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Abstract. From September 24th to September 29th 2008 the Dagstuhl
Seminar 08351 “Evolutionary Test Generation ” was held in Schloss
Dagstuhl – Leibniz Center for Informatics. During the seminar, several
participants presented their current research, and ongoing work and open
problems were discussed. This paper contains an executive summary of
the seminar and the open problems that were found.
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1 Overview of the seminar

The “Evolutionary Test Generation” Dagstuhl seminar that was held from Septem-
ber 24th to September 29th 2008. The organisation of the seminar was initiated
by the EvoTest project, a project funded by the European Commission under
the contract number IST-33472.

The goal of our seminar was to bring together researchers from the software
testing and evolutionary algorithms communities for the discussion of problems
and challenges in evolutionary test generation. This goal has been satisfactorily
met and has led to a comprehensive list of open problems and challenges identi-
fied and discussed during the seminar. This list in described in Section 3 of this
executive summary.

The seminar has been attended by 33 people: 30 were researchers from all over
the world working on evolutionary testing, test generation and/or evolutionary
computing; 3 were industrial participants with experience and feedback from
real-life challenges were present: Microsoft, IBM and Berner& Mattner. The
abstract collection indicates the talks that were given by the participants.

2 Brief introduction to evolutionary testing

Systematic testing is the most widely used method to ensure that a program
meets its specification. The effectiveness of testing for quality assurance largely
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depends on the chosen test suite. Currently, test suites are constructed either
manually or semi-automatically from the program code or program specifica-
tion. For large systems, however, manual test case construction is tedious and
error-prone, whereas semi-automatic procedures often achieve only insufficient
coverage. Therefore, new methods for the automated generation of "good" test
suites are necessary.

Evolutionary adaptive search techniques offer a promising perspective for this
problem. Genetic algorithms have been investigated for complex search problems
in various fields. Their basic principles are selection, mutation, and recombina-
tion. These principles can be beneficially applied to the automated generation
and optimisation of test suites, both from code (white-box testing) and specifica-
tion (black-box testing). However, to make this approach successful in practice, a
lot of problems remain to be solved: the question of adequate testing objectives,
coverage and reliability measures, representation issues for test cases and test
suites, seeding, recombination and mutation strategies, and others.

2.1 Evolutionary Algorithms

Evolutionary algorithms represent a class of adaptive search techniques and pro-
cedures based on the processes of natural genetics and DarwinŠs theory of bi-
ological evolution. They are characterized by an iterative procedure and work
parallel on a number of potential solutions for a population of individuals. Per-
missible solution values for the variables of the optimization problem are encoded
in each individual.

The fundamental concept of evolutionary algorithms is to evolve successive
generations of increasingly better combinations of those parameters that signif-
icantly affect the overall performance of a design. Starting with a selection of
good individuals, the evolutionary algorithm tries to achieve the optimum so-
lution by random exchange of information between increasingly fit samples (re-
combination) and introduction of a probability of independent random change
(mutation). The adaptation of the evolutionary algorithm is achieved by selec-
tion and reinsertion procedures based on fitness. Selection procedures control
which individuals are selected for reproduction, depending on the individualsŠ
fitness values. The reinsertion strategy determines how many and which indi-
viduals are taken from the parent and the offspring population to form the next
generation.

The fitness value is a numerical value that expresses the performance of an
individual with regard to the current optimum, so that different individuals can
be compared. The notion of fitness is fundamental to the application of evolu-
tionary algorithms; the degree of success in using them may depend critically on
the definition of a fitness that changes neither too rapidly nor too slowly with the
design parameters. The fitness function must guarantee that individuals can be
differentiated according to their suitability for solving the optimization problem.

