
Model Driven Management of Complex Systems:
Implementing the Macroscope’s vision

Mikaël Barbero

ATLAS Group (INRIA & LINA)
University of Nantes, France

Mikael.Barbero@univ-nantes.fr

Jean Bézivin
ATLAS Group (INRIA & LINA)
University of Nantes, France
Jean.Bezivin@univ-nantes.fr

Abstract

Several years ago, first generation model driven
engineering (MDE) tools focused on generating code
from high-level platform-independent abstract
descriptions. Since then, the target scope of MDE has
much broadened and now addresses for example
testing, verification, measurement, tool
interoperability, software evolution, and many more
hard issues in software engineering. In this paper we
study the applicability of MDE to another difficult
problem: the management of complex systems. We
show how the basic properties of MDE may be of
significant help in this context and we characterize and
extend MDE by the concept of a "megamodel", i.e. a
model which elements may themselves be models. We
sketch the basic characteristics of a tool for handling
megamodels and we apply it to the example of the
Eclipse.org ecosystem, chosen here as a representative
illustration of a complex system. The paper finally
discusses how the proposed original approach and
tools may impact the construction and maintenance of
computer based complex systems.

1. Introduction

Complex systems are hard to characterize.

Nevertheless they are more and more frequently met.
Examples are a worldwide airline traffic management
system, a global telecommunication or energy
infrastructure or even the whole legacy portfolio
accumulated for more than thirty years in a large
insurance company. There are currently few
engineering methods and integrated sets of tools to
deal with them in practice. The purpose of this work is
to study the applicability of Model Driven Engineering
(MDE) to the management of complex systems.

Our general goal is to implement the Macroscope’s
vision of J. De Rosnay [13]. As the Microscope allows

seeing the infinitely small and the Telescope allows
seeing the infinitely great or far, the Macroscope is
described there as a symbolic instrument to manage the
infinitely complex. The Macroscope (Figure 1) can be
considered as the symbol of a new way of observing,
understanding, controlling and acting on complex
systems.

Figure 1. The Macroscope – Illustration from [13]

MDE is a software engineering field based on few

simple and sound principles. Its power stems from the
assumption of considering everything as a model [7].

Our intuition is that MDE may now provide the
right level of abstraction to move the Macroscope from
its status of a symbolic instrument to a set of concrete
and practical tools, ready to be used by engineers when
they collectively work on complex computer based
systems.

In order to provide first evidence in support of this
intuition, we have been building open source
prototypes on the Eclipse platform. This paper presents
the current status of the project and discusses
achievements and remaining challenges in this field.

Section 2 of this paper introduces some
characteristics of complex systems. From these
characteristics we show in section 3 how MDE can
provide some initial solutions. In section 4 we
demonstrate that a generic tool build upon MDE can

Dagstuhl Seminar Proceedings 08331
Perspectives Workshop: Model Engineering of Complex Systems (MECS)
http://drops.dagstuhl.de/opus/volltexte/2008/1600

1

address some more remaining issues. In section 5 we
take the example of the Eclipse.org ecosystem itself,
considered as a complex system, to illustrate some
possible applications. Related work on handling
complex information systems is presented in section 6
and section 7 concludes the paper.

2. Complex systems

There are a number of examples of complex

biological, ecological or societal complex systems
discussed in [13]. In the context of this paper we are
interested by Computer Based Complex Systems
(CBCS), i.e. complex systems with a significant
number of hardware or software components. These
parts may be processing elements (processors,
programs, processes, etc.) or data elements (memory,
disks, repositories, files, etc.) or any kind of composite
elements (hardware and software). One of the most
important characteristics of a complex system is that it
is composed of a very large number of individual parts.
But there are also additional properties.

A CBCS is constantly in evolution with a past
history, a present, and a future. This evolution is the
consequence of the various interactions between the
parts of the system. The evolution is permanent, i.e. the
CBCS usually never stops, even when some parts are
added, removed exchanged or under maintenance or
repair.

A CBCS has a structure (or static architecture) and
a dynamic behavior. It is composed of elements that
may themselves be CBCSs (with structure and
behavior) and no limit exists on this deep nesting.

