and Hk(S) will denote the empirical k-th order entropy of sequence S
[Man01].

Σ will be regarded in this section as the set of byte values {1 . . . 255} and a special terminator
will be called $ = 0. Support for multibyte sequences will not be provided at this level, but those
encodings guarantee that we can ignore them, and still a substring search for a valid multibyte
string will not yield misaligned occurrences.

2 Basic Representation and Data Structures

For a survey of many compact data structures and compressed indexes see [NM07]. In what follows
we cite the original papers only.

2.1 Data Representation

The representation of a structured text collection (XML) will be composed of the following com-
pressed/compact data structures. These at the same time represent the collection and provide
navigation and indexed access to it.

∗Partially funded by Yahoo! Research project “)5.315(Compact Data Structures”.

Dagstuhl Seminar Proceedings 08261
Structure-Based Compression of Complex Massive Data
http://drops.dagstuhl.de/opus/volltexte/2008/1677

Par: A parentheses representation of the tree structure. In particular we will use the balanced
parentheses representation [MR97] (which now has good implementations supporting i-th
child query [Sad08]), obtained by traversing the tree in DFS order and writing a "(" whenever
we arrive at a node and a ")" when we leave it. A tree node will be identified by its
corresponding opening parenthesis in Par. There will be no support for attribute nodes at
this level, so the upper level interface must convert them to normal tree nodes. Overall Par
will need 2n + o(n) bits.

Tag: A sequence of the tag identifiers of each tree node, including an opening and a closing version
of each tag, to mark the beginning and ending point of each node. These tags are numbers
in the range [1, 2t]. The sequence is aligned with Par so that the tag of node i is Tag[i].
Tag can be stored using a wavelet tree [GGV03], taking at most 2n log(2t) + o(n) log t bits,
and even 2nH0(Tag) + o(n) log t if we use a compressed wavelet tree (e.g. giving it Huffman
shape or representing the bitmaps using RRR structure [RRR02]). This would provide rank,
select and access operations in O(log t) time. We can also use Golynski et al.’s representation
[GMR06] to achieve 2n log(2t)+n o(log t) bits of space, select in constant time and rank and
access in O(log log t) time (which should be closer to constant in practice). We could replace
this by two sequences over t symbols, sorted in preorder and in postorder, to convert 2n log(2t)
into 2n log t, but the extra 2n bits save us from rank/select to map from parentheses to tag
sequence positions.

TagName: A simple table mapping tag names (strings) to tag identifiers, for displaying purposes.
Space is proportional to t.

Text: A collection of at most 2n − 1 texts (or “documents”) of total length at most u. Those
correspond to the textual contents at the tree leaves and also between consecutive children
of each node (and before/after the first/last child). Their position in the collection (in a left
to right read of the XML) will be their document identifier (a number in [1, 2n − 1]). The
collection will be represented as the wavelet tree of the Burrows-Wheeler Transform (BWT)
[BW94] of the set of texts. The texts will be inserted into the collection as independent
strings, ending with a terminator $ (if one tries to move backward from the first symbol, one
ends up in the $ terminator of some other text). The insertion will be so that the terminator
of the i-th text will appear at F [i] in the BWT, and thus it would be easy to extract it given
a document identifier i. We note that the mapping of tree node i to the range of document
identifiers below it is simply [i, i+2·SubtreeSize(i)−2]. The space will be uHk(T)+o(n log σ)
bits, being T the collection of all the texts.

Doc: The document number corresponding to the ranks of the $’s of the BWT. Given a $ at L[i],
rank$(L, i) gives the rank, and the mapping gives the document number (note the terminators
$ are not ordered by document number). Needs 2n log(2n) bits, or 2n+d log(2n) if we do not
index empty texts (in which case a bitmap of length 2n− 1 indicating the valid documents is
added).

2.2 Construction

Construction will operate so that the XML collection can be read in one pass from disk (in DFS
order), yet the data structures must fit in memory in compressed form.

2

The parentheses Par are built by appending bits as we read tags, in left-to-right, order. Extra
parentheses structures can be built on them at the end, or even at loading time if this does not
need much extra space.

For Tags, we could first store a sequence of integers (maybe with byte codes as we do not know
in the beginning how many different tags are there), and at the end we can build the wavelet tree
or Golynski et al.’s structure on it.

Thus as the parser sends events of starting/ending of nodes, one just appends to those sequences.
Instead, we should maintain a dynamic (and hopefully compressed) wavelet tree for inserting the
consecutive texts that the parser sends. The parser should notify even about the empty texts
between consecutive tags. We insert the new text into the collection Text, right to left, starting
by inserting its last symbol at bwt(i), where i is the new document number. Should we decide that
there are too many empty texts, we add 0/1 to a bitmap marking the nonempty texts (to be later
provided with rank operation) and insert only nonempty texts to the collection (and increasing
text identifiers only when inserting them).

