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Abstract 
 

Several years ago, first generation model driven 
engineering (MDE) tools focused on generating code 
from high-level platform-independent abstract 
descriptions. Since then, the target scope of MDE has 
much broadened and now addresses for example 
testing, verification, measurement, tool 
interoperability, software evolution, and many more 
hard issues in software engineering. In this paper we 
study the applicability of MDE to another difficult 
problem: the management of complex systems. We 
show how the basic properties of MDE may be of 
significant help in this context and we characterize and 
extend MDE by the concept of a "megamodel", i.e. a 
model which elements may themselves be models. We 
sketch the basic characteristics of a tool for handling 
megamodels and we apply it to the example of the 
Eclipse.org ecosystem, chosen here as a representative 
illustration of a complex system. The paper finally 
discusses how the proposed original approach and 
tools may impact the construction and maintenance of 
computer based complex systems. 
 
1. Introduction 

 
Complex systems are hard to characterize. 

Nevertheless they are more and more frequently met. 
Examples are a worldwide airline traffic management 
system, a global telecommunication or energy 
infrastructure or even the whole legacy portfolio 
accumulated for more than thirty years in a large 
insurance company. There are currently few 
engineering methods and integrated sets of tools to 
deal with them in practice. The purpose of this work is 
to study the applicability of Model Driven Engineering 
(MDE) to the management of complex systems. 

Our general goal is to implement the Macroscope’s 
vision of J. De Rosnay [13]. As the Microscope allows 

seeing the infinitely small and the Telescope allows 
seeing the infinitely great or far, the Macroscope is 
described there as a symbolic instrument to manage the 
infinitely complex. The Macroscope (Figure 1) can be 
considered as the symbol of a new way of observing, 
understanding, controlling and acting on complex 
systems.  

 

 
Figure 1. The Macroscope – Illustration from [13] 

 
MDE is a software engineering field based on few 

simple and sound principles. Its power stems from the 
assumption of considering everything as a model [7].  

Our intuition is that MDE may now provide the 
right level of abstraction to move the Macroscope from 
its status of a symbolic instrument to a set of concrete 
and practical tools, ready to be used by engineers when 
they collectively work on complex computer based 
systems.   

In order to provide first evidence in support of this 
intuition, we have been building open source 
prototypes on the Eclipse platform. This paper presents 
the current status of the project and discusses 
achievements and remaining challenges in this field. 

Section 2 of this paper introduces some 
characteristics of complex systems. From these 
characteristics we show in section 3 how MDE can 
provide some initial solutions. In section 4 we 
demonstrate that a generic tool build upon MDE can 
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address some more remaining issues. In section 5 we 
take the example of the Eclipse.org ecosystem itself, 
considered as a complex system, to illustrate some 
possible applications. Related work on handling 
complex information systems is presented in section 6 
and section 7 concludes the paper. 
 
2. Complex systems 

 
There are a number of examples of complex 

biological, ecological or societal complex systems 
discussed in [13]. In the context of this paper we are 
interested by Computer Based Complex Systems 
(CBCS), i.e. complex systems with a significant 
number of hardware or software components. These 
parts may be processing elements (processors, 
programs, processes, etc.) or data elements (memory, 
disks, repositories, files, etc.) or any kind of composite 
elements (hardware and software). One of the most 
important characteristics of a complex system is that it 
is composed of a very large number of individual parts. 
But there are also additional properties. 

A CBCS is constantly in evolution with a past 
history, a present, and a future. This evolution is the 
consequence of the various interactions between the 
parts of the system. The evolution is permanent, i.e. the 
CBCS usually never stops, even when some parts are 
added, removed exchanged or under maintenance or 
repair. 

A CBCS has a structure (or static architecture) and 
a dynamic behavior. It is composed of elements that 
may themselves be CBCSs (with structure and 
behavior) and no limit exists on this deep nesting. 

In addition to structure and behavior, a CBCS also 
has a goal, defining its purpose in the context in which 
it is operating. As previously stated, this also applies to 
any component of this system. Important information 
is also the metadata associated to any component. The 
categories of metadata are quite diverse. 

