
Fuzzy Logic Based Objective Function
Construction for Evolutionary Test Generation

Andrea G. B. Tettamanzi

Università degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, I-26013 Crema (CR), Italy

andrea.tettamanzi@unimi.it

Abstract. The test case generation problem can be stated as an op-
timization problem whereby the closeness of test cases to violating the
postcondition of a formal specification is maximized, subject to satis-
fying its precondition. This is usually implemented by constructing an
objective function which provides a real-valued estimate of how distant
all of the constraints are from being violated, and then trying to mini-
mize it. A problem with this approach is that such objective functions
may contain plateaux, which make their minimization hard. We propose
a similar approach, grounded on fuzzy logic, which uses, instead of a
“distance from violation” objective function, a fuzzy degree of proximity
to postcondition violation and produces plateaux-free objective functions
by construction. The approach is illustrated with the help of a case study
on the functional (black-box) testing of computer programs.

Keywords. Functional (black-box) testing, MIX, evolutionary testing

1 Introduction

The use of evolutionary algorithms for the automatic generation of test data has
received increasing attention in recent years [1].

The main motivation for the work presented in this paper has been to gain
some insights on functional testing in a simplified environment. Since the author
is using Knuth’s MIX machine to introduce elementary programming techniques
in a 1st-year class, the choice of that machine as a case study for functional
testing was natural.

The main goal of this paper is to propose a method for the design of a fitness
function for evolutionary approaches to test generations, which takes inspiration
from concepts arising in fuzzy set theory.

A brief overview of the MIX machine is provided in Section 2. Functional
testing requires a formal specification of the program being tested: an ad hoc
specification language for MIX programs is introduced in Section 3. Section 4 is a
gentle introduction to fuzzy logic and some concepts arising in it which provided
an inspiration for a method for designing objective functions for evolutionary
test generation, which is proposed in Section 5.

Dagstuhl Seminar Proceedings 08351
Evolutionary Test Generation
http://drops.dagstuhl.de/opus/volltexte/2009/2016

2 A. Tettamanzi

2 The MIX Machine

Donald E. Knuth introduced the MIX machine, a fictitious computer, in the first
volume of his celebrated masterwork The Art of Computer Programming [2].

The basic unit of information is a 6-bit byte, which can represent numbers
between 0 and 63. A computer word consists of five bytes and a sign (+ or −).
The memory of the MIX machine consists of 4000 words.

The MIX machine has ten registers: the accumulator (rA) and the extension
(rX), both consisting of five bytes and a sign; six index registers (rI1–rI6), each
holding two bytes and a sign; the location counter (*, the address of the next
instruction to be executed), and the jump register (rJ, which saves the previous
value of * when a jump is taken), both holding two bytes (their sign is always
+). Together, rA and rX form the extended accumulator rAX, consisting of ten
bytes and rA’s sign.

Besides the memory and the registers, the MIX machine has an overflow toggle
(“on” or “off”), a comparison indicator (with three possible values: Less, Equal,
or Greater), and several I/O devices.

MIX instructions can address partial fields of memory words. The five bytes
and sign of a word are numbered as follows:

0 1 2 3 4 5
± 0 . . . 63 0 . . . 63 0 . . . 63 0 . . . 63 0 . . . 63

.

The allowed fields are those that are adjacent in a word, and they are repre-
sented by (l : r), where l is the number of the left-hand part and r is the number
of the right-hand part of the field. Thus, (0 : 0) is the sign only, (0 : 5) is the
whole word, and (4 : 4) is byte #4 only.

A platform-independent, open-source MIX simulator and development envi-
ronment is MixIDE, originally written by the author for teaching his first-year
class on Computer Programming at the University of Milan.

3 A Specification Language for MIX Programs

Functional testing requires a formal specification of the program being tested.
Instead of using a full-fledged, general-purpose formal specification language

such as Z notation [3] or CASL [4], it is more convenient to devise a simpler,
streamlined specification language for MIX programs.