At the end, the interface sends the tag name table, the structures are made static, and saved
to disk (together with the name tables). Sublinear extra structures that can be easily built on the
fly (rank, findclose, etc.) are not saved. The text collection can be discarded at this point, as it
is represented by the structures just built.

The Doc mapping can be stored initially as a dynamic sequence supporting insertions, and
storing the document identifiers ordered by their positions in L. If we insert document i and its
terminator $ falls at L[p], then we insert i at position rank$(L, p) in this sequence.

2.3 Loading

The index is saved under a given file name, using different extensions, and is loaded with the same
file name. Some sublinear structures are built on the fly upon loading, transparently.

Once loaded in static form, the data structures will be able of supporting various tree navigation
and text searching operations.

2.4 Tree Navigation

These are operations to move around the tree and make some queries on it. Recall that the node
identifier is the same as a parenthesis position in Par, although the interface should not need to
know that in principle. All these operations are constant time unless otherwise noted (but we mark
which are particularly fast). Note that tag is a tag identifier in the following.

First the navigation queries:

Root: Returns the tree root node (in Par this is simply 1).

SubtreeSize (x): Returns the number of nodes (and attributes!) below node x.

SubtreeTags (x, tag): Returns the number of occurrences of tag within the subtree of x. This
involves a symbol rank in Tag, time O(log log t) and usually O(1).

IsLeaf (x): Returns whether x is a leaf. Very fast.

IsAncestor (x, y): Returns whether x is ancestor of y. Very fast.

3

IsChild (x, y): Returns whether x is parent of y. IsAncestor(x, y) and Depth(x) = Depth(y)−1.

NumChildren (x): Number of children of x.

ChildNumber (x): Returns i if x is the i-th of its parent.

Depth (x): Depth of node x, excess(Par, x). A simple binary rank.

Preorder (x): Preorder numbering of node x. This is just rank((Par, x).

Postorder (x): Postorder numbering of node x. This is rank)(Par, findclose(Par, x)).

Tag (x): Gives the tag identifier of node x, just Tag[x]. Takes O(log log t) time on Golynski et
al.’s representation, usually O(1).

DocIds (x): Gives the range (i.e., a pair of natural numbers) of document identifiers that descend
from x.

Now moving operations:

Parent (x): Gives the parent of node x. Assumes x has a parent.

Child (x, i): Gives the i-th child of x, assuming it exists.

FirstChild (x): Gives the first child of x, assuming it exists. Very fast.

NextSibling (x): Gives the next sibling of x, assuming it exists.

PrevSibling (x): Gives the previous sibling of x, assuming it exists.

TaggedDesc (x, tag): Gives the first node tagged tag with larger preorder than x and within the
subtree of x (or returns −1 if there is none). Requires rank/select in Tags, O(log log t) time
and usually constant.

TaggedPrec (x, tag): Gives the last node tagged tag with smaller preorder than x and not an
ancestor of x (or returns −1 if there is none).

TaggedFoll (x, tag): Gives the first node tagged tag with larger preorder than x and not in the
subtree of x (or returns −1 if there is none).

Note we can in general find fast the next occurrence of any tag after any position, which is
important for fast XPath evaluation.

Finally, some book keeping functions:

PrevText (x): Gives the document identifier of the text to the left of node x (and returns −1 if x
is the root node or if the text is empty/non-existing). For instance, application of PrevText
to the node identifier of the b-node in the XML instance <a>text1text2text3

returns the document identifier of “text1”.

NextText (x): Gives the document identifier of the text to the right of node x (and returns −1
if x is the root node or if the text is empty/non-existing). Application of NextText to the
b-node in <a>text1text2text3 returns the document identifier of “text3”.

4

MyText (x): Gives the document identifier of the text below the node x (and returns −1 if x is
not a leaf node if the text is empty/non-existing). Application of MyText to the b-node in
In <a>text1text2text3 gives the document identifier of “text2”.

TextXMLId (d): Gives a unique number that is consistent with the preorder of the position of the
document d in the tree consisting of all tree nodes and all text nodes. For instance, application
of TextXMLId to the document identifier of “text1” in <a>text1text2text3

gives a number that is larger than NodeXMLId of the a-node, but is smaller than NodeXMLId
applied to the b-node; e.g., it could give 2 for “text1” and 4 and 5 for “text2” and “text3”,
respectively.

NodeXMLId (x): Gives a unique number that is consistent with the preorder of node x in the tree
consisting of all tree nodes and all text nodes. For instance, application of NodeXMLId to the
b-node in <a>text1text2text3 gives a number that is larger than TextXMLId
of “text1” and is smaller than TextXMLId of “text2”; e.g., it could give 3 to be consistent
with the numbers of the example given in TextXMLId.