In addition to structure and behavior, a CBCS also
has a goal, defining its purpose in the context in which
it is operating. As previously stated, this also applies to
any component of this system. Important information
is also the metadata associated to any component. The
categories of metadata are quite diverse.

Another dimension of a CBCS is engineering
heterogeneity. Many components are hardware and
software elements produced in the last fifty years, with
different types of technologies. For example many
different hardware technologies, programming
languages, APIs, operating systems, database
organizations, network protocols, standards, or
normative specifications have been used to build these
various components. Furthermore there may be a
penalty to the use of any technology. This is often
called accidental complexity [8] that adds an artificial
portion to the essential complexity of the base
problem. Managing the accidental complexity

accumulated by many layers of technological legacy is
an important challenge in the management of CBCSs.

A CBCS is also a distributed system, i.e. its
elements are located on many widely dispersed
physical locations.

By definition a CBCS may not be understood by
one unique human operator. On the contrary many
stakeholders will have different views on the system.
These stakeholders may play different roles (architect,
designer, implementer, maintainer, manager, user,
etc.). Stakeholders may participate in the global goal of
the CBCS.

The interactions between the different parts of a
CBCS are not random interactions and they follow
specific patterns. Such a system is also characterized
by the relationships that hold between its parts. Very
often these relationships are informally characterized
but in some occasions they may be explicitly
represented. In either case they are quite important.

Managing a CBCS means observing it,
understanding it and controlling it. However
management may imply a lot of additional operations
like designing it, constructing it, measuring it,
managing it, maintaining it, and many more. We are
interested here by the support MDE may bring to all
these operations on CBCSs.

3. Model Driven Engineering

In the previous section, we have listed some
important characteristics of complex systems. In this
section we will take those characteristics and see how
MDE may provide the corresponding management
solutions.

MDE considers models as first class citizens as
illustrated in Figure 2. A model is a representation of a
system (relation repOf) and the nature of the model
(M) is defined by its metamodel (MM). We say that
model M conforms to its metamodel MM (relation c2).

Figure 2. The two basic relationships of MDE

MDE is mainly built on top of these two basic

relations of representation and conformance, like

S
repOf

M

MM

c2

2

object technology was mainly based on the relations of
instantiation and class inheritance [9]. MDE may be
implemented with the help of object technology (or
any other technology like functional). However the
basic paradigms of MDE are inherently different.

Any system can be represented by a set of models.
Any model is a simplified (but nevertheless precise
and faithful) representation of a given system. The
relation of representation between system and model is
probably one of the most overlooked in the present
state of computer science. Until now its study has been
mainly limited to ontology engineering, with some
exceptions (e.g. [9]). This situation is however
changing (see for example [21]) and this concern is
more and more integrated in the software engineering
perimeter.

 Since system may be represented by a set of
models, MDE helps to provide a homogeneous
representation of a heterogeneous situation or
phenomenon.

Metamodels may be used as filters to define matters
of interest in a system. Used as a typing system, they
provide precise semantics to artifacts and relations
between these artifacts [15]. Metamodels and terminal
models are abstract models and share many properties.
Operations like storage, retrieval, transformation and
many more may be applied to any kind of abstract
models. A model to model transformation may be
considered as an abstract model. Among the
consequences of this property we may mention the
possibility to use higher order transformations (i.e.
transformations that take transformation(s) as input
or/and produce transformation(s) as output).

Applying a transformation Mt to a model Ma may
produce model Mb. Model Mt may be recorded as a
relation between Ma and Mb. Furthermore the
execution of Mt may produce, as a side effect,
traceability model Mtr that may also be kept after the
transformation.

A transformation is an executable model. There are
other abstract models that may represent non
executable relations between models and we call them
weaving models. For example alignment between two
metamodels or traceability between a requirement and
a design model may be taken into account. Multiple
and complex chains of traceability may be established
with the support of such weaving models.

A system can be “filtered” by more than one
metamodel. As a complex system cannot be
understood and managed from one single point of
view, being able to have different representations of
this system is of great interest. For instance, we can
imagine having a model of the static structure of a
software application and a model of its execution trace

(method calls, etc.) Static and behavioral
representations may be models of the same system.
Hence some relationships do hold between them.
Issues of links between model elements may be
addressed by weaving models [16]. Issues of direct
links between model themselves are the subject of the
present work.