Since there is no explicit concept of type when programming the MIX machine,
as it is the case in general for assembly or machine level programming, the only
entities a specification needs to handle are integers, which, depending on the
context, may represent memory locations (addresses), contents of registers or of
(fields of) memory words, and field specifications.

The minimal requirements for a language to be suitable to specify MIX pro-
grams are the following:

http://mixide.sourceforge.net/�

Fuzzy Logic Based Objective Function Construction 3

〈SYMBOL〉 ::= any C-style identifier
〈NUMBER〉 ::= any integer literal
〈STRING〉 ::= a 5-character string surrounded by double quotes (")

〈REGISTER〉 ::= rA | rX | rAX | rI1 | . . . | rI6 | rJ | *
〈OP〉 ::= + | − | × | / | : | mod | ↑

〈EXPR〉 ::= 〈SYMBOL〉 | 〈NUMBER〉 | 〈STRING〉 | 〈REGISTER〉 |
(〈EXPR〉) | 〈EXPR〉(〈FSPEC〉) | 〈EXPR〉 〈OP〉 〈EXPR〉

〈FSPEC〉 ::= any 〈EXPR〉 whose value is in {0, . . . , 45}
〈BINDING〉 ::= 〈SYMBOL〉 ← 〈EXPR〉

〈CMP〉 ::= = | 6= | < | > | ≤ | ≥
〈ARGS〉 ::= 〈EXPR〉 | 〈EXPR〉, 〈ARGS〉
〈PRED〉 ::= 〈EXPR〉 〈CMP〉 〈EXPR〉 | 〈SYMBOL〉(〈ARGS〉)
〈WFF〉 ::= 〈PRED〉 | 〈BINDING〉 | (〈WFF〉) | 〈WFF〉 〈CONN〉 〈WFF〉
〈VARS〉 ::= 〈SYMBOL〉 | 〈SYMBOL〉, 〈VARS〉
〈DEF〉 ::= 〈SYMBOL〉(〈VARS〉) ← 〈WFF〉 . | 〈BINDING〉 .

〈PRECOND〉 ::= 〈WFF〉 ?
〈POSTCOND〉 ::= 〈WFF〉 !

〈SPEC〉 ::= 〈DEF〉∗ 〈PRECOND〉 〈POSTCOND〉

Fig. 1. A BNF grammar of the MIX specification language.

1. evaluate integer expressions constructed with the usual arithmetical opera-
tors like +, −, ×, /, etc.;

2. compare integer values with =, 6=, <, >, ≤, ≥, which constitute the elemen-
tary predicates of the language;

3. define and evaluate new predicates based on more elementary predicates, by
combining them with the ¬, ∧, and ∨ logical connectives;

4. bind integer values to variable symbols, both locally (in a predicate defini-
tion) and globally;

5. state pre- and post-conditions for a program.

3.1 Syntax

The BNF grammar of the MIX specification language (MSL) is shown in Fig. 1.
The : operator is defined, for all n,m ∈ N, as n : m = 8n + m, and is used to

construct specifications of fields (〈FSPEC〉) of a byte-addressable MIX word: an
〈FSPEC〉 of 0 : 0 specifies the sign of a word, of 0 : 2 the address part of a word
(i.e., the two most significant bytes with sign), of 0 : 5 the whole word content
with sign, of 1 : 5 the whole word content whithout sign (i.e., its absolute value),
of 5 : 5 the least significant byte, etc.

Given an expression (〈EXPR〉) whose value is 0 ≤ n < 4000 and an 〈FSPEC〉
F , n(F) is the content of the field specified by F of the word at location n in
the MIX memory. This provides a way to write predicates about the contents of
the MIX memory before and after execution of a program.

A 〈BINDING〉 allows one to assign values to global or local variables, de-
pending on the nature of the variable symbol to which it is applied. Variables are

4 A. Tettamanzi

global if they are bound in a pre-condition (〈PRECOND〉), in a post-condition
(〈POSTCOND〉), or in a definition (〈DEF〉) of the form “〈BINDING〉.”; variables
are local to a 〈DEF〉 if they appear in the list of the arguments of the defined
predicate or if they are explicitly bound in the well-formed formula (〈WFF〉)
which constitutes the body of a predicate definition.