2.5 Text Searching

These are operations to query the text contents. Except for the first, they are supposed to return all
the document identifiers that match a string query, in document order. There are four versions of
each query: existential (is there a match?), counting (how many matches), document reporting (give
document numbers, with an iterator), full reporting (give pairs (doc, pos) of document numbers and
byte offset within the document). The search is done with the backward search technique on the
BWT of the collection; the whole structure is called an FM-index [FM05]. This includes a sampling
for locating; we will put a sampled each l text positions (apart from Doc, which solves the problem
for the text limits). At those samples we put the document number and offset, for O(u log(u)/l)
extra bits. More precisely, we will store a bitmap aligned to the bwt marking the sampled positions,
and an array similar do Doc giving document number and offset.

Time is O(|s| log σ) for the search, plus an extra to report we detail next, plus sorting the results
in document order.

ParentNode (d): Gives the parent node of document identifier d. For the rest, it is a matter of
going to Par[d], and if it is a "(" the answer is d, otherwise it is parent(d). Constant time.

Prefix (s): Search for documents prefixed by string s. After the normal backward search (time
|s| log σ), there will be several $’s in the bwt range. Now we map to Doc using rank$ and
can answer exist/count in O(1) time, or report each occurrence, in some order (indeed,
lexicographic, but not document order), in O(1) time per occurrence.

Suffix (s): Start the search with the $, and continue with backward search for s. Now have to
check one by one in the final range, continuing the LF until reaching a $ or a position sampled
for locating (this is part of a normal FM-index). Cost is O(l log σ) per answer. For existential
and counting query, one can still use the range in L after the search.

Equal (s): Start as suffix, then map at the end to the $’s. Cost is like Prefix.

5

Contains (s): Normal backward search, completed like the suffix. Has the additional problem of,
for all but full reporting queries, having to filter out the occurrences that fall within the same
document, being the cost proportional to that number of occurrences. Improving this seems
to require using much space.

LessThan (s): Similar to a prefix search, but using only the ep of the search, sp is always 1. If at
some point there are no occurrence of c within [1, ep], have to find those of smaller symbols
in the range. This can be done by regarding the wavelet tree of the BWT as a range search
data structure.

Note that in case we do not store empty nodes in the bwt, Doc arrays store the original document
numbers, and also we store a bitmap telling which documents are nonempty. This is sufficient for
all purposes. A more general mechanism is to not index (yet store in the bwt) the contents of some
texts (e.g. composed of separators). In this case we need another bitmap aligned to the $’s of the
bwt, telling which are indexed.

2.6 Displaying Contents and Other Services

Given a node x, we want to display its text (XML) content, i.e. return the string. We traverse
the structure starting from Par[x], retrieving the tag names and the document contents, from the
document identifiers. The time is O(log σ) per text symbol and O(log log t) per tag.

GetText (d): Gives a letter by letter iterator through the text with doc id d (in reverse order).

GetSubtree (x): Generates the subtree at node x.

3 Parsing XML into our Data Structures

In order to support XPath queries, we need to represent XML documents faithfully with respect
to the XPath data model. In this data model, an XML document is represented as an unranked,
ordered tree, in which each node has one of the following seven types: root, element, attribute,
text, comment, processing-instruction, or namespace.

Since our low-level data structures only have two different types of nodes, tagged and text, the
type information about non-text nodes is stored by means of special tags not valid in XML docu-
ments, to avoid any collision. Consider for instance an element node that has an attribute with name
“date” and value “11-11-2007”. We store all attributes under a special node labeled <<@>>, which
we insert as first child of the element. Each attribute is represented as a two nodes subtree under
<<@>>, consisting of an element node which is labeled by the attribute name, and a text node that
contains the attribute value. For instance, <c/> is
represented by a tree of the following form

<a><<@>><date>11-11-2007</date><att2>foo</att2></<@>><c/>

This encoding is the most suitable for our needs. Indeed, it allows us to skip all the attributes of an
element quickly by using the fast primitives FirstChild and NexSibling. Then, it is fairly easy to
rewrite XPath queries syntactically: /a/@date becomes /a/<@>/date::text() for instance. This
internal encoding can be kept all the way through the query execution and only needs to be handled

6

when serializing the results. Section 4.2 details how the automaton model can conveniently express
tests such as “all nodes but attributes” within a single transition.

An XML document has one unique root node which is the parent of the document element
node, and which carries no queriable label information. We can conveniently attach the XML
document name to this node, in order to support the representation and querying of multiple XML
documents.

A SAX parser is used to process the input XML document. Calls to the storage-level con-
struction interface (cf. Section 2.2) are made in response to events reported by the parser, as
follows.

Start Document: Invokes New child(documentName) to construct the root node.

Qu: In Sec. 2.2, the New child operation has the tag id as its input parameter. It seems
as though it should instead be the tag name, since the tag name-tag id mapping is stored
inside the engine by the TagName table, and it’s only the tag names that we otherwise refer
to outside the engine.