MDE provides some principles and tools to manage
complex systems. But this is not sufficient by itself.
The distribution and the handling of a high number of
artifacts, the representation of complex systems as
composition of artifacts that may be complex
themselves are not directly addressed. In the next
section, we will introduce some enhancements to this
purpose.

4. MDE for CBCS management

4.1 Megamodel definition

As discussed above, there are a number of
properties of MDE that makes this solution a good
candidate for the management of CBCS. But with
these basis principles only, we would get a large
number of independent models representing system’s
artifacts. We need a mechanism for knitting those
models together into a coherent whole and providing a
view of the global intent of the CBCS on which we can
build a rationale. We propose to use a special kind of
model for this mechanism and we call it a megamodel
[6]. A megamodel is a model such that some of its
elements are themselves models (Figure 3).

Figure 3. A megamodel: a model which some elements represent

models
There is no need to introduce here new specific

features to MDE because a megamodel is just a
terminal model, conforming to a metamodel. Using

S1

S2

S3

M1

M2

M3

Syste

Megamodel

repOf

c2

Metamode

3

megamodels is just a matter of good modeling
practices when dealing with complex systems.
However, as we shall see later, some specific tools
may be of significant help to support these good
practices.

Megamodels are terminal models conforming to
different types of metamodels. However some
elements are models references, a concept that is
defined in the metamodel of a megamodel. Model
references may also carry metadata of represented
artifacts. But megamodels also address the issue of
semantic linking between models. Relationships
between models are numerous and diverse:
transformations, weaving, provenance, injection,
extraction, trace, versioning, refinement, etc.
Moreover, each CBCS is different and each
stakeholder of a CBCS has different center of interest.
From the wide range of relationships between models,
we conclude there is no possible standard metamodel
for a megamodel. Yet, we reckon it is possible to
define a canonical base metamodel of which most
megamodels' metamodels may be seen as an extension.
A metamodel extension mechanism has been sketched
out in [4]. In the remainder of this paper, we call
“AM3Core” this base metamodel. A conceptual
excerpt of AM3Core is depicted in Figure 4 (in KM3
notation).

package AM3Core {
 class Megamodel {
 reference ownedElements[*] ordered container : Element;
 }
 abstract class Element {
 reference metadata[*] container : Metadata;
 }
 class Metadata {
 attribute key: String;
 attribute value: String;
 }
 abstract class LocatedElement extends Element {
 reference locator container : Locator;
 }
 abstract class IdentifiedElement extends Element {
 reference identifier container : Identifier;
 }
 abstract class Model extends IdentifiedElement, LocatedElement {
 reference targetOf[*] : Relationship oppositeOf target;
 reference sourceOf[*] : Relationship oppositeOf source;
 }
 abstract class Relationship extends IdentifiedElement {
 reference source[*] : Model oppositeOf sourceOf;
 reference target[*] : Model oppositeOf targetOf;
 }
 abstract class Container extends LocatedElement {
 reference ownedElements[*] container : LocatedElement;
 }
 abstract class Group extends IdentifiedElement {
 reference ownedElements[*] : Element;
 }
 abstract class Chain extends IdentifiedElement {
 reference chainedRelationships[*] ordered : Relationship;
 }
 abstract class Identifier extends Element {

 attribute value : String;
 }
 abstract class Locator extends Element {
 attribute value : String;
 }
}

Figure 4. AM3Core: base metamodel of megamodel (in KM3)

The two main concepts are Models and

Relationships. A relationship links some models
(source) to some others (target). A Model is an
IdentifiedElement and a LocatedElement. An identified
element has an Identifier. It can be referenced even if it
is not locally available. A LocatedElement has a
Locator. This locator can be dereferenced to access to
the underlying element. We can then access sub levels
of representation of a system by dereferencing a
model. We defined separately Identifier and Locator to
make a clear distinction between what some resource
management framework call logical identifier and
physical identifier. Identifiers will be used to reference
models that are distributed across platform, resources,
networks, etc… Identifiers and Locators are abstract
concepts to be specialized in an extension of
AM3Core. The specialization may be system- or
implementation-specific. For instance, an extension
may use URI generic syntax specification (RFC 2396)
or the Digital Object Identifier (DOI) of the
Association for Computing Machinery.