3.2 Example: Triangle Classification

As a first example of how to use the MSL, we specify a triangle classification
program, a benchmark used in many testing papers [1]. Assuming three non-zero,
non-negative integer lengths of the sides of a triangle, stored in words 1, 2, and
3 of the MIX memory, the program decides if the triangle is isosceles, equilateral,
scalene, or invalid (not a triangle), and writes its response in word 4, in the form
of 5-character labels ISOSC, EQLAT, SCALN, and NOTRG.

The above informal specification can be formalized in MSL as follows:

a ← 1. b ← 2. c ← 3. type ← 4.
Triangle(x, y, z) ← x + y > z ∧ x + z > y ∧ y + z > x.
Equilateral(x, y, z) ← x = y ∧ y = z.
Isosceles(x, y, z) ← ¬Equilateral(x, y, z) ∧ (x = y ∨ y = z ∨ x = z).
a(0 : 5) > 0 ∧ b(0 : 5) > 0 ∧ b(0 : 5) > 0?
(¬Triangle(a(0 : 5), b(0 : 5), c(0 : 5)) ∧ type(0 : 5) = ”NOTRG”) ∨

Triangle(a(0 : 5), b(0 : 5), c(0 : 5) ∧ (
(Equilateral(a(0 : 5), b(0 : 5), c(0 : 5)) ∧ type(0 : 5) = ”EQLAT”) ∨
(Isosceles(a(0 : 5), b(0 : 5), c(0 : 5)) ∧ type(0 : 5) = ”ISOSC”) ∨
(Triangle(a(0 : 5), b(0 : 5), c(0 : 5) ∧ type(0 : 5) = ”SCALN”)))!

3.3 Example: Dynamic Memory Allocation

To demonstrate the expressive power of the MSL, we now tackle the specification
of a much harder program which, given a linked list of free memory blocks
between locations 1000 and 2999 (the heap), whose first element is pointed to
by the address part of word 999, and the required size s of a block in rI1 (index
register 1),allocates a memory block of size s within the free memory blocks, and
removes the allocated block from the heap. The base word of each individual free
block on the heap contains its size in field (4 : 5) and a pointer to the next free
block in field (0 : 2).

This can be formalized in MSL as follows:

heap ← 999.
next ← 0 : 2. size ← 4 : 5
LOC(x) ← x ≥ 0 ∧ x < 4000.
List(x) ← LOC(x) ∧ (x = 0 ∨ List(x(next))).
NonOverlapping(x, xsize, y, ysize) ← x = y ∨ (x < y ∧ y ≥ x + xsize)

∨ (x > y ∧ x ≥ y + ysize).
Disjoint(x, xsize, l) ← List(l) ∧NonOverlapping(x, xsize, l) ∧

Fuzzy Logic Based Objective Function Construction 5

Disjoint(x, xsize, l(next), l(size)).
ValidHeap(x) ← List(x) ∧ (x = 0 ∨ (x > 0 ∧Disjoint(x, x(size), x) ∧

ValidHeap(x(next)))).
s ← rI1 ∧ s > 0 ∧ s < 2000 ∧ heap(next) > 0 ∧ValidHeap(heap(next))?
b ← rI1 ∧ValidHeap(heap(next)) ∧ LOC(b) ∧ b ≥ 1000 ∧ b + s < 3000∧

Disjoint(b, s, heap(next))!

The LOC(x) predicate checks if x is a valid MIX memory location; List(x)
recursively checks that x is a list; NonOverlapping(x, xsize, y, ysize) checks that
the memory block of size xsize starting at location x does not overlap with the
memory block of size ysize starting at location y; Disjoint(x, xsize, l) recursively
checks that the memory block of size xsize starting at location x does not overlap
with any of the blocks of list l; finally, ValidHeap(x) checks that x is a valid linked
list of free, non-overlapping memory blocks.