Answ: This is correct, the TagName table is constructed by the engine. Note, however, that
after construction the engine will make the TagName table public; this is needed because the
traversal functions need tag id’s, not tag names.

End Document: Notifies the interface that parsing has completed, and that structures can be
saved to disk.

Qu: It’s not clear how the storage engine knows that document parsing has completed. To
handle it as described above, we’d need to add another method to the construction interface.
But if tree depth is monitored inside the engine somehow, it should be able to automatically
figure out when the document root node has been closed without an explicit call from us.

Start Element (uri, localName, qName, attributes): The element node is constructed with
a call to New child(qName). If uri is a non-empty string, then invoke New child(‘:’ +

uri). For each attribute entry in attributes, New child(attName) is invoked, followed by
New text(attValue), and Node finished, where attName and attValue represent the name
and value of the current attribute entry.

End Element: Invokes Node finished to close off the current element node.

Characters(string): Invokes New text(string) to insert a text node as a child of the current
element node.

Comment(string): Invokes New child(‘!’ + string) followed by Node finished.

Processing Instruction(target, data): Invokes New child(‘?’ + target), followed by New

text(data) and Node finished.

Note that under this strategy, a parent-child relationship exists between each attribute node
and its enclosing element node. In the XPath data model, however, this relationship is one-way: the
element node is the parent of its attribute nodes, but attributes are not considered to be children
of the element node. The same holds for namespace nodes. Such inconsistencies will need to be
managed by the XPath evaluator.

7

Additionally, occurrence counts for each distinct element tag name and attribute name are
calculated during the parsing process. Such statistics are later used to perform XPath query
optimization.

Qu: These calculations could either be done inside the storage engine, based on the number
of calls to New child for each tag/attribute name, or we could do so ourselves outside the storage
engine.

4 XPath Queries

The aim is to support a practical subset of XPath, while being able to guarantee efficient evalu-
ation based on the data structures described before. Since all tree navigation and text searching
operations are supported within O(log n) time, we wish to support a subset of XPath which can
be evaluated in O(|Q| log n) too, per result node being reported; by default, results are returned as
iterators over node identifiers (in document order). Here |Q| denotes the size of the query Q, that
is, the number of nodes in Q’s parse tree.

As a first shot we will support the “Core XPath” subset [GKP05] of XPath 1.0. It supports all
12 navigational axes, all node tests, and filters with navigational predicates and Boolean operations
(and, or, not). A node test (nonterminal NodeTest below) is either the wildcard (’*’), a tagname,
or a nodetype test, i.e., one of comment(), text(), processing-instruction(), or node(). Here is an
EBNF for Core XPath.

Core ::= LocationPath | ‘/’ LocationPath
LocationPath ::= LocationStep (‘/’ LocationStep)*
LocationStep ::= Axis ‘::’ NodeTest | Axis ‘::’ NodeTest ‘[’ Pred ‘]’
Pred ::= Pred ‘and’ Pred | Pred ‘or’ Pred

| ‘not’ ‘(’ Pred ‘)’ | Core | ‘(’ Pred ‘)’

A data value is the value of an attribute or the content of a text node. Here, all data values
are considered as strings. If an XPath expression selects data values, i.e., its final axis is either
the attribute- or the text-axis, then we call it a value expression. Our XPath fragment (“Core+”),
consists of Core XPath plus the following data value comparisons which may appear inside filters
(that is, may be generated by the nonterminal Pred of above). Let w be a string and p a value
expression.

p = w (equality): tests if a string specified by p is equal to the string w.

contains (w, p): tests if the string w is contained in a string specified by p.

starts-with (p,w): tests if the string w is a prefix of the string specified by p

4.1 Top-Down and Bottom-Up Evaluations

The standard idea of top-down evaluation is to go through the expression parse tree and to compute
for each path step the (intermediate) set of selected nodes, starting from the set obtained by the
previous step. We rely on an efficient representation of sets of nodes. For instance, consider
the query //a//b which selects all b-descendants of a-nodes. Our evaluator generates the call
TaggedDesc(Root,ta), where ta is the tag identifier of a. According to Section 2.4, this takes time

8

O(log log t). Note that the resulting iterator describes a set of nodes of size at most n. Next, we
iterate through these nodes u and concatenate TaggedDesc(u, tb) to the result iterator. This takes
O(n log log t) (usually O(n) in practice) time. Altogether we obtain an algorithm which runs in
time O(|Q|n log log t). This is slower than (but in practice similar to) the standard core XPath
algorithm by Gottlob, Koch, and Pichler, which runs in time O(|Q|n) and is based on intersection
of nodes sets for each path step in the query. On a real machine, our algorithm might still perform
better though, because of cache behaviour and the small space required for our data structures.