AM3Core also defines grouping concepts. A
Container is a physical set of located elements while a
Group only is a logical set of elements of the
megamodel. A Chain is a special group of
relationships being ordered.

This paper proposes to use megamodels as the main
tool to implement the Macroscope’s vision. The
complexity of the systems is harnessed: some elements
of the megamodels may be considered as gangways of
more concrete details of it. Although we have a
structure for managing complexity, we also need tools
to handle it efficiently and in a user-friendly way. We
propose two related kinds of generic tools for this
purpose grouped into what we call the “megamodel
manager”:
• A megamodel editor: tool for viewing and editing

entities and relationships of megamodels.
• A megamodel browser: tool for navigating trough

pre- or user-defined views on the megamodel.
They can handle any megamodel conforming to

AM3core as stated before.
Finally, handling efficiently a large number of

models is a big requirement for MDE being the best
candidate for CBCS management. We propose to use
models repositories. Models repository would provide

4

Figure 5. The megamodel browser prototype

interface for storing models in a centralized or
distributed fashion. Compared to current solutions (see
section 6), we support explicitly the basic relationship
of MDE (i.e. the c2 conformance relation) leading to a
clean distinction between modeling levels. The
separation of modeling levels helps to deal with well
delimited models without any dangling edges between
models. No dangling edges lead to avoid considering
the repository as one big graph and falling into a trap
of complexity. The issue of linking elements within
different models with symbolic link end is addressed
by models weaving techniques [16].

4.2 Megamodel implementation

Megamodels of complex systems are not usable
without tooling to help browsing, editing, and building
custom views. We are currently implementing some
tools (a megamodel browser and a megamodel editor)
in the Eclipse AM3 project. A screenshot of the current
megamodel editor prototype, currently in development,
is depicted in Figure 5. This shows a (very) small
megamodel of a Java program with dependencies
between classes. We can see two panes: on the left side
a split view (named Megamodel Navigator) and on the
right side some editors. The megamodel navigator
contains the concepts of the metamodel of the
megamodel (left) and their instances (right).

Concepts are organized with respect to their
inheritance tree. The right pane shows some editors of
those instances. We see a relationship between two
classes. This relationship is an “Import” of the Java
class java.util.Collection (target) in the class MyClass
(source). Below, there are two entities editors. We see
that java.util.Collection is the target of an import

relation (inbound) and that MyClass is the source of an
import relation (outbound).

The editor is entirely generic and can handle any
kind of megamodel conforming to an extension of
AM3Core. Thus, relationships between entities are
specified in the extended metamodel of AM3Core. It
gives them their semantic.

The choice of a Java program as a complex system
in the example of Figure 5 is a big simplification made
in the purpose of illustration. In the next section we
take another example, still illustrative and simplified,
but a bit more realistic.

5. Illustrative example

This section takes the example of the whole
Eclipse.org ecosystem to illustrate the notion of a
CBCS. It shows how the tool presented in the previous
section may be applied to handle the corresponding
situation.

5.1 Presentation

 Eclipse.org may be considered as a relevant

example of CBCS. It is composed of an important
number of artifacts of different natures. There is code,
documentation, committers, projects, plug-ins, update
sites, legal process, committer’s election process,
Wiki, web pages, bugs report facilities, newsgroups,
etc. Eclipse.org also is a large cluster of projects: there
are 75 projects distributed into 11 top level projects
with different maturity levels: from incubation to
mature phase. Regarding the “Eclipse Platform”
project only, 186 contributors have submitted code and
75 have done so in the last year. The code base

5

represents 4,779,778 lines of code being an estimated
effort of 1,460 person years (source: Ohloh [24]). The
evolution is very quick (there is one commit to the
platform every 22 minutes – [11]).

