
Topological Complexity of ω-Powers :
Extended Abstract

Olivier Finkel1 and Dominique Lecomte2
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1 Introduction

The operation V → V ω is a fundamental operation over finitary languages leading to
ω-languages. It produces ω-powers, i.e. ω-languages in the form V ω , where V is a
finitary language. This operation appears in the characterization of the class REGω of
ω-regular languages (respectively, of the class CFω of context free ω-languages) as the
ω-Kleene closure of the family REG of regular finitary languages (respectively, of the
family CF of context free finitary languages) [Sta97a].
Since the set Σω of infinite words over a finite alphabet Σ can be equipped with the
usual Cantor topology, the question of the topological complexity of ω-powers of fini-
tary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet
[Sim92], and Staiger [Sta97a]. A first task is to study the position of ω-powers with
regard to the Borel hierarchy (and beyond to the projective hierarchy) [Sta97a,PP04].

It is easy to see that the ω-power of a finitary language is always an analytic set because
it is either the continuous image of a compact set {0, 1, . . . , n}ω for n ≥ 0 or of the
Baire space ωω.

It has been recently proved, that for each integer n ≥ 1, there exist some ω-powers
of context free languages which are Π0

n-complete Borel sets, [Fin01], and that there
exists a context free language L such that Lω is analytic but not Borel, [Fin03]. Notice
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that amazingly the language L is very simple to describe and it is accepted by a simple
1-counter automaton.

The first author proved in [Fin04] that there exists a finitary language V such that V ω

is a Borel set of infinite rank. It was also proved in [DF07] that there is a context free
language W such that Wω is Borel above ∆0

ω.
We proved in [FL07] the following very surprising result which shows that ω-powers
exhibit a great topological complexity: for each non-null countable ordinal ξ, there exist
some Σ0

ξ-complete ω-powers, and some Π0
ξ-complete ω-powers.

We consider also the Wadge hierarchy which is a great refinement of the Borel hier-
archy. We get many more Wadge degrees of ω-powers, showing that for each ordinal
ξ ≥ 3, there are uncountably many Wadge degrees of ω-powers of Borel rank ξ + 1.

We show also, using some tools of effective descriptive set theory, that the main result
of [FL07] has some effective counterparts.

All the proofs of the results presented here may be found in the conference paper [FL07]
or in the preprint [FL08] which contains also some additional results.

2 Topology

We first give some notations for finite or infinite words, assuming the reader to be famil-
iar with the theory of formal languages and of ω-languages, see [Tho90,Sta97a,PP04].
Let Σ be a finite or countable alphabet whose elements are called letters. A non-empty
finite word over Σ is a finite sequence of letters: x = a0.a1.a2 . . . an where ∀i ∈ [0;n]
ai ∈ Σ. We shall denote x(i) = ai the (i+1)th letter of x. The length of x is |x| = n+1.
The empty word has 0 letters. Its length is 0. The set of finite words over Σ is denoted
Σ<ω . A (finitary) language L over Σ is a subset of Σ<ω . The usual concatenation
product of u and v will be denoted by u_v or just uv.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a0a1 . . . an . . .,
where for all integers i ≥ 0 ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(0)σ(1) . . . σ(n) . . .. The set of ω-words over the alphabet Σ is denoted by Σω .
An ω-language over an alphabet Σ is a subset of Σω. The concatenation product is also
extended to the product of a finite word u and an ω-word v: the infinite word u.v or u_v
is then the ω-word such that: (uv)(k) = u(k) if k < |u| , and (u.v)(k) = v(k − |u|) if
k ≥ |u|.
The prefix relation is denoted ≺: the finite word u is a prefix of the finite word v (re-
spectively, the infinite word v), denoted u ≺ v, if and only if there exists a finite word
w (respectively, an infinite word w), such that v = u_w.

For a finitary language V ⊆ Σ<ω , the ω-power of V is the ω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }
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We recall now some notions of topology, assuming the reader to be familiar with basic
notions which may be found in [Kur66,Mos80,Kec95,LT94,Sta97a,PP04].
There is a natural metric on the set Σω of infinite words over a countable alphabet Σ
which is called the prefix metric and defined as follows. For u, v ∈ Σω and u 6= v let
d(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n+1)th letter
of u is different from the (n + 1)th letter of v. The topology induced on Σω by this
metric is just the product topology of the discrete topology on Σ. For s ∈ Σ<ω , the
set Ns := {α∈Σω | s≺ α} is a basic clopen (i.e., closed and open) set of Σω. More
generally open sets of Σω are in the form W_Σω , where W ⊆ Σ<ω .