Another dimension of a CBCS is engineering 
heterogeneity. Many components are hardware and 
software elements produced in the last fifty years, with 
different types of technologies. For example many 
different hardware technologies, programming 
languages, APIs, operating systems, database 
organizations, network protocols, standards, or 
normative specifications have been used to build these 
various components. Furthermore there may be a 
penalty to the use of any technology. This is often 
called accidental complexity [8] that adds an artificial 
portion to the essential complexity of the base 
problem. Managing the accidental complexity 

accumulated by many layers of technological legacy is 
an important challenge in the management of CBCSs. 

A CBCS is also a distributed system, i.e. its 
elements are located on many widely dispersed 
physical locations.  

By definition a CBCS may not be understood by 
one unique human operator. On the contrary many 
stakeholders will have different views on the system. 
These stakeholders may play different roles (architect, 
designer, implementer, maintainer, manager, user, 
etc.). Stakeholders may participate in the global goal of 
the CBCS. 

The interactions between the different parts of a 
CBCS are not random interactions and they follow 
specific patterns. Such a system is also characterized 
by the relationships that hold between its parts. Very 
often these relationships are informally characterized 
but in some occasions they may be explicitly 
represented. In either case they are quite important. 

Managing a CBCS means observing it, 
understanding it and controlling it. However 
management may imply a lot of additional operations 
like designing it, constructing it, measuring it, 
managing it, maintaining it, and many more. We are 
interested here by the support MDE may bring to all 
these operations on CBCSs. 
 
3. Model Driven Engineering 
 

In the previous section, we have listed some 
important characteristics of complex systems. In this 
section we will take those characteristics and see how 
MDE may provide the corresponding management 
solutions.  

MDE considers models as first class citizens as 
illustrated in Figure 2. A model is a representation of a 
system (relation repOf) and the nature of the model 
(M) is defined by its metamodel (MM). We say that 
model M conforms to its metamodel MM (relation c2).  

 

 
Figure 2. The two basic relationships of MDE 

 
MDE is mainly built on top of these two basic 

relations of representation and conformance, like 
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M 
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object technology was mainly based on the relations of 
instantiation and class inheritance [9]. MDE may be 
implemented with the help of object technology (or 
any other technology like functional). However the 
basic paradigms of MDE are inherently different. 

Any system can be represented by a set of models. 
Any model is a simplified (but nevertheless precise 
and faithful) representation of a given system. The 
relation of representation between system and model is 
probably one of the most overlooked in the present 
state of computer science. Until now its study has been 
mainly limited to ontology engineering, with some 
exceptions (e.g. [9]). This situation is however 
changing (see for example [21]) and this concern is 
more and more integrated in the software engineering 
perimeter. 

 Since system may be represented by a set of 
models, MDE helps to provide a homogeneous 
representation of a heterogeneous situation or 
phenomenon. 

Metamodels may be used as filters to define matters 
of interest in a system. Used as a typing system, they 
provide precise semantics to artifacts and relations 
between these artifacts [15]. Metamodels and terminal 
models are abstract models and share many properties. 
Operations like storage, retrieval, transformation and 
many more may be applied to any kind of abstract 
models. A model to model transformation may be 
considered as an abstract model. Among the 
consequences of this property we may mention the 
possibility to use higher order transformations (i.e. 
transformations that take transformation(s) as input 
or/and produce transformation(s) as output).  

Applying a transformation Mt to a model Ma may 
produce model Mb. Model Mt may be recorded as a 
relation between Ma and Mb. Furthermore the 
execution of Mt may produce, as a side effect, 
traceability model Mtr that may also be kept after the 
transformation. 

A transformation is an executable model. There are 
other abstract models that may represent non 
executable relations between models and we call them 
weaving models. For example alignment between two 
metamodels or traceability between a requirement and 
a design model may be taken into account. Multiple 
and complex chains of traceability may be established 
with the support of such weaving models. 

A system can be “filtered” by more than one 
metamodel. As a complex system cannot be 
understood and managed from one single point of 
view, being able to have different representations of 
this system is of great interest. For instance, we can 
imagine having a model of the static structure of a 
software application and a model of its execution trace 

(method calls, etc.) Static and behavioral 
representations may be models of the same system. 
Hence some relationships do hold between them. 
Issues of links between model elements may be 
addressed by weaving models [16].  Issues of direct 
links between model themselves are the subject of the 
present work.  