The idea of bottom-up evaluation is to select certain leaves of the XML tree and then proceed
upwards towards the root node while checking further constraints of the query. In common imple-
mentations of XPath, this method is rarely used, because it requires direct access to the leaf nodes.
In our setting, we do have direct access to leaf text nodes: consider the query //text()[starts-
with(.,“b”)] which selects all text nodes that start with a “b”. In top-down evaluation, we traverse
through all nodes of the tree, and once we encounter a text-node check whether it starts with a
“b”. Thus, O(n) time is needed, even if the number m of result nodes is small. If we use bottom-up
evaluation, then we use Prefix(“b”) and obtain in O(1) time the first result and in O(m) all the
m result nodes. Similarly, for a query such as Qtop = /a/b[starts-with(text(),“blah”)] we iterate
through text nodes that start with “blah”, and for each one check whether its parent node is labeled
“b” and the parent of that is labeled “a” (and is the document element). This takes time O(m′),
where m′ is the number of text nodes that start with “blah”.

Which of the two is more efficient, top-down or bottom-up evaluation? This depends on the
actual numbers of selected nodes. Consider Qtop. If the number n of nodes is very large, but the
number α of children of the document element “a” is small, and the number β of text-children of
/a/b-nodes is small too, then top-down evaluation of Qtop will be faster than bottom-up evaluation
(because it runs in O(α + β) time, versus O(m′) required for bottom-up). In general, we propose
the following thumb rules: 1) if the query consists of a top-down path of the form /a/b/... without
any //, then we propose to do top-down evaluation. Otherwise, i.e., if it contains //-axes, then we
propose bottom-up evaluation. 2) Finer grained decisions can be obtained by taking selectivities
into account. For instance, we can pay O(|”blah”| log σ) to determine the number of text-nodes that
start with “blah”. If this number is small, then we would still prefer bottom-up evaluation over top-
down, even if only /-axes are in the query (thus overriding the first thumb rule). Thus, in general,
we will pay about the minimum of the times needed for top-down and bottom-up evaluation. In
general, bottom-up versus top-down decisions can be done dynamically, during evaluation.

Note that everything said above concerning how to search text nodes, also applies to the search
of attribute values, because they are stored in the same way as text nodes.

Qu: is it possible to apply TaggedDesc to a set of nodes of size m in time O(log m log t log n)?

4.2 Tree Automata Representation

One important factor which must be taken into account when considering top-down versus bottom-
up evaluation is the size of transient data-structures. To achieve both runtime and memory effi-
ciency, we tailor the classical definition of tree automaton [CDG+07] to our needs. Let us consider
an XPath query Q. Then a tree automaton is a tuple (Σ,Q,I,Any, qm,∆), where :

• Σ is the set of symbols

• Q is the set of states

9

• I ⊆ Q is the set of initial states

• Any ⊆ Q is a set of ignore states

• qm ∈ Any is a special marking state

• ∆ : Q× 2Σ → 2Q × 2Q is the transition function.

Σ, Q and I correspond to the classical definition of a tree automaton. Of course, neither Q nor
Σ need to be stored in the data structure, since they are “universal” sets, in the sense that every
state ever created for the purpose of query evaluation will belong to Q and every tag belongs to
Σ. I however is needed for both top-down and bottom-up runs. Any, the set of ignore states is
kept for optimization purposes. Indeed, in the classical definition of automaton, only leaf states
are final ones. For instance, the top down automaton, which checks whether the root node is an
“a” tag would first take a successful transition labeled “a” from some initial state q0 to a pair
of states (q1, q1). It then needs to reach the leaves of the subtree to be in a final state, hence
it must have “dummy” transitions q1 × {t} → ({q1}, {q1}) for all t ∈ Σ, and where q1 is a final
state, the recognition stopping once the automaton reaches the leaves of the tree. Such “complete”
automata are needed in theory to perform operations like determinization (for the bottom-up
case), minimization, complementation, and so on. However, from our point of view, this dummy
tree traversal is not needed, hence the special semantics given to ignore states: if the automaton is
in an ignore state, then it accepts any input tree without checking it. One of these ignore states,
the marking state qm has a special role. If the automaton takes a transition for which one of the
destination states is qm, then the current subtree is pushed into the result set of the query.

