
The Evolution and Dynamics of Research
Networks

Vladimir Batagelj1, Bettina Hoser2, Claudia Müller3, Steffen Staab4 and
Gerd Stumme5

1 University of Ljubljana, Department of Mathematics
1000 Ljubljana, Jadranska 19, Slovenia
vladimir.batagelj@fmf.uni-lj.si

2 University of Karlsruhe, Institute for Information Systems and Management
(Information Services and Electronic Markets)
76128 Karlsruhe, Kaiserstrasse 12, Germany

Bettina.Hoser@em.uni-karlsruhe.de
3 University of Stuttgart, Institute for IT-Services

70550 Stuttgart, Allmandring 30 E, Germany
cmueller@iits.uni-stuttgart.de

4 University of Koblenz-Landau, Institute for Computer Science (Information
Systems and Semantic Web)

56070 Koblenz, Universitätsstrasse 1, Germany
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Abstract. Existing collaboration and innovation in scientific commu-
nities can be enhanced by understanding the underlying patterns and
hidden relations. Social network analysis is an appropriate method to
reveal such patterns. Nevertheless, research in this area is mainly fo-
cused on social networks. One promising approach is to use homophily
networks as well. Furthermore, extending the static to a dynamic net-
work model enables to understand existing interdependencies in these
networks. A mathematical description of possible analyses is given. Fi-
nally, resulting research questions are illustrated and the necessity of an
interdisciplinary research approach is pointed out.
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1 Analysis of Research Networks

Nowadays, communities of researchers have been studied from many different
angles for many years (e.g., [1][2], [3], [4]). This subject is very attractive to re-
searchers, as it is relatively simple to obtain data for the analysis [5]. Furthermore
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the collaboration of researchers can be improved based on the understanding of
the underlying patterns and the relations in scientific communities.

However, most of the analyses focus on a single type of network (e.g., only on
co-authorship or only on citation networks). In order to get a complete picture
of a research community, all information contained in these different networks
should be combined. Our long-term vision is to build a system that allows a
researcher – who is not a specialist in Social Network Analysis (SNA) – to get
insights in any research domain that he is not acquainted with yet. For instance,
a researcher, who has a background in semantic web communities, wants to gain
knowledge in data mining field. He would be satisfied to find out all the informa-
tion about the new community i.e. main actors, the main lines of research, the
most central papers, etc., without extensive literature work. Nowadays, there
are many algorithms for different kinds of network analyses (e.g., [6], [7]) or
knowledge discovery (e.g., [8]). All of them have a number of drawbacks like
they are not interacting in a coherent way, they are usually restricted to one
specific type of dataset, and their results are not easy to interpret by a non-
SNA-specialist. A creation of a system that overcomes theses drawbacks poses
interesting implementation and research issues.

From an application perspective, we would require such a system to be able
to fulfill at least the following tasks:

– Identify the main trends in a specific research community (like the semantic
web community) in the last n years,

– Reveal the main trends of a specific topic (like “topic detection”) in the last
n years (This differs from the previous task such that it may involve different
communities who do not know each other),

– Observe how colleagues move through communities (“What is Tim Berners-
Lee up to next?”),

– Analyse one community over time (decay, growth, stability),

– Discover the emergence, convergence/divergence and decay of communities.
(mergers & acquisitions) and

– Recommend, for a given interest profile, the membership in a community, or
the creation of a new community.

The following contribution summarizes the results of a lively two days lasting
discussion about how scientific communities can be analysed on a timely basis
and how existing changes in the topic and community structure can be identified.
This contribution is organized as follows: First of all, we started to apply the idea
on folksonomies and social platforms. As a result a general model is defined. Then
an introduction in network evolution is given. The proposed methods allow to
meet same tasks of the proposed application. We conclude with a short outlook.
Open questions in the field of interdependent evolution of networks are discussed.
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2 A Static Model of Homophily and Social Networks

We started our considerations with a definition of a general model. This model
is based on folksonomies and social platforms, where the following two kinds of
networks are recognized:

1. Homophily is the tendency of individuals to contact similar people at a higher
rate than dissimilar people. Cultural, behavioral, genetic, or material infor-
mation that flows through networks will tend to be localized. The distance
in terms of social characteristics is translated into network distance [9].