MDE provides some principles and tools to manage 
complex systems. But this is not sufficient by itself. 
The distribution and the handling of a high number of 
artifacts, the representation of complex systems as 
composition of artifacts that may be complex 
themselves are not directly addressed. In the next 
section, we will introduce some enhancements to this 
purpose. 

 
4. MDE for CBCS management 
 
4.1 Megamodel definition 
 

As discussed above, there are a number of 
properties of MDE that makes this solution a good 
candidate for the management of CBCS. But with 
these basis principles only, we would get a large 
number of independent models representing system’s 
artifacts. We need a mechanism for knitting those 
models together into a coherent whole and providing a 
view of the global intent of the CBCS on which we can 
build a rationale. We propose to use a special kind of 
model for this mechanism and we call it a megamodel 
[6]. A megamodel is a model such that some of its 
elements are themselves models (Figure 3). 

 

 
Figure 3. A megamodel: a model which some elements represent 

models 
There is no need to introduce here new specific 

features to MDE because a megamodel is just a 
terminal model, conforming to a metamodel. Using 
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megamodels is just a matter of good modeling 
practices when dealing with complex systems. 
However, as we shall see later, some specific tools 
may be of significant help to support these good 
practices.  

Megamodels are terminal models conforming to 
different types of metamodels. However some 
elements are models references, a concept that is 
defined in the metamodel of a megamodel. Model 
references may also carry metadata of represented 
artifacts. But megamodels also address the issue of 
semantic linking between models. Relationships 
between models are numerous and diverse: 
transformations, weaving, provenance, injection, 
extraction, trace, versioning, refinement, etc. 
Moreover, each CBCS is different and each 
stakeholder of a CBCS has different center of interest. 
From the wide range of relationships between models, 
we conclude there is no possible standard metamodel 
for a megamodel. Yet, we reckon it is possible to 
define a canonical base metamodel of which most 
megamodels' metamodels may be seen as an extension. 
A metamodel extension mechanism has been sketched 
out in [4]. In the remainder of this paper, we call 
“AM3Core” this base metamodel. A conceptual 
excerpt of AM3Core is depicted in Figure 4 (in KM3 
notation).  

 
package AM3Core { 
  class Megamodel { 
    reference ownedElements[*] ordered container : Element; 
  } 
  abstract class Element { 
    reference metadata[*]  container :  Metadata; 
  } 
  class Metadata { 
    attribute key: String; 
    attribute value: String; 
  } 
  abstract class LocatedElement extends Element { 
    reference locator container : Locator; 
  } 
  abstract class IdentifiedElement extends Element { 
    reference identifier container : Identifier; 
  } 
  abstract class Model extends IdentifiedElement, LocatedElement { 
    reference targetOf[*] : Relationship oppositeOf target; 
    reference sourceOf[*] : Relationship oppositeOf source;  
  } 
  abstract class Relationship extends IdentifiedElement { 
    reference source[*] : Model oppositeOf sourceOf; 
    reference target[*] : Model oppositeOf targetOf; 
  }  
  abstract class Container extends LocatedElement { 
    reference ownedElements[*] container : LocatedElement; 
  } 
  abstract class Group extends IdentifiedElement { 
    reference ownedElements[*] : Element; 
  } 
  abstract class Chain extends IdentifiedElement { 
    reference chainedRelationships[*] ordered : Relationship; 
  } 
  abstract class Identifier extends Element { 

    attribute value : String; 
  } 
  abstract class Locator extends Element { 
    attribute value : String; 
  } 
} 

Figure 4. AM3Core: base metamodel of megamodel (in KM3) 
 
The two main concepts are Models and 

Relationships. A relationship links some models 
(source) to some others (target). A Model is an 
IdentifiedElement and a LocatedElement. An identified 
element has an Identifier. It can be referenced even if it 
is not locally available. A LocatedElement has a 
Locator. This locator can be dereferenced to access to 
the underlying element. We can then access sub levels 
of representation of a system by dereferencing a 
model. We defined separately Identifier and Locator to 
make a clear distinction between what some resource 
management framework call logical identifier and 
physical identifier. Identifiers will be used to reference 
models that are distributed across platform, resources, 
networks, etc… Identifiers and Locators are abstract 
concepts to be specialized in an extension of 
AM3Core. The specialization may be system- or 
implementation-specific. For instance, an extension 
may use URI generic syntax specification (RFC 2396) 
or the Digital Object Identifier (DOI) of the 
Association for Computing Machinery. 