Lastly, the transition function is a bit more involved than in a the classical model. Note that it
is an intrinsic feature of XML, that the set of potential element tags that appear in a document is
infinite and not known a priori; this is in contrast to conventional string automata implementations
(e.g., in grep) where only legal characters need to be considered. Indeed, instead of being labeled
by tags, they are labeled by a possibly infinite set of tags, meaning that the transition is taken
if the input tag is in this set. However, this set of tags is also co-finite, meaning that it can be
represented in a finite way. Indeed, either the set is finite in which case it is only a collection of
tags or it is infinite but co-finite, in which case we store its complement (this idea is commonly
used for set representations, see e.g., the CDuce code at http://www.cduce.org/) For instance
the following XPath tests are represented as such:

• {’a’} = {’a’}, the set matching only <a>

• node() = {<@>}, the set matching any node

• * = {<@>, <$>}, the set matching any XML elements but not text nor attributes

The interest of this extension is twofolds. It allows us to merge transitions easily either in the case
of disjunction or conjunction. For instance consider : child::*/self::a such a path is equivalent
to child::a. The automaton gives us this simplification for free since at construction time, the
transition created is labeled : {<@>, <$>} ∩ {a} which is simply {a}.

Let us now briefly discuss how to make top-down and bottom-up recognition efficient. First
off, the automaton we build is non-deterministic. Of course, determinizing it before running the
query would not be a good idea, because this is potentially exponential in the size of the query

10

and furthermore, it needs a complete automaton. It is also common knowledge that a top-down
automaton cannot always be determinized. However, we use top-down recognitions for forward
navigational paths, that is paths without predicates. Such paths can always be executed by a
deterministic top-down automaton (which intuitively corresponds to the fact that they can be
executed in streaming). Instead of completely determinizing the automaton once and for all, we
keep a non-deterministic one which we determinize on the fly. Indeed, it is possible to interleave
the well-known subset-construction with the recognition one. This works for top-down as well as
bottom-up runs. The evaluation function now does not handle states but sets of states.

From a data-structure point of view, we need to manipulate sets of states and sets of tags (on
transitions), for which we want fast set operations as well as fast membership, emptiness test, etc.
Indeed, states of the automaton are merely identifiers and tags occurring in an XPath query can
be hashed and mapped to a unique integer (exactly this is done in our low level interface by means
of the TagName table). An important remark is that the number of states as well as the number
of tags is bounded by the size of the query Q In practice, this number is small enough so that
sets of such integers can be efficiently represented as the bits of a machine-size integer (nowadays,
the norm is 64 bits which allows queries of up to 64 steps, which seems unlikely for hand written
XPath expressions). Thus in practice, all the aforementioned operations can be done in constant
time by using binary arithmetic on integers. In our preliminary tests, using immutable balanced
binary trees gives better results than using bitvectors of size larger than 64 bits. This is because
immutable binary trees allow for much more data-sharing and are memory efficient when the stets
are sparse, which often happens in our case.

From an algorithmic point of view there are many optimizations to perform, besides the on-the-
fly determinization that we already mentioned. The first one, which is a logical extension is lazy
determinization [GGM+04]. Suppose we have the two following transitions in the automaton:

q0, {a} → {q1}, {q2}
q0, * → {q1}, {q3}.

If the input tree has tag ’a’ then both can be taken, hence we compute a set of successors for
q0, {a} to be {q1} and {q2, q3}. This is the idea behind on-the-fly determinization. Now we further
optimize this by using memoization, that is storing the result of this computation, since it will
always be the same. In practice, it consists in replacing both transitions with:

q0, {a} → {q1}, {q2, q3}
q0, * \ {a} → {q1}, {q3}

Then, the next time the automaton is in state q0, the choice is fully deterministic and computing
the successors sets is not needed anymore. This situation happens very often in practice, since the
above transitions are the same as the one encoding steps such as //a or following-sibling::a.

One last optimization, which is documented in [Hos] targets bottom-up runs. Indeed, bottom-
up runs will usually create bigger sets of successors than top-down runs. The idea is then to perform
bottom-up recognition with top-down filtering. When creating the successors sets in a bottom-up
run, we filter out the states which cannot be the result of the equivalent top-down run. Such a
technique always optimizes the bottom-up recognition and is fully detailed in [Hos]. More involved
top-down and bottom-up interleaving based on heuristics or more complex decisions are sketched
in Section 4.5.

11

4.3 Optimization through Pruning and Partitioning

Consider again the query //a//b of before. Of course, the evaluation can be optimized by applying
TaggedDesc(u, tb) only to top-most independent a-nodes in the document tree, instead of applying
it to all a-nodes. Hence, after locating an a-node u and concatenating its b-descendants to the
result set, we skip all following nodes of the iterator TaggedDesc(Root,ta) that are descendants of
u, using TaggedFoll(u, ta).

This type of optimization can be carried out for each path-step that is applied to a set of nodes.
For instance, to compute the following-nodes of a set of nodes S, it suffices to select the unique
left-most, lowest node of S, or, more precisely, the nodes of S with the lowest post-value. Recall
that the following-nodes of a node u are all nodes to the right of u in the tree, besides its ancestors
and descendants. We can use Postorder(x) to determine the node in S with minimal post-value.