When Σ is a finite alphabet, the prefix metric induces on Σω the usual Cantor topology
and Σω is compact.
The Baire space ωω is equipped with the product topology of the discrete topology on
ω. It is homeomorphic to P∞ := {α∈ 2ω | ∀i∈ω ∃j≥ i α(j)= 1}⊆ 2ω, via the map
defined on ωω by H(β) :=0β(0)10β(1)1 . . .

We define now the Borel Hierarchy on a topological space X:

Definition 1. The classes Σ0
ξ(X) and Π0

ξ(X) of the Borel Hierarchy on the topological
space X are defined as follows:
Σ0

1(X) is the class of open subsets of X .
Π0

1(X) is the class of closed subsets of X .
And for any countable ordinal ξ ≥ 2:
Σ0

ξ(X) is the class of countable unions of subsets of X in ∪γ<ξΠ0
γ .

Π0
ξ(X) is the class of countable intersections of subsets of X in ∪γ<ξΣ0

γ .
As usual the ambiguous class ∆0

ξ is the class Σ0
ξ ∩Π0

ξ .

Suppose now that X⊆Y ; then Σ0
ξ(X)={A ∩X | A∈Σ0

ξ(Y )}, and similarly for Π0
ξ ,

see [Kec95, Section 22.A]. Notice that we have defined the Borel classes Σ0
ξ(X) and

Π0
ξ(X) mentioning the space X . However when the context is clear we will sometimes

omit X and denote Σ0
ξ(X) by Σ0

ξ and similarly for the dual class.

The class of Borel sets is ∆1
1 :=

⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ , where ω1 is the first un-

countable ordinal.

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in Σ0
α ∪Π0

α

but not in
⋃

γ<α(Σ0
γ ∪Π0

γ).

We now define completeness with regard to reduction by continuous functions. For a
countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively, Π0
α)-complete

set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0
α (respectively, E ∈ Π0

α)
iff there exists a continuous function f : Y ω → Σω such that E = f−1(F ). Σ0

n

(respectively, Π0
n)-complete sets, with n an integer ≥ 1, are thoroughly characterized

in [Sta86].
Recall that a set X ⊆ Σω is a Σ0

α (respectively Π0
α)-complete subset of Σω iff it is in

Σ0
α but not in Π0

α (respectively in Π0
α but not in Σ0

α), [Kec95].
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For example, the singletons of 2ω are Π0
1-complete subsets of 2ω. The set P∞ is a well

known example of a Π0
2-complete subset of 2ω.

If Γ is a class of sets, then Γ̌ :={¬A | A∈Γ} is the class of complements of sets in Γ.
In particular, for every non-null countable ordinal α, Σ̌0

α = Π0
α and Π̌0

α = Σ0
α.

We now introduce the Wadge hierarchy, which is a great refinement of the Borel hier-
archy defined via reductions by continuous functions, [Wad83,Dup01].

Definition 2 (Wadge [Wad83]). Let X , Y be two finite alphabets. For L ⊆ Xω and
L′ ⊆ Y ω, L is said to be Wadge reducible to L′ (L ≤W L′) iff there exists a continuous
function f : Xω → Y ω , such that L = f−1(L′).
L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted by
L ≡W L′. And we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.
A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be non
self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees.
The Wadge hierarchy WH is the class of Borel subsets of a set Xω, where X is a finite
set, equipped with ≤W and with ≡W .
For L ⊆ Xω and L′ ⊆ Y ω, if L ≤W L′ and L = f−1(L′) where f is a continuous
function from Xω into Y ω, then f is called a continuous reduction of L to L′. Intuitively
it means that L is less complicated than L′ because to check whether x ∈ L it suffices
to check whether f(x) ∈ L′ where f is a continuous function. Hence the Wadge degree
of an ω-language is a measure of its topological complexity.
Notice that in the above definition, we consider that a subset L ⊆ Xω is given together
with the alphabet X .
We can now define the Wadge class of a set L:

Definition 3. Let L be a subset of Xω. The Wadge class of L is :

[L] = {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.
Recall that each Borel class Σ0

α and Π0
α is a Wadge class. A set L ⊆ Xω is a Σ0

α

(respectively Π0
α)-complete set iff for any set L′ ⊆ Y ω , L′ is in Σ0

α (respectively Π0
α)

iff L′ ≤W L .