2. A social network is a social structure made of nodes (which are generally
individuals or organizations) that are tied by one or more specific types of
interdependency representing social acts such as communication (e.g. letters,
e-mail, face-to-face), co-authorship of texts, trading or friendship.

In spite of the differences, empirical investigations in the past have shown
that the two kind of networks exhibit correlations. How one network may give
predictive insight into the other and how one network helps to explain and
predict relationships in the other remains an open question up to now.

Both kinds of network are built from an overlapping set of entities. Social
networks (typically) constitute one mode networks of actors and specific rela-
tionships between them. Homophily networks constitute higher mode n-partite
networks of actors and things. Also, the homophily networks lead to relation-
ships between actors – but only inferred relationships of closeness by interest,
which do not necessarily imply that the one actor is aware of the other.

Social Networks Homophily Networks

Actors Things

Groupsexplicit/implicit

Groups

= ?

Fig. 1. Deriving Groups from Communities

In homophily networks, unsupervised data mining techniques, e.g. K-means,
lead to clusters of actors into common interest groups based on the description
of actors based on many things, e.g. tags, keywords, or articles they cite. In
social networks, graph clustering techniques, e.g. spectral methods or cliques,
lead to clusters of actors based on how the actors communicate. Both clustering
techniques return groups. No matter how meaningful these groups are, they
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need to be carefully evaluated. But clearly, the different groups lead to different
insights into the underlying community under consideration.

An overview of interaction between the two kind of networks is sketched
in Figure 1. Thereby, the figure also mentions some methods in order to illus-
trate its points, but the set of methods is only exemplary and not meant to
be exclusive. The figure illustrates that one may define e-mail or co-authorship
networks based on actors – here researchers – (first level) which are organized
in institutions communication networks (second level). Researchers use systems
like Bibsonomy to organize their publications and references. Using this informa-
tion, the similarities of tags, content or co-citations can be obtained (homophily
networks – level 3). The results of analyses are applied to identify implicit and
explicit communities.

Communication Networks
(e-mail, co-author, etc.)

Similarity based on tags, 
content, co-citation, co-visit

Researchers,
Institutions

Tags, words, keywords, 
events, conferences

Data Clustering
Result

Graph Clustering
Result

= ?
SNA community, SemWeb community

explicit (mailing list,...) / implicit Groups
analyze or 
recommend

Folksonomy

Fig. 2. Example Methods for Clustering into Groups

3 Evolution of Homophily and Social Networks

In the proposed approach, there are three levels: actor descriptions, homophily
relations and social networks. Using the interplay of these three levels we are
trying to answer several questions about the evolution of networks.

The basic level are the actor descriptions. Let V be the set of actors; then
to each actor v ∈ V is assigned its description Tv. For example: the description
Tv can consist of tags or keywords used by author v, but also some other of his
properties.

In the proposed approach, we are trying to relate the development of so-
cial network to the homophily relation among actors induced by (dis)similarity
of their descriptions. Assuming that the descriptions of actors are “correlated
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with” (are inducing) the social network structure, we can try to operationalize
homophily using an appropriate dissimilarity between the actors’ descriptions.

For example d(u, v) = |Tu⊕Tv|
|Tu∪Tv| where ⊕ is the symmetric difference – A⊕B =

(A ∪ B) \ (A ∩ B). The dissimilarity d determines a kind of homophily space
or field (V, d). From it we can derive “homophily” networks – for example: r-
neighborhoods network or k-nearest neighbors network.

On the basis of the homophily relation under social actions of actors the
social network (V,L) is constructed. The assumption is that closer actors in
(V, d) have higher probability to establish a link in the social network.

An important question is, how good our assumption about the interconnec-
tions between the three levels is. Possible approaches to answer it are:

– Let Nr = (V,Lr) be the r-neighborhoods network – Lr = {(u, v) : d(u, v) ≤
r} then we can observe how the “compatibility” index Com(r) = |Lr∩L|

|L| is
changing with r. There exists r∗ such that Com(r) = 1 for all r ≥ r∗. Small
value of r∗ indicates strong influence of actors’ descriptions on formation of
social network links.

