Implications of VLSI Fault Models and
Distributed Systems Failure Models —
A Hardware Designer’s View

Gottfried Fuchs

Vienna University of Technology
Institute of Computer Engineering, Embedded Computing Systems Group
A-1040, Vienna, Treitlstrasse 3/182-2, Austria
fuchs@ecs.tuwien.ac.at

Abstract. The fault and failure models as well as their semantics within
the VLSI community and the distributed systems/algorithms community
are quite different. Pointing out the mismatch of those fault respectively
failure models is the main part of this work. The impact of the fail-
ure model in terms of hardware implementation effort and system com-
plexity will be shown for different VLSI implementations of distributed
algorithms.

However, still, there are a lot of open questions left, mostly related to the
coverage analysis of hardware implemented fault-tolerant algorithms.

Keywords. VLSI, fault models, distributed systems, failure models

1 Introduction

The ever increasing speed, complexity and hence computational power of modern
VLSI circuits is mainly enabled due to down-scaling of CMOS technology follow-
ing Moore’s Law. Current feature sizes in mass production reached 45nm and it
is predicted by the International Roadmap for Semiconductors 2007 Edition [1]
that CMOS scaling will continue at least down to 22nm.

Taking a closer look at modern and upcoming VLSI technology reveals that
decreasing voltage swings and smaller feature sizes—required to achieve high
clock frequencies with reasonable power dissipation — renders circuits more and
more susceptible to faults. Increasing soft error rates (SER) e.g,. due to particle
hits, are becoming an issue not only for circuits in the space and aerospace
domain, but also for chips operating at ground level [2].

The above mentioned need for increased attention to faults in VLSI as well as
the modular structure of modern Systems-on-Chip (SoCs) — comprising multiple
interacting building blocks and several clock domains— interestingly show cer-
tain similarities to classical fault-tolerant distributed systems. In the distributed
systems community decades of research taking faulty behavior of components
into account led to a wealth of concepts, algorithms and fundamental results.

Dagstuhl Seminar Proceedings 08371
Fault-Tolerant Distributed Algorithms on VLSI Chips
http://drops.dagstuhl.de/opus/volltexte/2009,/1924

2 Gottfried Fuchs

In the DARTS-project (Distributed Algorithms for Robust Tick-Synchroniza-
tion)! our research group investigated how to adopt fault-tolerant algorithms,
which have initially been developed and formally analyzed for distributed sys-
tems, for VLSI implementations. As a proof of concept a variant of the well-
known consistent broadcast primitive by Srikanth and Toueg [3] for generating
approximately synchronized clock ticks has been adapted, formally analyzed,
implemented and manufactured in 0.18m CMOS technology.

1.1 Fault models in VLSI design

Fault models typically applied in VLSI consider faults on the abstraction level of
single gates or transistors. A set of interconnected gates forms a circuit. If a gate
or interconnect stops to operate properly a fault has occurred (in the context of
this work only static fault scenarios are considered). The most commonly treated
faults are sketched below.

There are two types of stuck-at faults: stuck-at-0/LO and stuck-at-1/HI. A
stuck-at-X fault occuring at time tp at signal S manifests itself in a way that S
takes on logic level X at time tp and is no longer able to change its value after
tr. Note that, if for example signal S is currently LO and a stuck-at-H I occurs,
the fault will generate one last erroneous transition to H I and remain there.

A stuck-open fault appearing at tp disconnects the affected signal from its
driving buffer which leads to an undefined voltage level, the signal is “floating”.
This floating state may lead to inconsistent perception of the logic level when
read by multiple inputs.

A delay fault increases or decreases the time a signal change needs to propa-
gate through the signal/gate. The altered timing behavior of the affected com-
ponent may lead to the violation of timing constraints in subsequent circuits.