Moreover, projects and entities are tightly related to
each others. For instance, latest Test & Performance
Tool Platform (TPTP) release (4.4.0.3 as the time of
writing) relies on EMF 2.3.1, WTP 2.0.1, BIRT 2.2.1,
GEF 3.3.1 and DTP 1.5.1. Those dependencies are
expressed in different locations: releases notes, builds
manifests, etc. Dependencies are even hardest to
manage due to projects sovereignty regarding their
timelines and release schedules.

Eclipse.org has a lot of different stakeholders. They
consider Eclipse.org from different point of views.
Members of the management board of the Foundation
take care about download stats, good health conditions
of the projects (conformity to the intellectual property
policy, state of development: active or not, etc.) and
information about members and sponsors. Committers
for their part check more technical concerns such as
bugs reports, unit tests results, etc. Simple users only
care about projects versions and dependencies,
compatibility between builds.

5.2 MDE Support

From the list of informal notions enumerated above,

we may select concepts that will appear in the
metamodel of Eclipse.org megamodel. In the
remainder of this section, we show some of the
benefits that could be reaped from a MDE
representation of this CBCS.

From a project lead point of view, we need to offer
some facilities. For instance, producing a regular
summary of all reported bugs classified by some
criteria (severity for instance) is a typical need. It is
possible to do it “by hand”, i.e. to create a database
request to get all bugs on a project, to give the result to
a program to compute the desired metrics (typically
Excel) and to call some export functions to have a nice
display. With reverse engineering tools, Eclipse’s
Bugzilla system can be represented as a model [22]
and the metric as model-to-model transformation
targeting a metric model. With canonical metric
models, the “metric to visualization format” (table to
HTML, table to SVG bar chart, etc.) transformations
are easily reusable (Figure 6).

Every artifact is handled in a seamless way thanks
to the homogeneity provided by modeling principles.
The degree of reusability of independent model
transformations increases accordingly. Delivering web
feeds of the bugs’ metrics is only a matter of doing a
transformation between the model of metrics to an

RSS one. Atom format is provided by reusing Web
Syndication interoperability transformations [3].

Figure 6. Visualization format for metrics on a Bugzilla model

Interoperability of the Eclipse Bugzilla system with

other software quality control tools like Mantis can
also be achieved thanks to the homogeneity [5]. It is
possible to do it either by using a pivot metamodel [3]
or directly by capturing differences between the two
tools in a weaving model of the two metamodels [17].

Computing metrics on the project’s code is another
concern of an Eclipse.org project lead. Here again,
MDE allow to factorize common pattern and reuse
them. For instance, metrics on class diagram of
Unified Modeling Language (UML) models already
are available in [3]. Models of the Java code can be
created with some Java discovery tools like [14] and
[22]. The tool [22] gives the abstract syntax tree of
Java classes. It can be transformed to an UML class
diagram and only hold back the design level. The tool
[14] gives directly an UML model of the Java code.
Once the UML model is created, transformations
computing the measures can then be fired. Finally
graphical representation can then be chose to display
computed metrics (Figure 7 and Figure 8).

Although MDE presents some benefits for source
code measurement, the size and the number of
modeling artifacts involved in this process is very

6

high. This problem is only addressed by
megamodeling.

Figure 7. Example of SVG Pie Chart presentation of measures on

a UML model

Figure 8. Example of interactive XHTML with CSS presentation

of measures on a UML model

For instance, the Java 5 SDK (J2SE 1.5) is
composed of 2701 classes and 912 interfaces within
187 packages. The number of links between classes
(import statements) and methods (call statements)
blows up. Handling such an amount of data in a single
model would be unfeasible. Not technically speaking
but from human’s eye point of view. One solution is to
provide different levels of representation. For instance
we should have a megamodel of packages (187
elements) with their dependencies (sub-packages,
imports). At a sub level, we should have a megamodel
of classes by package (approximately 14 classes and 5
interfaces by package) with class-specific
dependencies such as import, inner classes, etc. It is
possible to manage the models of the code with this
magnitude of artifacts number.