4 Fuzzy Logic

Fuzzy logic was initiated by Lotfi Zadeh with his seminal work on fuzzy sets
[5]. Fuzzy set theory provides a mathematical framework for representing and
treating vagueness, imprecision, lack of information, and partial truth.

Very often, we lack complete information in solving real world problems. This
can be due to several causes. First of all, human expertise is of a qualitative type,
hard to translate into exact numbers and formulas. Our understanding of any
process is largely based on imprecise, “approximate” reasoning. However, im-
precision does not prevent us from performing sucessfully very hard tasks, such
as driving cars, improvising on a chord progression, or trading financial instru-
ments. Furthermore, the main vehicle of human expertise is natural language,
which is in its own right ambiguous and vague, while at the same time being the
most powerful communication tool ever invented.

4.1 Fuzzy Sets

Fuzzy sets are a generalization of classical sets obtained by replacing the char-
acteristic function of a set A, χA which takes up values in {0, 1} (χA(x) = 1 iff
x ∈ A, χA(x) = 0 otherwise) with a membership function µA, which can take
up any value in [0, 1]. The value µA(x) is the membership degree of element x
in A, i.e., the degree to which x belongs in A.

A fuzzy set is completely defined by its membership function. Therefore,
it is useful to define a few terms describing various features of this function,
summarized in Figure 2. Given a fuzzy set A, its core is the (conventional) set
of all elements x such that µA(x) = 1; its support is the set of all x such that
µA(x) > 0. A fuzzy set is normal if its core is nonempty. The set of all elements
x of A such that µA(x) ≥ α, for a given α ∈ (0, 1], is called the α-cut of A,
denoted Aα.

If a fuzzy set is completely defined by its membership function, the ques-
tion arises of how the shape of this function is determined. From an engineering

6 A. Tettamanzi

-cutα

µ
A

0

1

α

support

core

Fig. 2. Core, support, and α-cuts of a set A of the real line, having membership
function µA.

point of view, the definition of the ranges, quantities, and entities relevant to a
system is a crucial design step. In fuzzy systems all entities that come into play
are defined in terms of fuzzy sets, that is, of their membership functions. The
determination of membership functions is then correctly viewed as a problem
of design. As such, it can be left to the sensibility of a human expert or more
objective techniques can be employed. Alternatively, optimal membership func-
tion assignment, of course relative to a number of design goals that have to be
clearly stated, such as robustness, system performance, etc., can be estimated by
means of a machine learning or optimization method. In particular, evolutionary
algorithms have been employed with success to this aim. This is the approach
we follow in this chapter.

4.2 Operations on Fuzzy Sets

The usual set-theoretic operations of union, intersection, and complement can be
defined as a generalization of their counterparts on classical sets by introducing
two families of operators, called triangular norms and triangular co-norms. In
practice, it is usual to employ the min norm for intersection and the max co-norm
for union. Given two fuzzy sets A and B, and an element x,

µA∪B(x) = max{µA(x), µB(x)}; (1)
µA∩B(x) = min{µA(x), µB(x)}; (2)

µĀ(x) = 1− µA(x). (3)

Another pair of norm and co-norm of interest for this application is the product
norm and the so-called probabilistic sum co-norm:

µA∪B(x) = µA(x) + µB(x)− µA(x)µB(x); (4)
µA∩B(x) = µA(x)µB(x); (5)

µĀ(x) = 1− µA(x). (6)

Fuzzy Logic Based Objective Function Construction 7

4.3 Fuzzy Propositions and Predicates

In classical logic, a given proposition can fall in either of two sets: the set of all
true propositions and the set of all false propositions, which is the complement
of the former. In fuzzy logic, the set of true proposition and its complement, the
set of false propositions, are fuzzy. The degree to which a given proposition P
belongs to the set of true propositions is its degree of truth, T (P).