AM3Core also defines grouping concepts. A 
Container is a physical set of located elements while a 
Group only is a logical set of elements of the 
megamodel. A Chain is a special group of 
relationships being ordered.  

This paper proposes to use megamodels as the main 
tool to implement the Macroscope’s vision. The 
complexity of the systems is harnessed: some elements 
of the megamodels may be considered as gangways of 
more concrete details of it. Although we have a 
structure for managing complexity, we also need tools 
to handle it efficiently and in a user-friendly way. We 
propose two related kinds of generic tools for this 
purpose grouped into what we call the “megamodel 
manager”: 
• A megamodel editor: tool for viewing and editing 

entities and relationships of megamodels.  
• A megamodel browser: tool for navigating trough 

pre- or user-defined views on the megamodel. 
They can handle any megamodel conforming to 

AM3core as stated before.  
Finally, handling efficiently a large number of 

models is a big requirement for MDE being the best 
candidate for CBCS management. We propose to use 
models repositories. Models repository would provide
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Figure 5. The megamodel browser prototype 

 
interface for storing models in a centralized or 
distributed fashion. Compared to current solutions (see 
section 6), we support explicitly the basic relationship 
of MDE (i.e. the c2 conformance relation) leading to a 
clean distinction between modeling levels. The 
separation of modeling levels helps to deal with well 
delimited models without any dangling edges between 
models. No dangling edges lead to avoid considering 
the repository as one big graph and falling into a trap 
of complexity. The issue of linking elements within 
different models with symbolic link end is addressed 
by models weaving techniques [16]. 

 
4.2 Megamodel implementation 
 

Megamodels of complex systems are not usable 
without tooling to help browsing, editing, and building 
custom views. We are currently implementing some 
tools (a megamodel browser and a megamodel editor) 
in the Eclipse AM3 project. A screenshot of the current 
megamodel editor prototype, currently in development, 
is depicted in Figure 5. This shows a (very) small 
megamodel of a Java program with dependencies 
between classes. We can see two panes: on the left side 
a split view (named Megamodel Navigator) and on the 
right side some editors. The megamodel navigator 
contains the concepts of the metamodel of the 
megamodel (left) and their instances (right). 

Concepts are organized with respect to their 
inheritance tree. The right pane shows some editors of 
those instances. We see a relationship between two 
classes. This relationship is an “Import” of the Java 
class java.util.Collection (target) in the class MyClass 
(source). Below, there are two entities editors. We see 
that java.util.Collection is the target of an import 

relation (inbound) and that MyClass is the source of an 
import relation (outbound). 

The editor is entirely generic and can handle any 
kind of megamodel conforming to an extension of 
AM3Core. Thus, relationships between entities are 
specified in the extended metamodel of AM3Core. It 
gives them their semantic.  

The choice of a Java program as a complex system 
in the example of Figure 5 is a big simplification made 
in the purpose of illustration. In the next section we 
take another example, still illustrative and simplified, 
but a bit more realistic. 

  
5. Illustrative example 
 

This section takes the example of the whole 
Eclipse.org ecosystem to illustrate the notion of a 
CBCS. It shows how the tool presented in the previous 
section may be applied to handle the corresponding 
situation.   

 
5.1 Presentation 

 
 Eclipse.org may be considered as a relevant 

example of CBCS. It is composed of an important 
number of artifacts of different natures. There is code, 
documentation, committers, projects, plug-ins, update 
sites, legal process, committer’s election process, 
Wiki, web pages, bugs report facilities, newsgroups, 
etc. Eclipse.org also is a large cluster of projects: there 
are 75 projects distributed into 11 top level projects 
with different maturity levels: from incubation to 
mature phase. Regarding the “Eclipse Platform” 
project only, 186 contributors have submitted code and 
75 have done so in the last year. The code base 
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represents 4,779,778 lines of code being an estimated 
effort of 1,460 person years (source: Ohloh [24]). The 
evolution is very quick (there is one commit to the 
platform every 22 minutes – [11]). 