But MDE can be used by a project lead even at a
higher level. For instance, the Eclipse Architecture
Council would like to begin population of a catalog of
functional elements, i.e. contributed extensions points
and other facilities for each project. In this goal, the
lead would build a model of the plug-ins of the project.
Building the catalog is then to select information that
are required and extract it in static and/or browsable
format. A discoverer of models of plug-ins does not
exist yet but a metamodel already is available [1]. It
defines dependencies between plug-ins, extensions
points and their attributes, packages it contains and

also contributions to other extension points. Several
applications can be defined from such a model. For
instance, a dependency graph can be created. It helps
at better displaying inter-plug-ins dependencies and
detecting circular ones. The target model could be
conforming to DOT (an automatic graph layout
program from Graphviz) like the KM32DOT
transformation [3]. The catalog of components can be
generated as a Wiki or HTML page and can be used as
a documentation in other Eclipse projects or, more
generally, by anyone extending the Eclipse platform.

A model of a plug-in can also be represented as a
megamodel. Java packages are sure enough references
to models previously described for code measurement.

Finally, we will illustrate how Model Driven
Management of CBCS may be well suited for systems’
evolution management. The metamodel of plug-ins we
were talking about just this minute will be accurate
until the next evolution in the Eclipse plug-ins
architecture. The metamodel will have to be upgraded
but models conforming to may not as easily. They
have to migrate to the new one. Semi-automatic
migration is possible thanks (once again) to the
homogeneous representation of system’s artifact. The
former and the new metamodel are matched by reusing
techniques and tools like the one used to capture
differences between Bugzilla and Mantis (see above).
It is possible to define a metamodel independent
approach [3] to the difference representation. This
approach is used to compute the migration
transformation [2].

All models we presented in this section are
representation of some artifacts of the Eclipse.org
system. It helps understanding each artifact but not the
system as a whole. Knitting those models (and the
underlying artifacts) is done within a megamodel
(Figure 9). We take the example of a Java project and a
bug reports tool. At the first representation level, we
see links between Java projects and components
declared in a Bugzilla product. Bugs of “Java App 1”
are declared in “Bugzilla Comp21” as do bugs of “Java
App 3”.

As long as a Java project is represented by a model,
details of “Java App 3” can be observed at the sub
representation level. It is composed of Java files with
import dependencies. A Bugzilla component may also
be represented as a model. It is composed of Bugs and
attachments. The relationship between a bug and its
Java file is described in a weaving model. On the
picture, there is only one link: “bug1” is related to the
“B.java” file. The model of a Java project is a
megamodel which Java file elements are models. From
the “B.java” model element, it is possible to retrieve

7

the model of the abstract syntax tree of the Java B
class.

Java App 1

Java App 4

Java App 3

Java App 2

Bugzilla
Prod1

Bugzilla
Prod2

Bugzilla
Comp21

Bugzilla
Comp22

Bugzilla
Comp11

BugsIn 1

BugsIn 2

A.java

B.java

C.java

hasReport Bug1 Bug3

Bug2

Attachment

Duplicates

imports

imports

Class B {
 Public static void main() {
 System.out.println(« hello
worl »);
 }
}

Figure 9. Megamodel of Java project and bug reports

In this section, we have presented how MDE can

help to understand the Eclipse.org CBCS. The number
of models and links between them that are generated
from this study comforts us in the need for the
megamodel mechanism and tooling for handling them
in a manageable and consistent way.

6. Related work

Managing complex systems is not a recent concern
and some tools have already been developed. Most of
them provide a way to associate metadata to the
artifacts of the system. Those metadata are more or less
structured. For instance, we can cite the Resource
Description Framework [27] (RDF) being used to
described online resources by providing a lightweight
ontology system or Dublin Core [12] being a set of
standard metadata that support a broad range of
purposes.

Description of complex systems and especially
legacy portfolios may also be achieved by reverse-
engineering tools and Application Portfolio
Management (APM) systems. Those tools, like the
CAST workbench [10], provide an understanding of
complex systems through different configurable views,
measures, and monitors. Main issue with those kinds
of application is that they do not provide homogeneous
views of the systems. Data can be only retrieved in
heterogeneous formats such as Excel, XML, HTML,
etc. As far as we know, they provide only limited ad-
hoc facilities to navigate through different
representation levels.