1.2 Failure models in distributed systems

A distributed algorithm typically is composed of one or more tasks operating at
each node of the distributed system. Nodes communicate via message passing
over links. Single nodes are considered as fault containment regions. Consider-
ing the static fault assumption in the VLSI models above, the most appropriate
matches in distributed systems failure models seem to be given by component
failure models. A subset of these failure models is briefly described in the fol-
lowing paragraphs.

A crash failure is present if all tasks at node p properly perform their com-
puting steps and hence, node p correctly emits messages until the crash at time
tr. Starting with ¢p, all tasks at the affected node stop to emit any further
message—node p has crashed.

An omission failure has occurred at tp if a node omits to send a message m
that is scheduled for sending at time t¢p.

! The project DARTS received funding from the Austrian bm:vit (FIT-IT, contract
no. 809456-SCK/SAI).DARTS project Webpage: http://ti.tuwien.ac.at/darts/

http://ti.tuwien.ac.at/darts/

VLSI Fault Models vs. Distributed Systems Failure Models 3

A Byzantine failure is an unrestricted failure type. Therefore, a node affected
by a Byzantine failure may show arbitrary malicious behavior. This behavior
mainly extends the crash and omission failure models by the possibility to insert
additional, inconsistent faulty messages.

1.3 Mapping VLSI faults to failures in distributed systems

The adoption of results from the distributed systems research for problem solving
in VLSI design involves (i) the mapping of the requirements of a VLSI design
(including the fault model to be applied) to a distributed algorithm (ii) formal
treatment on algorithm level (iii) back-transformation of the resulting algorithm
to the context of VLSI design.

When intersecting the two very distinct communities some common terms
have to be defined. A gate or group of gates in VLSI design will correspond to a
computing task in distributed computing. Moreover, the change of the logic level
on a signal (e.g. from HI to LO) can be viewed as a message of the distributed
algorithm. To be able to choose an appropriate fault-tolerant distributed algo-
rithm for implementation in VLSI the designated fault models have to be defined
and mapped to a corresponding distributed systems failure model. Looking at
the given definitions of faults in VLSI and failures in distributed systems one
can observe a huge gap with respect to the abstraction level. VLSI fault models
operate at gate/signal level, while distributed systems failures are considered at
the much higher level of nodes.

As stated in its description in Section 1.1 a stuck-at fault may lead to an
spurious transition on a signal/rail which is, examined from an algorithms point
of view an early timing failure which is NOT covered by crash or omission
failures. Hence, the Byzantine failure model represents the only safe model when
dealing with stuck-at faults. Similar arguments can be found for stuck-open and
delay faults and lead to the same result as for the stuck-at case— only the most
unrestricted, Byzantine failure model sufficiently models VLSI faults. Note that,
considering additional failure models to the models introduced in Section 1.2
may lead to different results.

2 Fault-tolerant distributed clock generation in VLSI

Algorithm 1 implemented in our DARTS project is, as already noted in the intro-
duction, a variant of the consistent broadcast primitive by Srikanth and Toueg
[3]. In a setup of n > 3f + 2 fully connected nodes it generates an approximately
synchronized fault-tolerant clock—even in the presence of up to f Byzantine
faulty nodes.

Several adaptations had to be made to the original software based algorithm
to allow for a VLSI implementation. The most notable change is given by the
abstraction of tick(k) messages to simple up/down transitions (clock-ticks). This
adaptation made it necessary to introduce local buffering of tick(k) messages

4 Gottfried Fuchs

for every node connected and is represented by the Remote Pipeline and Local
Pipeline in Figure 1 (implemented via elastic pipelines [5]).

The other main building blocks of the implementation are predetermined by
the two rules of Algorithm 1, namely the relay and the increment rules. These
two rules have been implemented as m-out-of-(n — 1) Threshold Modules with
m = f+1and m = 2f+1 in case of the relay and increment rule respectively. The
above mentioned reduction of tick(k) messages to simple up/down transitions
also made it necessary to separate and therefore duplicate the processing of up-
and down- transitions via the f 4+ 1 and 2f 4 1 threshold modules, leading to a
total of 4 threshold modules needed per node.