Figure 1 provides an overview of a typical procedure for evolutionary algo-
rithms. First, a population of guesses on the solution of a problem is initialized,
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Fig. 1. Evolutionary algorithms

usually at random. Each individual within the population is evaluated by cal-
culating its fitness. This will usually result in a spread of solutions ranging in
fitness from very poor to good. The remainder of the algorithm is iterated un-
til the optimum is achieved, or another stopping condition is fulfilled. Pairs of
individuals are selected from the population according to the pre-defined selec-
tion strategy, and combined in some way to produce a new guess analogously to
biological reproduction. Combinations of algorithms are many and varied. Addi-
tionally, mutation is applied. The new individuals are evaluated for their fitness,
and survivors into the next generation are chosen from parents and offspring,
often according to fitness. It is important, however, to maintain diversity in the
population to prevent premature convergence to a sub-optimal solution.
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Fig. 2. Evolutionary testing

2.2 Software testing

In order to automate software tests with the aid of evolutionary algorithms, the
test aim must itself be transformed into an optimization task. For this, a numeric
representation of the test aim is necessary, from which a suitable fitness function
for the evaluation of the generated test data can be derived. Depending on which
test aim is pursued, different fitness functions emerge for test data evaluation.
If an appropriate fitness function can be defined, then the Evolutionary Test
proceeds as follows.

The initial population is usually generated at random. In principle, if test
data has been obtained by a previous systematic test, this could also be used
as initial population. The Evolutionary Test could thus benefit from the tester’s
knowledge of the system under test. Each individual of the population represents
a test datum with which the test object is executed. For each test datum the
execution is monitored and the fitness value is determined for the corresponding
individual. Next, population members are selected with regard to their fitness
and subjected to combination and mutation processes to generate new offspring.
It is important to ensure that the test data generated is in the input domain of
the test object. Offspring individuals are then also evaluated by executing the
corresponding test data. Combining offspring and parent individuals, according
to the survival procedures laid down, forms a new population. From here on, this
process repeats itself, starting with selection, until the test objective is fulfilled
or another given stopping condition is reached (see Figure 2).
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3 Results of the discussions: Open problems and future
challenges

The future challenges identified at the Dagstuhl seminar have been categorized
as follows:

– Theoretical foundations
– Search Technique improvements
– New testing objectives
– Tool environment/testing infrastructure
– New application areas

3.1 Theoretical foundations

Evolutionary testing uses meta-heuristic search algorithms. The advantage of
meta-heuristic search is that is it widely applicable to problems that are infeasible
by analytic approaches. All one has to do, is to come up with a representation
and objective function. This can make one think that evolutionary computation
is some kind of golden hammer that can be applied to attack any problem.
However finding good representations and fitness functions can be very hard,
and sometimes one cannot find one at all. We lack a good theoretical foundation
to tell us which problems can be solved using evolutionary computation, and for
which it is unsuitable? This problem is experienced by the entire field of search
based software engineering. There are many search algorithms available and it is
not clear which technique is best for a certain problem/search space. The choice
is often made somewhat ad hoc, based on experience or by trying an arbitrary
selection of search algorithms. To tackle this problem Harman [Har07] calls for
a more concerted effort to characterise the difficulty of the software engineering
problems for which search already produced good results. This characterisation
will help to determine the most suitable search technique to apply.

A step further would be the development of a benchmarking suite consisting
of different SUTs and testing-objectives. Such a suite would allow for much better
development of experiments, providing more thorough comparison of different
testing techniques, evolutionary as well as others. It would allow us to gain insight
in the strengths and weaknesses of each technique. This is a valuable tool for
industry to help them to make a well-founded decision on which tool to apply.
Furthermore it would drive further research and development of techniques.

Another very important element in the theoretical foundation is an assess-
ment of what is the quality of the evolutionary testing results? How good are the
generated tests compared to tests derived using other techniques or developed
manually by a tester? Furthermore, figures are needed to assess the reliability
of the test results. Such assessments are necessary to which extent evolutionary
testing could be used as a substitute for manual testing and to which extent
as an addition to manual tests. The previously said is especially important for
dependable systems.
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A general problem with evolutionary computation is: when to stop the search.
Usually this is decided by a bound on the number of generations or by analysing
the testing progress and by analyzing the search progress. But again reliability
is an interesting aspect: when we stop the test, how sure can we be that, in the
next generation, no more errors will be found?