Theorem 4 (Wadge). Up to the complement and≡W , the class of Borel subsets of Xω ,
for a finite alphabet X , is a well ordered hierarchy. There is an ordinal |WH|, called
the length of the hierarchy, and a map d0

W from WH onto |WH| − {0}, such that for
all L, L′ ⊆ Xω:
d0

W L < d0
W L′ ↔ L <W L′ and

d0
W L = d0

W L′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is the
limit of the ordinals αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a non negative
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integer, ω1 being the first non countable ordinal. Then 1ε0 is the first fixed point of the
ordinal exponentiation of base ω1. The length of the Wadge hierarchy of Borel sets in
∆0

ω = Σ0
ω ∩Π0

ω is the ωth
1 fixed point of the ordinal exponentiation of base ω1, which

is a much larger ordinal. The length of the whole Wadge hierarchy of Borel sets is a
huge ordinal, with regard to the ωth

1 fixed point of the ordinal exponentiation of base
ω1. It is described in [Wad83,Dup01] by the use of the Veblen functions.

There are some subsets of the topological space Σω which are not Borel sets. In par-
ticular, there exists another hierarchy beyond the Borel hierarchy, called the projective
hierarchy. The first class of the projective hierarchy is the class Σ1

1 of analytic sets. A
set A ⊆ Σω is analytic iff there exists a Borel set B ⊆ (Σ × Y )ω , with Y a finite
alphabet, such that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) ∈ (Σ × Y )ω

is defined by: (x, y)(i) = (x(i), y(i)) for all integers i ≥ 0.
A subset of Σω is analytic if it is empty, or the image of the Baire space by a con-
tinuous map. The class of analytic sets contains the class of Borel sets in any of the
spaces Σω . Notice that ∆1

1 = Σ1
1 ∩Π1

1, where Π1
1 is the class of co-analytic sets, i.e.

of complements of analytic sets.

The ω-power of a finitary language V is always an analytic set because if V is finite and
has n elements then V ω is the continuous image of a compact set {0, 1, . . . , n − 1}ω

and if V is infinite then there is a bijection between V and ω and V ω is the continuous
image of the Baire space ωω, [Sim92].

3 Topological complexity of ω-powers

We now state our first main result, showing that ω-powers exhibit a very surprising
topological complexity.

Theorem 5 ([FL07]). Let ξ be a non-null countable ordinal.

(a) There is A⊆2<ω such that Aω is Σ0
ξ-complete.

(b) There is A⊆2<ω such that Aω is Π0
ξ-complete.

To prove Theorem 5, we use in [FL07] a level by level version of a theorem of Lusin
and Souslin stating that every Borel set B ⊆ 2ω is the image of a closed subset of the
Baire space ωω by a continuous bijection, see [Kec95, p.83]. It is the following theorem,
proved by Kuratowski in [Kur66, Corollary 33.II.1]:

Theorem 6. Let ξ be a non-null countable ordinal, and B ∈Π0
ξ+1(2

ω). Then there is
C ∈Π0

1(ω
ω) and a continuous bijection f : C → B such that f−1 is Σ0

ξ-measurable
(i.e., f [U ] is Σ0

ξ(B) for each open subset U of C).

The existence of the continuous bijection f : C → B given by this theorem (without
the fact that f−1 is Σ0

ξ-measurable) has been used by Arnold in [Arn83] to prove that
every Borel subset of Σω , for a finite alphabet Σ, is accepted by a non-ambiguous fi-
nitely branching transition system with Büchi acceptance condition. Notice that the sets
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of states of these transition systems are countable.
Our first idea was to code the behaviour of such a transition system. In fact this can be
done on a part of ω-words of a special compact set K0,0. However we have also to con-
sider more general sets KN,j and then we need the hypothesis of the Σ0

ξ-measurability
of the function f . The complete proof can be found in [FL07,FL08].

Notice that for the class Σ0
2, we need another proof, which uses a new operation which

is very close to the erasing operation defined by Duparc in his study of the Wadge
hierarchy, [Dup01]. We get the following result.

Theorem 7. There is a context-free language A⊆2<ω such that Aω∈Σ0
2\Π0

2.

Notice that it is easy to see that the set 2ω \ P∞, which is the classical example of Σ0
2-

complete set, is not an ω-power. The question is still open to know whether there exists
a regular language L such that Lω is Σ0

2-complete.

Recall that, for each non-null countable ordinal ξ, the class of Σ0
ξ-complete (respec-

tively, Π0
ξ-complete) subsets of 2ω forms a single non self-dual Wadge degree. Thus

Theorem 5 provides also some Wadge degrees of ω-powers. More generally, it is nat-
ural to ask for the Wadge hierarchy of ω-powers. In the long version [FL08] of the
conference paper [FL07] we get many more Wadge degrees of ω-powers.

In order to state these new results, we now recall the notion of difference hierarchy.
(Recall that a countable ordinal γ is said to be even iff it can be written in the form
γ = α + n, where α is a limit ordinal and n is an even positive integer; otherwise the
ordinal γ is said to be odd; notice that all limit ordinals are even ordinals.)