Moreover, projects and entities are tightly related to 
each others. For instance, latest Test & Performance 
Tool Platform (TPTP) release (4.4.0.3 as the time of 
writing) relies on EMF 2.3.1, WTP 2.0.1, BIRT 2.2.1, 
GEF 3.3.1 and DTP 1.5.1. Those dependencies are 
expressed in different locations: releases notes, builds 
manifests, etc. Dependencies are even hardest to 
manage due to projects sovereignty regarding their 
timelines and release schedules. 

Eclipse.org has a lot of different stakeholders. They 
consider Eclipse.org from different point of views. 
Members of the management board of the Foundation 
take care about download stats, good health conditions 
of the projects (conformity to the intellectual property 
policy, state of development: active or not, etc.) and 
information about members and sponsors. Committers 
for their part check more technical concerns such as 
bugs reports, unit tests results, etc. Simple users only 
care about projects versions and dependencies, 
compatibility between builds. 

 
5.2 MDE Support 

 
From the list of informal notions enumerated above, 

we may select concepts that will appear in the 
metamodel of Eclipse.org megamodel.  In the 
remainder of this section, we show some of the 
benefits that could be reaped from a MDE 
representation of this CBCS. 

From a project lead point of view, we need to offer 
some facilities. For instance, producing a regular 
summary of all reported bugs classified by some 
criteria (severity for instance) is a typical need. It is 
possible to do it “by hand”, i.e. to create a database 
request to get all bugs on a project, to give the result to 
a program to compute the desired metrics (typically 
Excel) and to call some export functions to have a nice 
display. With reverse engineering tools, Eclipse’s 
Bugzilla system can be represented as a model [22] 
and the metric as model-to-model transformation 
targeting a metric model. With canonical metric 
models, the “metric to visualization format” (table to 
HTML, table to SVG bar chart, etc.) transformations 
are easily reusable (Figure 6). 

Every artifact is handled in a seamless way thanks 
to the homogeneity provided by modeling principles. 
The degree of reusability of independent model 
transformations increases accordingly. Delivering web 
feeds of the bugs’ metrics is only a matter of doing a 
transformation between the model of metrics to an 

RSS one. Atom format is provided by reusing Web 
Syndication interoperability transformations [3].  

 

 
Figure 6. Visualization format for metrics on a Bugzilla model 

 
Interoperability of the Eclipse Bugzilla system with 

other software quality control tools like Mantis can 
also be achieved thanks to the homogeneity [5]. It is 
possible to do it either by using a pivot metamodel [3] 
or directly by capturing differences between the two 
tools in a weaving model of the two metamodels [17]. 

Computing metrics on the project’s code is another 
concern of an Eclipse.org project lead. Here again, 
MDE allow to factorize common pattern and reuse 
them. For instance, metrics on class diagram of 
Unified Modeling Language (UML) models already 
are available in [3]. Models of the Java code can be 
created with some Java discovery tools like [14] and 
[22]. The tool [22] gives the abstract syntax tree of 
Java classes. It can be transformed to an UML class 
diagram and only hold back the design level. The tool 
[14] gives directly an UML model of the Java code. 
Once the UML model is created, transformations 
computing the measures can then be fired. Finally 
graphical representation can then be chose to display 
computed metrics (Figure 7 and Figure 8).  

Although MDE presents some benefits for source 
code measurement, the size and the number of 
modeling artifacts involved in this process is very 
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high. This problem is only addressed by 
megamodeling. 

 

 
Figure 7. Example of SVG Pie Chart presentation of measures on 

a UML model 
 

 
Figure 8. Example of interactive XHTML with CSS presentation 

of measures on a UML model 
 

For instance, the Java 5 SDK (J2SE 1.5) is 
composed of 2701 classes and 912 interfaces within 
187 packages. The number of links between classes 
(import statements) and methods (call statements) 
blows up. Handling such an amount of data in a single 
model would be unfeasible. Not technically speaking 
but from human’s eye point of view. One solution is to 
provide different levels of representation. For instance 
we should have a megamodel of packages (187 
elements) with their dependencies (sub-packages, 
imports). At a sub level, we should have a megamodel 
of classes by package (approximately 14 classes and 5 
interfaces by package) with class-specific 
dependencies such as import, inner classes, etc. It is 
possible to manage the models of the code with this 
magnitude of artifacts number.  