3.2 Search Technique improvements

Many approaches that look promising in the lab are inapplicable in the field,
because they do not scale up. However, making a solution scalable is easier said
than done. There are a couple of areas where work is needed:

Parallel computing. A great advantage of evolutionary computing is that it
is naturally parallelizable. Fitness evaluations for individuals can easily be
performed in parallel, with hardly any overhead. Search algorithms in general
and SBSE in particular; therefore offer a ‘killer application’ for the emergent
paradigm of ubiquitous user-level parallel computing. Grid-computing is the
subject of a great number of EU-projects. There is a great opportunity to
team up with these projects and apply the technologies developed in that
area on evolutionary testing.

Combining search techniques. Another way of increasing efficiency is to im-
prove the search techniques. Other search techniques may perform better
than genetic algorithms. For example a recent study [WWW07] shows that
particle swarm optimisations outperform traditional GA’s for many instances
of structural testing. Another promising approach is the use of hybrid search
techniques. Research is needed to find out what (combination of) search tech-
nique(s) is best for which categories of test-objectives.

Multi-objective approaches also provide an opportunity for improving the
efficiency of evolutionary testing. By targeting multiple test-objectives at the
same time, the value obtained from the expensive process of executing the
subject under test can be maximized. A recent case study [LHM07] shows
promising results in this direction. The study investigates the performance
of multi-objective GA for the twin objectives of achieving branch coverage
and maximizing dynamic memory allocation. The results show that multi-
objective evolutionary algorithms are suitable for this problem, and the way
in which a Pareto optimal search can yield insights into the tradeoffs between
the two simultaneous objectives. Evolutionary algorithms are a very powerful
tool for many problems. However to obtain the best performance out of them
it is crucial that their parameters are well-tuned to the problem to which
they are applied. For this you need to be an expert in the area of evolutionary
algorithms. This is unfortunate as testers usually have very little knowledge
about evolutionary computation.

Static parameter tuning. A solution would be that the testing tool automat-
ically tunes the parameters. One approach would be to do this statically,
based on the characteristics of the SUT. These could be obtained for exam-
ple from the tester; as a tester has a lot of knowledge on the SUT. In the case
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of white box testing this information can also stem from (static) analysis of
the SUT.

Dynamic parameter tuning. Another approach is to let the search algorithm
tune itself, based on how well the proceeding. In this way the search could
automatically adapt to the search-landscape. This approach is seems very
promising for search problems that have many different sub-goals. It could
very well be that the parameter settings that are good for one sub goal are
completely ineffective for another.

Testability transformations. For structural testing, it is possible to remove
certain code constructs that cause problems for evolutionary search by ap-
plying transformations. This approach is taken, for example, when removing
flag variables. Flag variables introduce large plateaus in the search space,
effectively deteriorating a guided search into a random search. Recent work
[HHL+07] presents an algorithm for removing loop-assigned flags; a special
case of flags that conventional flag removal algorithms could not handle. The
algorithm substitutes the definition/uses of a flag with two helper variables
in order to enable the calculation of a smooth fitness landscape. Other prob-
lematic constructs may also be dealt with using this strategy. Research is
needed in this area.

Search space size reduction. Another way to improve efficiency is to use
knowledge about the subject under test to improve the fitness function;
effectively reducing the complexity of the search space. For example knowl-
edge on value ranges could be used to set parameters of the search, such
as e.g. step size for variation of integers, doubles, etc. Another example is
the seeding of test data with literals extracted from the program code. Such
strategies could result in a very significant search space reduction.
There are many ways to uncover information about the system under test.
The models and specifications (on system, software, design or component
level) could be analysed for information that can be used to improve the
test or the search.
The source code of the subject under test is also valuable source of knowl-
edge on the system under test. Static analysis techniques can be applied to
provide information that is useful increase efficiency and effectiveness of the
evolutionary test. For example static analysis can be used to determine which
input-variables are relevant to the search. The irrelevant variables can be left
out making the input-domain of the fitness function smaller. The bounds of
variables or the control flow are other examples of knowledge that can be
used by the fitness function to guide the search. Abstract interpretation may
be employed to provide equivalence partitions. Such a partition is a range
of value for which the SUT behaves the same. In the search one needs to
sample only a single element of the partition to cover to whole range, greatly
reducing the search space. Symbolic execution may be employed to compute
the path conditions for a sub-goal. The open question is how and which re-
sults of the static analysis research we can utilize to improve evolutionary
testing.
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Another analysis technique is concolic execution, which combines static anal-
ysis with concrete execution. During the evolutionary search the subject un-
der test is executed many times, so why not collect data on these concrete
executions and let the search learn from them.