As a last example, consider computing the ancestors of a set of nodes S. We compute the
ancestors only of the lowest independent nodes of S. However, this might still involve some duplicate
work, because these nodes may have common ancestors. This can be avoided by starting with the
right-most node in S and stopping the ancestor computation as soon a node is reached which
has a descendant in S. In this way, the ancestors of S-nodes are partitioned. Using pruning and
partitioning, no result node will be computed more than once [GvKT03].

4.4 Optimization using Selectivities

The selectivity of a query is the size of its result set, i.e., the selectivity of an XPath query Q is
the number of nodes selected by Q. Through the SubtreeTags (x, tag) operation of Section 2.4 we
obtain in time O(log log t) the selectivity of the query //tag, applied to the node x. Consider again
the query //a//b, and a tree that has many a-nodes but only few b-nodes. Instead of iterating
through (top-most independent) a-nodes and selecting their b-descendants, it will be much more
efficient to iterate through (bottom-most independent) b-nodes and select those which have an
a-ancestor.

For queries involving data value comparisons (such as =, contains, and starts-with), it might
in general be most efficient to first compute the occurrences of the corresponding text nodes using
the operations of Section 2.5, because the number of matches is expected to be relatively small
with respect to n. And then to check if those text nodes satisfy the rest of the query. It would
be helpful if we had an operation similar to SubtreeTags, but for text search, which determines
the number of text nodes that satisfy the search. This is already mentioned in Prefix(s): we can
answer count-queries fast. The same probably holds for Equal-queries. Having these count-queries
will allow us to make informed decision concerning the evaluation order (i.e., whether to start from
the text and then check the tree, or the other way around).

Qu: Can we also support count-queries for Contains(s) in time O(log n)? Answ: Only for the
total number of occurrences, not total number of documents.

For typical XPath queries there are some thumb rules on how to use selectivities [MBB+06], but
a fully fledged query optimizer based on selectivity analysis is out of the scope of this project. The
aim here is to keep the XPath fragment small (but practical) so that static (and selectivity based)
optimizations can be kept simple. If more powerful fragments of XPath are to be supported, then
more optimization techniques will be required, such as query rewriting prior to evaluation (see,
e.g., [BKMH06]).

12

4.5 Automata-Based Mixed Evaluation

Our currently proposed evaluator supports both, top-down and bottom-up evaluation. This is done
by compiling the query into an intermediate representation of tree automata. Such automata can
be executed both bottom-up and top-down. During evaluation, we dynamically use count queries
(which typically cost little time to determine whether to proceed top-down or bottom-up, in the
current subtree.

Acknowledgement

We would like to thank Kim Nguyen who is implementing the XPath evaluator for writing the
section about tree automata, and for many insightful discussions about the topic.

5 XQuery Support

The XQuery subset Q is characterized as follows. Let p and c be a ”Core” and a ”Core+” XPath
expression, respectively. We first define a ”Context Core” $x p XQuery expression and a ”Context
Core+” $x c XQuery expression as follows: let $x be a binding variable that provides the context
nodes of the XPath expression, $x p consists of applying the path expression p to the context nodes
given by $x, and $x c consists of applying the path expression c to such context nodes. If no binding
variable is given, the above expressions $x p and $x c will be evaluated on the current context (in
XQuery the current context may be given by an external variable).

An XQuery expression q ∈ Q is: (1) any concatenation of Context Core or Context Core+
expressions: $x p1, . . . , $x pn or $x c1, . . . , $x cn; (2) given a tag t, an element constructor
〈t〉{q}〈/t〉; (3) a boolean expression bq of the kind p1 = p2, with p1, p2 being a Context Core or
a Context Core+ XPath expression, or any conjunction, disjunction or negation of such boolean
expressions. bq can also be a boolean expression that returns the result of testing a value expression
with another value expression or a string, as explained in Sect. 4 (thus, of the kind p = s (equality),
contains (p, s), starts-with (p, s) and ends-with (p, s)). (4) a FLWR expression xq of the
kind:

for $x in p1, $x1 in $x p2, . . . , $xk in $xk−1 pk+1

xq where bq

return q

where p1, . . . , pk+1 are Core or Core+ expressions, that become Context Core or Context Core+
expressions when preceded by a binding variable. A return clause may contain other for-where-
return queries, nested and/or concatenated and/or grouped inside constructed elements.