But MDE can be used by a project lead even at a 
higher level. For instance, the Eclipse Architecture 
Council would like to begin population of a catalog of 
functional elements, i.e. contributed extensions points 
and other facilities for each project. In this goal, the 
lead would build a model of the plug-ins of the project. 
Building the catalog is then to select information that 
are required and extract it in static and/or browsable 
format. A discoverer of models of plug-ins does not 
exist yet but a metamodel already is available [1]. It 
defines dependencies between plug-ins, extensions 
points and their attributes, packages it contains and 

also contributions to other extension points. Several 
applications can be defined from such a model. For 
instance, a dependency graph can be created. It helps 
at better displaying inter-plug-ins dependencies and 
detecting circular ones. The target model could be 
conforming to DOT (an automatic graph layout 
program from Graphviz) like the KM32DOT 
transformation [3]. The catalog of components can be 
generated as a Wiki or HTML page and can be used as 
a documentation in other Eclipse projects or, more 
generally, by anyone extending the Eclipse platform.  

A model of a plug-in can also be represented as a 
megamodel. Java packages are sure enough references 
to models previously described for code measurement.  

Finally, we will illustrate how Model Driven 
Management of CBCS may be well suited for systems’ 
evolution management. The metamodel of plug-ins we 
were talking about just this minute will be accurate 
until the next evolution in the Eclipse plug-ins 
architecture. The metamodel will have to be upgraded 
but models conforming to may not as easily. They 
have to migrate to the new one. Semi-automatic 
migration is possible thanks (once again) to the 
homogeneous representation of system’s artifact. The 
former and the new metamodel are matched by reusing 
techniques and tools like the one used to capture 
differences between Bugzilla and Mantis (see above). 
It is possible to define a metamodel independent 
approach [3] to the difference representation. This 
approach is used to compute the migration 
transformation [2]. 

All models we presented in this section are 
representation of some artifacts of the Eclipse.org 
system. It helps understanding each artifact but not the 
system as a whole. Knitting those models (and the 
underlying artifacts) is done within a megamodel 
(Figure 9). We take the example of a Java project and a 
bug reports tool. At the first representation level, we 
see links between Java projects and components 
declared in a Bugzilla product. Bugs of “Java App 1” 
are declared in “Bugzilla Comp21” as do bugs of “Java 
App 3”. 

As long as a Java project is represented by a model, 
details of “Java App 3” can be observed at the sub 
representation level. It is composed of Java files with 
import dependencies. A Bugzilla component may also 
be represented as a model. It is composed of Bugs and 
attachments. The relationship between a bug and its 
Java file is described in a weaving model. On the 
picture, there is only one link: “bug1” is related to the 
“B.java” file. The model of a Java project is a 
megamodel which Java file elements are models. From 
the “B.java” model element, it is possible to retrieve 
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the model of the abstract syntax tree of the Java B 
class. 

 
Java App 1

Java App 4

Java App 3

Java App 2

Bugzilla 
Prod1

Bugzilla 
Prod2

Bugzilla 
Comp21

Bugzilla 
Comp22

Bugzilla 
Comp11

BugsIn 1

BugsIn 2

A.java

B.java

C.java

hasReport Bug1 Bug3

Bug2

Attachment

Duplicates

imports

imports

Class B {
  Public static void main() {
    System.out.println(« hello 
worl »);
  }
}  

Figure 9. Megamodel of Java project and bug reports 
 
In this section, we have presented how MDE can 

help to understand the Eclipse.org CBCS. The number 
of models and links between them that are generated 
from this study comforts us in the need for the 
megamodel mechanism and tooling for handling them 
in a manageable and consistent way. 

 
6. Related work 
 

Managing complex systems is not a recent concern 
and some tools have already been developed. Most of 
them provide a way to associate metadata to the 
artifacts of the system. Those metadata are more or less 
structured. For instance, we can cite the Resource 
Description Framework [27] (RDF) being used to 
described online resources by providing a lightweight 
ontology system or Dublin Core [12] being a set of 
standard metadata that support a broad range of 
purposes.  