Monitoring the search progress and the testing progress in order to adapt
and optimize the search or the objective function might also be an interesting
research area.

Searching for multiple sub-goals at the same time. The current approaches
for structural testing apply a separate search for each sub-goal. It often hap-
pens that the separate searches are solving (almost) the same problem over
and over again because several sub-goals have a lot in common. For example
the paths to sub-goals deeper in the control-flow-graph may share a long
common prefix. It would be more efficient if the search starts off solving
the easy sub-goals at the start the control-flow-graph and gradually work its
way down towards the deeper more complex sub-goals. A way this might be
achieved is by having a dynamic fitness function that rewards individuals on
how close they are to still uncovered sub-goals.

Other interesting questions: what can we learn about the system under test
from the execution of a huge number of test data? Is testing the only thing or
could we achieve results for other software engineering activities from that?

3.3 New testing objectives

Previous work on evolutionary testing mainly focuses on structural test-objectives,
such as branch-coverage. Although the topic of branch-coverage is extensively
researched, there are still many points for improvements:

– dealing with internal states
– dealing with predicates containing complex types, such as strings, dates,

structs, arrays.
– dealing with loops, especially data dependencies between values calculated

in loops and used outside the loop.
– how to improve the calculation of the fitness function for combined conditions

(and, or, etc.)

Evolutionary testing can be applied for many other testing-objectives, both
structural as well as functional ones. Research is needed to develop an appro-
priate representation and fitness-function for each new testing-objectives. Below
we describe a number of possible testing-objectives. For some it is clear how to
implement them, for others the required representations and fitness function yet
unclear and thus open research topics. Run-time error testing: examples of run-
time errors are: overflow, division by zero, memory leaks. For testing run-time
errors the objective is to find inputs that trigger such an error. It should be
possible to tackle this area by extending the existing approaches to structural
testing. For example to test for memory leaks the fitness function should favour
test-inputs on which the subject under test uses more memory. It should be
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possible to tackle this area by extending the existing approaches to structural
testing.

Testing interactive systems: for this the test-input is a sequence of user-
actions, such as keystrokes and mouse clicks. The system under test can
be tested for example for responsiveness. The fitness function should then
for example favour combinations of user actions that take a long time to
complete. Another objective could be the coverage of different user actions
in various combinations.

Integration testing: a system usually consists of a number of more or less
independent parts (e.g. functions, components, services) that are assembled
to form the complete system. These parts should of course be tested in
isolation, however there are also problems that only occur when integrated.
What should the test goals and corresponding fitness functions is an open
question.

Testing parallel, multithreaded systems: testing such systems is hard, es-
pecially finding bugs that only occur with certain interleavings of the pro-
cesses or threads of the system under test. The need for testing becomes ever
larger, systems get more and more complex and multi-processor computers
are getting more common. An objective for testing such systems is for exam-
ple trying to find deadlock situations. The fitness function should somehow
favour executions that are close to a deadlock. Open questions are how the
best represent interleaving executions of the system under test, and how to
measure the "closeness" to deadlock.

Testing non deterministic systems. Another open question is if evolution-
ary testing could be used to test systems which are based on non-deterministic
technologies, e.g. systems based on learning algorithms such as neural nets,
randomized algorithms etc.

Take into account the cost of the test activities subsequent to test case
generation and try to minimise the overall test-cost. For example for coverage
testing reduce the number of test cases or avoiding test cases that take a
long time to execute, while maintaining the same amount of coverage. More
generally this could lead to a kind of multi-objective search, maximizing test
effectiveness but reducing cost.