Q1: FOR $m IN doc("movies.xml")//movie,

$r IN $m/rating

WHERE $r/text() = ’PG’

RETURN { 〈moviesummary〉
〈movietitle〉

$m/title

〈/movietitle〉

13

〈/moviesummary〉 }

In order to evaluate the previous query, we need to build the corresponding parse tree expression.
In particular, as we can see, the XQuery query consists of several XPath expressions, connected to
each other by binding variables. We need to identify such path expressions and build a generalized
tree pattern [CJLP03], which describes the parse tree based on its components, i.e. the Core and
Core+ XPath expressions. Given a query q, we can build for such a query a generalized tree
pattern GTP , which is a tree T with nodes labeled by variables, together with a boolean formula
F specifying constraints on the nodes and their properties, including their tags, attributes, and
contents. The tree consists of two kinds of edges parent-child (pc) and ancestor-descendant edges.
The former are represented as single lines, and the latter are represented as double lines. Moreover,
we can have compulsory edges (solid lines) or optional edges (dashed lines), according to which
clause the connecting nodes are in. Optional edges are those connecting nodes in a RETURN
clause: such nodes are optionally matched, whereas the nodes belonging to the other clauses are
mandatory matched. Nodes belonging to the same FLWR expression are also labeled with a group
number. We assume that this number is 0 for FOR/WHERE clauses, 1 for LET clauses and 2
for RETURN clauses. The group number is useful to represent nested subqueries and nested tree
patterns. For instance, the generalized tree pattern for the above query is represented in Figure 1.

$m

$r $t

$m.tag=movie &
$r.tag=rating &
$r.text()=PG &
$t.tag=title

(0)

(0)

(1)

Figure 1: Example with GTPs for Query Q1.

If we take the previous query and expand it to a nested XQuery query, the resulting GTPs are
represented in Figure 2.

Q2: FOR $m IN doc("movies.xml")//movie,

$r IN $m/rating

WHERE $r/text() = ’PG’

RETURN { 〈moviesummary〉
〈movietitle〉

$m/title

〈/movietitle〉
〈movieyear〉

$m/year

14

〈/movieyear〉
〈movieactors〉

FOR $a IN $m//a

RETURN { 〈actor〉
$a/firstname/text()

$a/lastname/text()

〈/actor〉 }
〈/movieactors〉

〈/moviesummary〉 }

$m

$r $t

$m.tag=movie &
$r.tag=rating &

(0)

(0)

(2)
$y

$r.text()=PG &
$t.tag=title &
$y.tag=year &

(1.0)

$c

$c.tag=movie.actors

$c

$a

$f $l

$a.tag=actor &
$f.tag=firstname &
$l.tag=lastname

(1) (3)
(1.0)

(1.0.1) (1.0.2)

Figure 2: Example with GTPs for Query Q2.

6 XQuery Add-Ons

Given our fast primitives for text searching, that have logarithmic cost in practice, it is possible to
evaluate string range queries and handle XQuery boolean functions of the kind compare (s1, s2).
Compare would use the LessThan (s) and Equal (s) primitives. This would let us answer string
range queries in the compressed domain, as in our previous work [ABMP07], but much faster.

Qu: Another suitable extension that we may think of is XQuery full-text, which would probably
come for free thanks to our text searching primitives. Examples of such queries are those with
boolean predicate ft:contains (s) with filters of the kind //movie/subtitle[. ftcontains ”Toot*”
ftand ”Remake” ordered distance at most 2 words at start], meaning that we want to retrieve all
movies with subtitle containing ’Tootsie’ and ’Remake’ within at most 2 words distance.

References

[ABMP07] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. Xquec: A query-conscious com-
pressed xml database. ACM Trans. Internet Tech., 7(2):1–35, 2007.

15

[BKMH06] M. Brantner, C. Kanne, G. Moerkotte, and S. Helmer. Algebraic optimization of nested
XPath expressions. In ICDE, page 128, 2006.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007.

[CJLP03] Z. Chen, H.V. Jagadish, L.V.S. Lakshmanan, and S. Paparizos. From Tree Patterns
to Generalized Tree Patterns: On Efficient Evaluation of XQuery. In VLDB, pages
237–248, 2003.

[FM05] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM, 54(4):552–
581, 2005.

[GGM+04] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing xml streams
with deterministic automata and stream indexes. ACM Trans. Database Syst., 29:752–
788, 2004.

[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proc. SODA, pages 841–850. SIAM, 2003.

[GKP05] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries.
ACM Trans. Database Syst., 30:444–491, 2005.

[GMR06] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool
for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 368–373, 2006.

[GvKT03] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a relational dbms to
watch its (axis) steps. In VLDB, pages 524–525, 2003.

[Hos] H. Hosoya. Foundations of XML processing. In preperation, see http://arbre.is.s.u-
tokyo.ac.jp/ hahosoya/xmlbook/.

[Man01] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

[MBB+06] N. May, M. Brantner, A. Böhm, C. Kanne, and G. Moerkotte. Index vs. navigation in
XPath evaluation. In XSym, pages 16–30, 2006.

[MR97] I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees
and planar graphs. In Proc. 38th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 118–126, 1997.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

16

[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proc. SODA, pages 233–242, 2002.

[Sad08] K. Sadakane. The ultimate balanced parentheses. Technical report, Dept. of Computer
Science and Communication Engineering, Kyushu University, Japan, 2008.

17