Description of complex systems and especially 
legacy portfolios may also be achieved by reverse-
engineering tools and Application Portfolio 
Management (APM) systems. Those tools, like the 
CAST workbench [10], provide an understanding of 
complex systems through different configurable views, 
measures, and monitors. Main issue with those kinds 
of application is that they do not provide homogeneous 
views of the systems. Data can be only retrieved in 
heterogeneous formats such as Excel, XML, HTML, 
etc. As far as we know, they provide only limited ad-
hoc facilities to navigate through different 
representation levels. 

There is some well known work around models 
repositories. For instance, the Eclipse Modeling 

Framework (EMF) [18] and the NetBeans MetaData 
Repository (MDR) [26] implements MOF-like 
repositories. EMF is based on Ecore as a 
metametamodel and provides an in-memory repository 
of models with lazy loading facilities. MDR is based 
on Java Metadata Interface (JMI) and provide a full 
database based repository of models. These 
repositories may be viewed as low level megamodels 
without much extensibility potential. 

The notion of megamodel has been previously used 
in the work of J.M. Favre with a similar meaning. 
Ongoing work includes [19]. The notion of megamodel 
is also central to other projects like the SITRA 
Norwegian project [23]. 

One of the projects that are the closest to the work 
reported here is the MMTF (Model Management Tool 
Framework) at the University of Toronto [25]. In this 
project the CBCS is limited to a model based complex 
system, i.e. all the considered artifacts are models and 
relations between models. This is also a goal pursued 
by our toolset, but here we have presented a much 
broader view. Of course, by restricting the domain of 
CBCS to model-based systems, we may obtain more 
advanced results. For example the work reported in 
[25] mentions the objectives of: supporting arbitrary 
model and model mapping types and operators over 
them, supporting easy integration of existing 
independently developed model-related components 
including editors and operators, providing the 
capability to import/create/modify/view particular 
collections of models and mappings, and providing the 
capability to interactively apply relevant operators to 
sets of models and mappings to derive new (resultant) 
models and mappings and to define new operators. 
One interesting emphasis in this work is on the 
inference calculus of explicit relationships between 
models from implicit knowledge. 
 
7. Conclusion 
 

This paper has described a vision and the initial 
development of an open source model-based 
framework for the management of CBCS. We have 
implemented an initial set of tools in the GMT/AM3 
Eclipse project and we are presently starting the 
implementation of a first set of use cases. From there 
we plan to validate the conceptual framework and to 
improve the practical tools. 

At the center of the proposed toolset, we place what 
we call the "megamodel manager". As we have seen, 
there is very little specificity to this tool, and it may be 
considered more as good practice guidance than as a 
heavyweight and constraining set of tools. One lesson 
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learnt in this work is that, even without any extension, 
MDE provides an excellent support for the 
management of CBCS. In spite of the fact we provided 
clues for handling issues of CBCS, we did not address 
the management of big sized artifacts. This is a subject 
of future work. 

However by using this idea of a megamodel, we 
have an interesting opportunity to leverage model 
engineering to enhanced practices. The current 
achievements are illustrated by a set of experiments 
visible on the Eclipse site (see [1], [2], [3] and [22]). 
Some of these have been summarized in section 5. The 
initial conclusions are rather positive and clearly 
demonstrate the feasibility of the approach. Among the 
contribution of this work, we may mention in 
particular: 
• The idea of a megamodel with variable metamodel 

allowing to consider a number of different 
situations including nested systems. 

• The consideration of a model transformation as a 
model, allowing to keep track of certain explicit 
relations between models. 

• The use of incomplete and non executable 
relations between models by so-called weaving 
models. A weaving model summarizes a lot of 
fine-grained relations between model elements.  

• The possibility to use weaving models or 
transformation models to link chains of versions 
of different artifacts like metamodel. 

• The possible specialization of model 
transformations to produce measurement or 
verifications of parts of the modeled system. 

• The possible use of model transformations to 
provide different kinds of views on a given model. 

• The integration of a lot of facilities like the ones 
mentioned above in a tool for megamodel 
handling, giving a first idea of a possible 
engineering workbench for complex system 
management. 
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