There is some well known work around models
repositories. For instance, the Eclipse Modeling

Framework (EMF) [18] and the NetBeans MetaData
Repository (MDR) [26] implements MOF-like
repositories. EMF is based on Ecore as a
metametamodel and provides an in-memory repository
of models with lazy loading facilities. MDR is based
on Java Metadata Interface (JMI) and provide a full
database based repository of models. These
repositories may be viewed as low level megamodels
without much extensibility potential.

The notion of megamodel has been previously used
in the work of J.M. Favre with a similar meaning.
Ongoing work includes [19]. The notion of megamodel
is also central to other projects like the SITRA
Norwegian project [23].

One of the projects that are the closest to the work
reported here is the MMTF (Model Management Tool
Framework) at the University of Toronto [25]. In this
project the CBCS is limited to a model based complex
system, i.e. all the considered artifacts are models and
relations between models. This is also a goal pursued
by our toolset, but here we have presented a much
broader view. Of course, by restricting the domain of
CBCS to model-based systems, we may obtain more
advanced results. For example the work reported in
[25] mentions the objectives of: supporting arbitrary
model and model mapping types and operators over
them, supporting easy integration of existing
independently developed model-related components
including editors and operators, providing the
capability to import/create/modify/view particular
collections of models and mappings, and providing the
capability to interactively apply relevant operators to
sets of models and mappings to derive new (resultant)
models and mappings and to define new operators.
One interesting emphasis in this work is on the
inference calculus of explicit relationships between
models from implicit knowledge.

7. Conclusion

This paper has described a vision and the initial
development of an open source model-based
framework for the management of CBCS. We have
implemented an initial set of tools in the GMT/AM3
Eclipse project and we are presently starting the
implementation of a first set of use cases. From there
we plan to validate the conceptual framework and to
improve the practical tools.

At the center of the proposed toolset, we place what
we call the "megamodel manager". As we have seen,
there is very little specificity to this tool, and it may be
considered more as good practice guidance than as a
heavyweight and constraining set of tools. One lesson

8

learnt in this work is that, even without any extension,
MDE provides an excellent support for the
management of CBCS. In spite of the fact we provided
clues for handling issues of CBCS, we did not address
the management of big sized artifacts. This is a subject
of future work.

However by using this idea of a megamodel, we
have an interesting opportunity to leverage model
engineering to enhanced practices. The current
achievements are illustrated by a set of experiments
visible on the Eclipse site (see [1], [2], [3] and [22]).
Some of these have been summarized in section 5. The
initial conclusions are rather positive and clearly
demonstrate the feasibility of the approach. Among the
contribution of this work, we may mention in
particular:
• The idea of a megamodel with variable metamodel

allowing to consider a number of different
situations including nested systems.

• The consideration of a model transformation as a
model, allowing to keep track of certain explicit
relations between models.

• The use of incomplete and non executable
relations between models by so-called weaving
models. A weaving model summarizes a lot of
fine-grained relations between model elements.

• The possibility to use weaving models or
transformation models to link chains of versions
of different artifacts like metamodel.

• The possible specialization of model
transformations to produce measurement or
verifications of parts of the modeled system.

• The possible use of model transformations to
provide different kinds of views on a given model.

• The integration of a lot of facilities like the ones
mentioned above in a tool for megamodel
handling, giving a first idea of a possible
engineering workbench for complex system
management.

8. Acknowledgements

This work is being supported by the French FLFS,
IdM++, and Happy projects as well as the ModelPlex
European Integrated project (FP6-IP 034081). We
thank all the members of the AMMA project and
specially Hugo Brunelière, Brahim Khalil Loukil and
Frédéric Jouault for their contributions to the ideas
presented here.