A more thorough description of the DARTS architecture as well as the formal
analysis and proofs can be found in [6] and [7].

In general the implementation requirements of the DARTS Byzantine fault-
tolerant clock generation scheme can be summarized as the following: (i) A fully
connected network of n > 3f + 2 nodes corresponding to n(n — 1) links. (ii) 4
threshold modules per node (f + 1)-out-of-(n — 1) and (2f + 1)-out-of-(n — 1)
(two of each). (iii) The threshold modules are the main contributor to chip area
even for small numbers of f and n. Moreover, pure digital implementations of
m-out-of-(n — 1) modules (as it is available with standard CMOS processes)
have a very unfavorable scaling of chip area of (?ﬁ) For example the increase
of tolerable faults from f = 2 to f = 3 leads to an area increase by a factor of
11.

3 Impact of failure models on VLSI hardware effort

The massive chip area effort for implementation of the Byzantine tolerant al-
gorithm is mostly based on the poor scaling of the threshold modules. Unfor-
tunately, threshold modules prove to be fundamental building blocks when try-
ing to implement fault tolerance and cannot be substituted by other (cheaper)
means. Considering the above given facts, the investigation of alternative ap-
proaches such as simpler and therefore possibly cheaper algorithms may be
promising.

Widder presented in [4] omission- as well as crash-tolerant tick-generation
algorithms, Algorithm 2 and Algorithm 3 respectively.

Algorithm 1 Byzantine tolerant tick generation [4]

1. variables
2: k : integer := 0
a: initially send tick(0) to all [once]
// Relay Rule
4 if received tick(¢) from at least f + 1 remote processes with £ > k then
s send tick(k), ..., tick(?) to all [once]; k := £
// Increment Rule
s if received tick(k) from at least 2f + 1 remote processes then
7. send tick(k + 1) to all [once]; k:=k+ 1

VLSI Fault Models vs. Distributed Systems Failure Models 5

Node p

Counter Module 1
Remote Local
Pipeline Pipeline

[Pipe Compare Signal Gen. GR.GEQ]

Diff-
Module

remote
clk_in
— Counter Module 2 D TMhr%sr;old
odules
Remote W Local
Counter Module 3 e |9 - clk_out
Remote Diff- Local +
Counter Module n-1 ne J— -
Remote Diff- Local .
Pipeline | |Module] | Pipeline
=)
(Pipe Compare Signal Gen.) »
)

Fig.1. Hardware implementation of Byzantine tolerant tick-generation.

Algorithm 2 Omission tolerant tick generation

1: variables

2.k :integer := 0

s initially send tick(0) to all [once]

4 if received tick(¢) from at least 1 remote process with ¢ > k then
s send tick(k), ..., tick(?) to all [once]; k := ¢

s if received tick(k) from at least f 4 1 remote processes then

7 send tick(k 4+ 1) to all [once]; k:=k+1

Table 1 compares the design properties and hardware effort of Algorithms 1,
2, and 3. It is evident that the simpler algorithms provide substantial savings
compared to the Byzantine tolerant implementation. This trend is driven by
the simplification and/or reduction of the number of rules and hence smaller
threshold modules. Furthermore, theoretical results show that distributed sys-
tems built in restricted failure models (like crash or omission) require less nodes
for correct operation than systems for the Byzantine case. However, we have to
keep the message of Section 1.3 in mind — failure models like crash or omission
do NOT cover all typical hardware faults included in stuck-at, stuck-open and
delay fault models.