The logical connectives of negation, disjunction, and conjunction can be de-
fined for fuzzy logic based on its set-theoretic foundation, as follows:

Negation T (¬P) = 1− T (P); (7)
Disjunction T (P ∨Q) = T (P)5 T (Q); (8)

Conjunction T (P ∧Q) = T (P)4 T (Q), (9)

where 4 and 5 represent any pair of corresponding triangular norm and co-
norm.

Much in the same way, a one-to-one mapping can be established as well
between fuzzy sets and fuzzy predicates. In classical logic, a predicate of an
element of the universe of discourse defines the set of elements for which that
predicate is true and its complement, the set of elements for which that predicate
is not true. Once again, in fuzzy logic, these sets are fuzzy and the degree of truth
of a predicate of an element is given by the degree to which that element is in
the set associated with that predicate.

5 Objective Function

The test case generation problem can be stated as an optimization problem as
follows:

maximize the closeness to violating 〈POSTCOND〉
subject to 〈PRECOND〉
The way the above informal statement has been implemented by other au-

thors, most notably Jones and colleagues [6], building on ideas first set forth
by Miller and Spooner [7] and later extended by Korel and Tracey [8], is by
constructing an objective function which provides a real-valued estimate of how
distant all of the contraints are from being violated, and then trying to minimize
it. These can be called distance-based approaches.

Distance-based approaches tend to contain areas of plateaux, which make
their minimization hard. We propose a similar approach, inspired to fuzzy set
theory [5], which uses, instead of a “distance from violation” objective function,
a fuzzy degree of proximity to post-condition violation. This fuzzy degree can
be regarded as a membership function

δ : 〈WFF〉 → [0, 1], (10)

of the set of postconditions which are violated by a given test case.

8 A. Tettamanzi

Function δ may be defined on the six comparison predicates and then ex-
tended to compound predicates. The fundamental definition is, for all m,n ∈ Z,

δ(m < n) =
1

1 + en−m− 1
2
. (11)

Of course, δ(m > n) = δ(n < m); then, we observe that, for all m, n ∈ Z,
m ≤ n ⇔ m < n + 1. Therefore,

δ(m ≤ n) = δ(m < n + 1) =
1

1 + en−m+ 1
2
. (12)

Function δ may be extended to compound predicates by defining, for all
φ, ψ ∈ 〈WFF〉,

δ(¬φ) = 1− δ(φ), (13)
δ(φ ∨ ψ) = δ1(φ)4 δ1(ψ), (14)
δ(φ ∧ ψ) = δ1(φ)5 δ1(ψ). (15)

We consider two alternative choices for 4 and 5:

1. for all x, y ∈ [0, 1], x4 y ≡ min{x, y} and x5 y ≡ max{x, y};
2. for all x, y ∈ [0, 1], x4 y ≡ xy and x5 y ≡ x + y − xy.

Depending on the alternative used, the extended function will be denoted δ1 and
δ2 respectively. For the disjunction and conjunction of predicates, we have

δ1(φ ∨ ψ) = min{δ1(φ), δ1(ψ)}, (16)
δ1(φ ∧ ψ) = max{δ1(φ), δ1(ψ)}, (17)

or, alternatively,

δ2(φ ∨ ψ) = δ2(φ)δ2(ψ), (18)
δ2(φ ∧ ψ) = δ2(φ) + δ2(ψ)− δ2(φ)δ2(ψ). (19)

We now can define δ(m 6= n) by observing that m 6= n ⇔ m > n ∨m < n;
therefore,

δ(m 6= n) = δ(m > n)4 δ(m < n), (20)

which translates into

δ1(m 6= n) = min{δ(m > n), δ(m < n)} (21)

or, alternatively,

δ2(m 6= n) = δ(m > n)δ(m < n) =
1

1 + em−n− 1
2 + en−m− 1

2 + e
. (22)

Similarly, since m = n ⇔ m ≥ n ∧m ≤ n,

δ(m = n) = δ(m ≥ n)5 δ(m ≤ n), (23)