If η <ω1 and (Aθ)θ<η is an increasing sequence of subsets of some space X , then we
set

Dη[(Aθ)θ<η] :={x∈X | ∃θ<η x∈Aθ\
⋃

θ′<θ

Aθ′ and the parity of θ is opposite to that of η}.

If moreover 1≤ξ<ω1, then we set :

Dη(Σ0
ξ) :={Dη[(Aθ)θ<η] | for each θ < η Aθ is in the class Σ0

ξ}.

Recall that for each non null countable ordinal ξ, the sequence (Dη(Σ0
ξ))η<ω1 is strictly

increasing for the inclusion relation and that for each η < ω1 it holds that Dη(Σ0
ξ) ⊆

∆0
ξ+1. Moreover for each η < ω1 the class Dη(Σ0

ξ) is a Wadge class and the class of
Dη(Σ0

ξ)-complete subsets of 2ω forms a single non self-dual Wadge degree.

Theorem 8.

1. Let 1≤ξ<ω1. Then there is A⊆2<ω such that Aω is Ď2(Σ0
ξ)-complete.

2. Let 3≤ ξ <ω1 and 1 ≤ θ < ω1. Then there is A⊆2<ω such that Aω is Ďωθ (Σ0
ξ)-

complete.
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Notice that for each ordinal ξ such that 3≤ ξ < ω1 we get uncountably many Wadge
degrees of ω-powers of the same Borel rank ξ + 1. This confirms the great complexity
of these ω-languages.
However the problem is still open to determine completely the Wadge hierarchy of
ω-powers.

We now come to the effectiveness questions. It is natural to wonder whether the ω-
powers obtained above are effective. For instance could they be obtained as ω-powers
of recursive languages ?

In the paper [FL08] we prove effective versions of the results presented above. Using
tools of effective descriptive set theory, such Kleene recursion Theorem and the notion
of Borel codes, we first prove an effective version of Kuratowski’s Theorem 6. Then we
use it to prove the following effective version of Theorem 5, where Σ 0

ξ and Π 0
ξ denote

classes of the hyperarithmetical hierarchy and ωCK
1 is the first non-recursive ordinal,

usually called the Church-kleene ordinal.

Theorem 9. Let ξbe a non-null ordinal smaller than ωCK
1 .

(a) There is a recursive language A⊆2<ω such that Aω∈Σ 0
ξ \Π0

ξ .

(b) There is a recursive language A⊆2<ω such that Aω∈Π 0
ξ \Σ0

ξ .

Remark 10. If A⊆ 2<ω is a recursive language, then the ω-power Aω is an effective
analytic set, i.e. a (lightface) Σ1

1 -set. And the supremum of the set of Borel ranks of Borel
effective analytic sets is the ordinal γ1

2 . This ordinal is defined by Kechris, Marker, and
Sami in [KMS89] and it is proved to be strictly greater than the ordinal δ1

2 which is
the first non ∆1

2 ordinal. Thus the ordinal γ1
2 is also strictly greater than the first non-

recursive ordinal ωCK
1 . Thus Theorem 9 does not give the complete answer about the

Borel hierarchy of ω-powers of recursive languages. Indeed there could exist some ω-
powers of recursive languages of Borel ranks greater than ωCK

1 , but of course smaller
than the ordinal γ1

2 .

4 Concluding remarks

The question naturally arises to know what are all the possible infinite Borel ranks of
ω-powers of finitary languages belonging to some natural class like the class of con-
text free languages (respectively, languages accepted by stack automata, recursive lan-
guages, recursively enumerable languages, . . . ).
We know from [Fin06] that there are ω-languages accepted by Büchi 1-counter au-
tomata of every Borel rank (and even of every Wadge degree) of an effective analytic
set. Every ω-language accepted by a Büchi 1-counter automaton can be written as a
finite union L =

⋃
1≤i≤n U_

i V ω
i , where for each integer i, Ui and Vi are finitary lan-

guages accepted by 1-counter automata. And the supremum of the set of Borel ranks of
effective analytic sets is the ordinal γ1

2 . From these results it seems plausible that there
exist some ω-powers of languages accepted by 1-counter automata which have Borel
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ranks up to the ordinal γ1
2 , although these languages are located at the very low level in

the complexity hierarchy of finitary languages.

Another interesting question would be to determine completely the Wadge hierarchy of
ω-powers. A simpler open question is to determine the Wadge hierarchy of ω-powers
of regular languages. The second author has given in [Lec05] a few Wadge degrees of
ω-powers of regular languages. Notice however that even the question to determine the
Wadge degrees of ω-powers of regular languages in the class ∆0

2 is still open.
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