Algorithm 3 Crash tolerant tick generation
1. variables
2.k :integer := 0
a: initially send tick(0) to all [once]
4 if received tick(¢) from at least 1 remote process with ¢ > k then
s send tick(k), ..., tick(?) to all [once]; k := £

6 Gottfried Fuchs

Table 1. Comparison of Algorithms 1, 2 and 3 for f =3

| Byzantine| Omission | Crash
nodes n > 11 8 5
links 110 53 20
threshold modules per node 4 242 (simple)|2 (simple)
chip area per node in pm? | 483859 33188 9810
chip area per system in um?| 5322449 265504 49050

3.1 Fault coverage discussion

Taking a look at the comparison in Table 1 makes it evident that area effort and
system complexity are highly dependent on the chosen failure model underlying
the algorithm. Here the question arises, if the price of a factor of ~ 100 in area
effort —when comparing a system composed of crash-tolerant to a system of
Byzantine tolerant nodes —is still reasonable, especially when taking into ac-
count that more chip area directly translates into more particle hits and hence
an increased amount of errors in the system. Admittedly, the Byzantine tolerant
algorithm provides a superior coverage on tolerating all types of faults. Investi-
gations on the probabilities and certain properties of faults may provide insights
on how to find a good balance between algorithm/implementation complexity
and resilience. The most interesting questions in this context are:

“Do those (earlier mentioned) pathological hardware faults which are not
covered by crash- or omission-tolerant algorithms occur, and how frequently are
they?”

“Is there a fault model less pessimistic than the Byzantine one that still
covers all hardware related faults?”

4 Conclusions

Implementing fault-tolerant algorithms originally designed for distributed sys-
tems in VLSI may be a viable solution to counteract current and upcoming
issues concerning SER in VLSI design. Unfortunately, a direct mapping of exist-
ing distributed computing results to hardware designs may not be possible for
several reasons. The topic discussed here pointed out that a severe mismatch on
the abstraction level exists between these two communities when dealing with
faulty behaviour. Furthermore, the established fault models in VLSI, as well
as the failure models in distributed computing do not translate very well into
each other. This leads to the presented result that even a simple stuck-at fault
is only covered by the unrestricted Byzantine failure model, which implies very
complex and costly algorithms. To which extent the classification of fault types
and probabilities of their occurrence can be used to derive a trade-off between
hardware effort and fault-coverage still has to be investigated.

VLSI Fault Models vs. Distributed Systems Failure Models 7

Acknowledgements

The presented work evolved from the FIT-IT project DARTS (Distributed Al-
gorithms for Robust Tick-Synchronization), which received funding from the
Austrian bm:vit under contract no. 809456-SCK /SAT.

I would like to thank the participants of the Dagstuhl Seminar 08371 on Fault-
Tolerant Distributed Algorithms on VLSI Chips for the fruitful discussions on
the topic. In particular I would like to thank Matthias Filigger and Andreas
Steininger for their valuable comments on an earlier version of this paper.

References

1. International Technology Roadmap for Semiconductors: (2007)

2. Gadlage, M.J., Eaton, P.H., Benedetto, J.M., Carts, M., Zhu, V., Turflinger, T.L.:
Digital device error rate trends in advanced CMOS technologies. Nuclear Science,
IEEE Transactions on 53 (2006) 3466-3471

3. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the ACM 34
(1987) 626—645

4. Widder, J.: Distributed Computing in the Presence of Bounded Asynchrony. PhD
thesis (2004)

5. Sutherland, [.LE.: Micropipelines. Communications of the ACM, Turing Award 32
(1989) 720-738 ISSN:0001-0782.

6. Ferringer, M., Fuchs, G., Steininger, A., Kempf, G.: VLSI Implementation of a
Fault-Tolerant Distributed Clock Generation. In: Proceedings of the 21st IEEE In-
ternational Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT2006),
IEEE Computer Society Press (2006) 563-571

7. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In: Proceedings of the Sixth European De-
pendable Computing Conference (EDCC-6), IEEE Computer Society Press (2006)
87-96

	Implications of VLSI Fault Models and Distributed Systems Failure Models---A Hardware Designer's View
	Gottfried Fuchs