3.4 Tool environment/testing infrastructure

Evolutionary testing still does not have a successful take-up in industrial prac-
tice. One way to improve this is to increase the support of evolutionary testing
within different languages, development and testing tools.

New programming languages. The main reason for this is that there is in-
sufficient support of different programming languages. Even for C, evolu-
tionary testing technology is usually not entirely applicable because only
a subset of the programming language is supported. Problematic language
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constructs that are not entirely supported are for example recursion, point-
ers and complex data types. For industrial applicability the tool environment
should support all, or at least most language features.

New programming paradigms. Supporting other programming paradigms
poses a great challenge for evolutionary testing. Progress in this area has
been made on testing object-oriented programs [WW06]. In his work, Wap-
pler shows that evolutionary testing is in principle applicable to the testing
of object-oriented programs. Other programming paradigms such as logic
programming or functional programming remain largely unexplored.

Hidden input interfaces. For many functions the input interface is simply its
formal parameters plus the global variables that it uses. However sometimes
it is not that simple. For example the embedded systems in the automotive
industry often communicate through busses and ports. Hence the input is
just port on which messages are coming in. Static analysis may be employed
to some extent to discover what ports are used and what kind of data is
expected by the function under test. Also the tester may be asked to specify
what the input ports are and what types of values may be sent through
them.

Eclipse. The tool developed in the EvoTest project will be integrated in Eclipse,
an open source IDE that is used by many developers in industry and academia.
Many other EU project also integrate their tools into Eclipse, making collab-
oration between projects easier. Furthermore, tools existing in the Eclipse
community should be used to allow sufficient progress in the development of
the EvoTest tool environment.

Visualisation can provide a user with important insights. There are aspects of
visualisation:
– Visualisation of testing progress, for example how much was tested, test-

ing effort, test coverage, reliability figures.
– Visualisation of search progress, e.g. how does the search perform, poten-

tial for better results when continuing, identify potentials for improving
the search, search space landscape.

Important questions are, which data is useful for a user of the tool, and how
to display them in a concise manner. Displaying the amount of coverage for
a small piece of code is easy, one can simply colour the covered code in the
editor, or display a coloured control flow graph of the code. However for a
large system consisting of many lines of code different techniques need to be
developed. Also the visualisation of the search landscape is a challenge. The
space usually has many dimensions, making it hard to display in a concise
manner in 2-D.

3.5 New application areas

Moving up the life cycle. Thus far testing is applied late in the life cycle of
software development. The EvoTest-project mainly focuses on testing source
code and completed systems. It is best to start with testing as early in the life
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cycle as possible. Testing could also be applied during the modelling phase.
More formally defined and executable models gain in popularity and could
be tested for inconsistencies and other anomalies. There is an opportunity
for collaboration with the EU-funded MODELPLEX project to advance in
this area. Another possible use of models is to generate test-sets that cover
the model. Such test-sets can then be used to test whether the developed
system adheres to the specification defined by the model.

Heterogeneous complex systems. Evolutionary testing could help to test
heterogeneous complex systems that are created by integrating many differ-
ent services and components through the Internet to generate new applica-
tions or user functionalities. These systems result in a very heterogeneous
software architecture and design in which many different programming lan-
guages are involved. Since these systems are difficult to test with traditional
testing techniques, evolutionary testing might be a solution here.

Reproducibility of "non-reproducible" faults. Often a user or a tester runs
into a fault and writes a reports with the steps to reproduce. However when
the developer follows these steps the fault does not occur. As a result a de-
veloper is not able to find and fix the bug, and the reported fault is marked
as not-reproducible. Often this is caused by slight variations between the
configuration of the development environment and the users/testers envi-
ronment. Evolutionary search might be employed to find the configurations
exhibiting the fault. Another cause for non-reproducibility is concurrency. A
program might behave well for most interleavings, only in some exceptional
ones the fault appears. In this case the search might try to find test inputs
that have a higher probability of exhibiting the fault, making it easier for
the developer to locate the source of the bug.
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