9. References

[1] AM3 Atlantic Zoo, Eclipse plug-in: metamodels in
KM3,http://dev.eclipse.org/viewcvs/indextech.cgi/org.eclipse
.gmt/ AM3/org.eclipse.am3.zoos.atlantic/EclipsePlugIn.km3
[2] AMW website, use cases section, http://
www.eclipse.org/gmt/amw/usecases/
[3] ATL website, use cases section and Transformation
Zoo, http://www.eclipse.org/m2m/atl/usecases/
[4] Barbero, M., Jouault, F., Gray, J. and Bézivin, J.: A
Practical Approach to Model Extension, In: Model Driven
Architecture- Foundations and Applications, Third European
Conference, ECMDA-FA 2007, Haifa, Israel, June 11-15,
2007, Proccedings, LNCS 4530, edited by David H.
Akehurst, Régis Vogel, and Richard F. Paige. Springer,
pages 32--42.
[5] Bézivin, J, Brunelière, H, Jouault, J, and Kurtev, I:
Model Engineering Support for Tool Interoperability. In:
Proceedings of the 4th Workshop in Software Model
Engineering (WiSME 2005), Montego Bay, Jamaica.
[6] Bézivin, J, Jouault, F, and Valduriez, P: On the Need
for Megamodels. In: Proceedings of the OOPSLA/GPCE:
Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications. 2004.
[7] Bézivin, J: On the Unification Power of Models. In:
Software and System Modeling (SoSym) 4(2):171—188.
2005.
[8] Brooks, F. P: No Silver Bullet: Essence and Accidents
of Software Engineering. 1987.
[9] Cantwell Smith, B: On the origin of objects, The MIT
Press, ISBN: 0-262-19363-9, 1996.
[10] CAST: The CAST Application Intelligence Platform,
http://www.castsoftware.com/
[11] CIA.v, an open source version control informant,
http://cia.vc/
[12] DCMI: The Dublin Core Metadata Initiative,
http://dublincore.org/
[13] De Rosnay, J: The macroscope, Harper & Row, New
York, 1979.
[14] Dennis Wagelaar, Jar2UML Eclipse plugin,
http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
[15] Didonet Del Fabro, M, and Bézivin, J: Generic Model
Management: from Theory to Practice. In: First Intl.
Workshop on Towers of Models 2007 Co-located with
TOOLS EUROPE. 2007.
[16] Didonet Del Fabro, M, Bézivin, J, Jouault, F, Breton, E,
and Gueltas, G: AMW: a generic model weaver. In:
Proceedings of the 1ère Journée sur l'Ingénierie Dirigée par
les Modèles (IDM05). 2005.
[17] Didonet Del Fabro, M. Bézivin, J. and Valduriez, P:
Model-Driven Tool Interoperability: An Application in Bug
Tracking, In: The 5th International Conference on
Ontologies, DataBases, and Applications of Semantics
(ODBASE'06), LNCS 4275, 2006, pages 863--881.
[18] Eclipse.org: Eclipse Modeling Framework (EMF),
Eclipse Foundation, http://www.eclipse.org/modeling/emf/,
2007

9

[19] Favre, J.M., Nguyen, T.: Towards a Megamodel to
Model Software Evolution Through Transformations. Electr.
Notes Theor. Comput. Sci. 127(3): 59-74 (2005)
[20] Jouault, F, and Kurtev, I: Transforming Models with
ATL. In: Satellite Events at the MoDELS 2005 Conference,
Montego Bay, Jamaica, October 2-7, 2005, pages 128—138.
2006.
[21] Kiczales, G: Context, Perspective and Programs,
OOPSLA’ 07 keynote, Montreal, Canada.
[22] Modisco Website: Uses cases and toolbox,
http://www.eclipse.org/gmt/modisco/
[23] Nytun, J.P. A Generic Model for Connecting Models in
a Multilevel Modeling Framework, ICSOFT'2006, First
International Conference on Software and Data
Technologies, http://www.icsoft.org
[24] Ohloh.net: Open source network,
http://www.ohloh.net/projects/3855?p=Eclipse+Platform+Pr
oject
[25] Salay, R., Chechik, M., Easterbrook, S. Diskin, Z.,
McCormick, P., Nejati, S., Sabetzadeh, M.,
Viriyakattiyaporn, P. An Eclipse-Based Tool Framework for
Software Model Management, Eclipse Technology Exchange
Workshop at OOPSLA 2007, Montreal, October 2007.
[26] Sun NetBeans: Metadata Repository (MDR),
http://mdr.netbeans.org/ 2007
[27] W3C: Resource Description Framework (RDF),
http://www.w3.org/RDF/

10