– Another possibility is a kind of permutation test. We introduce the quantity
S =

∑
(u,v)∈L d(u, v) measuring a stress in the social network; and, for per-

mutation π : V → V , S(π) =
∑

(u,v)∈L d(π(u), π(v)). Now we can compare
the value of S against the distribution of S(π) for random πs. If only few
values of S(π) are smaller than S, this is an indication of strong influence of
descriptions/homophily on the structure of social network.

The interconnection goes also in the opposite direction: actors linked in the
social network will get more similar descriptions.

Till now we were looking at the static model. A sequence of such models
indexed by time t describes the evolution of the system. An example is given in
figure 3. Here we see how over time sub-communities of the larger community
split, merge, grow and shrink respectively.

T1 T2 T3

Fig. 3. Evolving communities
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Assume that in each time point we have a clustering C = {C1, C2, . . . , Ck}
where ∅ ⊂ Ci ⊆ V . Note that, C need not to be a partition, and some clusters
Ci can even overlap.

The clustering C can be explicit (given as data) or implicit (determined by
some procedure, such as islands algorithm [10] or clustering with relational con-
straint [11] or k-cliques [12] or cores [13] etc.). In directed networks, an interesting
approach could be the single-center clusters

We also assume that the evolution relation ; among clusters from consec-
utive time points is known: Ci(t) ; Cj(t + 1), meaning that cluster Cj(t + 1)
evolved from cluster Ci(t). Again it can be given as data or computed. There
are nontrivial problems in computationally determining the evolution relation.
which are obtained by the leaders strategy in constrained clustering.
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Fig. 4. Islands in authors’ citations network of Social Networks field

What are the properties of the evolution relation? Different patterns can be
noticed in the evolution of clusters [14]: birth of new cluster, merging/fusion
of clusters, growth of cluster, splitting of cluster, contraction/decay of cluster,
death of cluster, stability of cluster, internal change in cluster, etc.

The clusterings can be analyzed at the level of social network based on struc-
tural characteristics of clusters: single-kernel (strong component, clique, etc.),
centrality/centralization, etc. For example:
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– not single-kernel cluster can indicate a future splitting of the cluster and
– the change in the cluster’s kernel structure can indicate a change of cluster’s

topics.

Additional analyses can be based on the other two levels:

– S(C) can be used to measure the stress/divergence in a cluster C,
– to each cluster C we can assign its vocabulary T (C) =

⋃
v∈C Tv. Analyzing

the changing of vocabulary through time (T (Ct))t∈T , we can get insight into
the life of the cluster: convergence to common topics, changing of interest,
etc.

All of the described analyses can be done already using existing tools. But
in several places these analyses are too crude – new methods, more tuned to the
data and problems, need to be developed.

Here, we described only the simplest model which can be extended in some
directions:

– in the same model we can consider different sets of vertices: authors, works,
tags, journals/conferences, institutions, countries, etc. and

– in the same model we can consider different social networks: co-authorship,
citations, communications, etc.

4 Outlook

The future research questions will focus on the problem of interdependent evo-
lution of networks. This means that the analysis of the evolution of different
networks is defined on the same set of actors. An example in the research com-
munity could be the co-evolution of the co-authorship-network, the co-citation
network, the co-participation in research projects and for instance the communi-
cation network (this is most probably difficult to obtain). Questions of research
might be:

– How does the evolution and the dynamics in one network influence the oth-
ers?

– Is there a “leading” network, which mainly drives the co-evolution of the
coupled system?

– How do social processes provide an explanation to the results found?
– Are there predictors for success or failure of a coupled system, given that

success or failure have been defined in the context?

To even go a step further, one could take a look at the question: what will
happen when the set of actors is unstable or even unpredictable? In the “real
world” actors join and leave groups constantly. How can this behavior be modeled
into the dynamics of co-evolving networks?

These questions call for an interdisciplinary research approach. Coupled sys-
tems and their behavior are a well established field within physics. The social
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aspects of the question are being investigated in sociology and psychology. The
data acquisition and handling need computer and information scientists, if the
data is gathered from the Internet. Ideas might also be found in other fields like
biology or chemistry.

There are a number of benefits of such a research. If for instance, one is the
administrator of a collaboration platform for scientists, another one could mon-
itor how the community as a whole works, but also how parts of the community
are evolving. Then another one could intervene if the systems shows signs of fail-
ure. Another application could be a “recommender service” for researchers. This
system will give results such as relevant papers, relevant actors, or the change
of research topics within a given field.
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