Fuzzy Logic Based Objective Function Construction 9

which translated into

δ1(m = n) = max{δ(m ≥ n), δ(m ≤ n)} (24)

or, alternatively,

δ2(m = n) = δ(m ≥ n) + δ(m ≤ n)− δ(m ≥ n)δ(m ≤ n). (25)

It is easy to verify that, no matter which extension is chosen,

δ(m = n) = 1− δ(m 6= n), (26)
δ(m < n) = 1− δ(m ≥ n), (27)
δ(m > n) = 1− δ(m ≤ n); (28)

Finally, δ1(n 6= n) = 1/(1+e−
1
2) ≈ 0.6225 and δ2(n 6= n) = 1/(1+2e−

1
2 +e) ≈

0.2028; both are the maximum that δ1(m 6= n) and δ2(m 6= n) can respectively
attain for all m,n ∈ Z, as shown in Fig. 3.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

Fig. 3. A comparison of δ1(m 6= n) and δ2(m 6= n), plotted with respect to m−n
(x axis). The graph of δ1(m 6= n) has a sharp peak for m = n and always lies
above the graph of δ2(m 6= n).

It is interesting to study the behavior of δ when applied to predicate P =
Triangle(x, y, z)), defined in Section 3.2. The general form of δ(P) is

δ(P) = δ(x + y > z)5 δ(x + z > y)5 δ(y + z > x)
= δ(z < x + y)5 δ(y < x + z)5 δ(x < y + z)

=
1

1 + ex+y−z− 1
2
5 1

1 + ex+z−y− 1
2
5 1

1 + ey+z−x− 1
2
,

which yields

δ1(P) =
1

1 + min
{

ex+y−z− 1
2 , ex+z−y− 1

2 , ey+z−x− 1
2

} (29)

10 A. Tettamanzi

and
δ2(P) = α + β + γ − αβ − αγ − βγ + αβγ, (30)

where

α =
1

1 + ex+y−z− 1
2
, β =

1
1 + ex+z−y− 1

2
, and γ =

1
1 + ey+z−x− 1

2
.

The graphs for δ1(P) and δ2(P) are shown in Fig. 4.

0

5

10

15

20

0
5

10
15

20

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

0
5

10
15

20

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 4. Graphs of δ1(Triangle(x, y, 5)) (a) and δ2(Triangle(x, y, 5)) (b) for x, y ∈
{0, 15}.

6 Conclusions

A novel, principled way to define the objective function for search-based test case
generation inspired by fuzzy set theory, grounded on the theory of triangular
norm, and rooted in previous work on evolutionary test generation has been
proposed, whose main advantage is a contribution to the elimination of plateaux
from the fitness landscape. That should lead to improved performance.

Although the proposal is motivated by an application to the functional testing
of MIX programs, the method presented can be readily adapted to functional
testing of executable programs compiled for any real-world microprocessor.

References

1. McMinn, P.: Search-based software test data generation: a survey: Research articles.
Software Testing, Verification & Reliability 14 (2004) 105–156

2. Knuth, D.E.: The Art of Computer Programming — 3rd ed. (3 volumes). Addison
Wesley, Reading, Massachusets (1997)

3. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

Fuzzy Logic Based Objective Function Construction 11

4. Mosses, P.: CASL Reference Manual. Springer, Berlin (2004)
5. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
6. Jones, B.F., Sthamer, H., Yang, X., Eyres, D.E.: The automatic generation of

software test data sets using adaptive search techniques. In: Proceedings of the 3rd
International Conference on Software Quality Management, Seville, Spain (1995)
435–444

7. Miller, W., Spooner, D.L.: Automatic generation of floating-point test data. IEEE
Transactions on Software Engineering SE-2 (1976) 223–226

8. Tracey, N.J.: A Search-Based Automated Test-Data Generation Framework for
Safety Critical Software. PhD thesis, University of York, York, UK (2000)

