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1 Introduction

The motivation of the workgroup was to couple uncertainty management with
the notion of change. This encompassed integration, aggregation and mining
upon uncertain data. Target questions were measuring uncertainty and defining
and measuring the quality of uncertain data. We have left out ambiguousness (in
the sense of unclear terms and vagueness) as an orthogonal issue. Uncertainty
management in the context of reasoning (cf. among else [GS98]) has been a source
of inspiration, since that area encompasses appropriate theoretical underpinnings
for addressing some of the questions studied here.

2 Setting the Scene

Elaboration on uncertainty requires a context that serves as ground truth. So, un-
der the label “Uncertainty with respect to what?” we have distinguished between:
Data uncertainty caused by one or more of (1) imprecision due to metering, (2)
variability due to nature and (3) variability due to sampling (cf. Examples in
[Len08]), and Model uncertainty caused by one or more of (1) errors in speci-
fication (e.g., which distribution, overspecification of integrity constraints, etc.)
and (2) parameter estimation.

The distinction between data uncertainty and model uncertainty led us to
the question “What to trust?”, in the sense that the observer relies either on the
model or on the data as ground truth. We distinguish between two fundamental
cases in uncertainty management:

1. The model is true =⇒ If the data disagree with the model, repair the data.
2. The data are true =⇒ If the model disagrees with the data, revise the model.

The first case shows up, among others, when one enforces integrity constraints
in a database: If some data violate the constraints, these data must be repaired.
An example of the second case is concept drift in a data stream, whereupon the
model must be adapted to the new data. Another example is the adaptation of
a belief network with new evidence.

In practice, the observer must decide whether the model should be taken for
true or rather the arriving data. Appropriate uncertainty indicators are neces-
sary for this decision. This challenge becomes even more demanding when data
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uncertainty and model uncertainty co-occur. For example, the data recorded by
a sensor network may contain metering errors, while the model learned from
those data may itself suffer from parameter estimation errors.

3 Measuring Uncertainty

Uncertainty is not observable. To capture it, we need uncertainty indicators, one
of which is quality. Scholars on data quality have identified different aspects of
data quality and have even devised taxonomies of data quality indicators (cf.
[Nau02] and more recently [BS06]).

Scholars on data mining and machine learning have also defined model qual-
ity indicators. For example, accuracy is a measure of classifier quality towards
a ground truth. Cluster quality can be expressed as cohesion, separation and
stability. The Sum of Square Errors is an example measure of cohesion, while
the silhouette coefficient captures cohesion and separation [TSK04, Ch. 8].

The issue of measuring uncertainty can be seen from two perspectives: de-
vising measures for uncertainty and designing a generic measuring process. This
second perspective is important when uncertainty refers to complex decomposable
objects, such as a model, a multidimensional data point or a dataset. One task in
measuring uncertainty is thus to decompose complex objects into atomic/non-
decomposable ones, the uncertainty of which can be measured. There is a stan-
dard repertoire for such measurements, encompassing, among others, confidence
intervals for the values of variables. Then, aggregation is performed by propa-
gating the atomic uncertainty measurements towards the composite object.

Following operators can be applied when measuring uncertainty: (1) Trans-
formation, also known as aggregation in DB terminology, (2) Conditioning –
selection or slice, (3) Marginalisation – projection or dice and (4) Fusion – join.

Applying these operators requires defining them for arbitrary types of com-
plex objects. We take a group of clusters ζ = {C1, . . . , Cn} built by a partitioning
algorithm like K-means as an easy example of a complex object: It can be in-
tuitively decomposed into clusters/partitions. The silhouette coefficient measure
computes quality for each single object x with respect to the cluster to which
it was assigned and with respect to other clusters. Aggregation to the quality
indicator for the whole group of clusters is computed as follows [TSK04, Ch. 8]:

sobject(x) =

{

1 − a
b

, a < b
b
a
− 1 , a ≥ b

where a is the mean of the distances between x and each other object in the
cluster C containing x, and beta is the mean of the distances between x and
each object in a cluster other than C. Then scluster(C) = 1

|C|

∑

x∈C sobject(x) so

we get s(ζ) = 1

|ζ|

∑

C∈ζ scluster(C).

For more sophisticated objects, the object decomposition and aggregation
of quality indicators are less straightforward to specify. For example, cluster
decomposition and aggregation of cluster quality indicators becomes more so-
phisticated if the clusters are allowed to overlap.
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4 Exploiting Uncertainty

In some cases, uncertainty is inevitable. For example, the data delivered by a
field sensor are prone to metering errors. In other cases, uncertainty can be
avoided but may still be desirable. As pointed out by J.M. Keynes “It is better
to be vaguely right than to be precisely wrong.”

Beyond this obviously legitimate objective, it may also be preferable to be
vaguely right than to be precisely right, among else if the cost of absolute cer-
tainty is too high. For example, a user issuing a query may decide to sacrifice
some exactness for the advantage of getting an answer sooner. Another example
is an intrusion detector: The detector can only be certain when the intrusion is
complete, but its very purpose is to raise alarm in advance, so that the intrusion
is prevented. This leads us to the challenge of optimizing the tradeoff between
uncertainty and the cost of being certain.

5 Summarizing the challenges

We have identified the following challenges on dealing with uncertainty:

– There is uncertainty in the data and there is uncertainty in the models
describing the data.
How to decide between trusting the data and trusting the model? What un-
certainty indicators can we devise to assist in this decision?

– External factors may cause changes in the population we observe, such as
sensor metering errors or drifts in customer preferences.
How to deal with data that are uncertain, when concept drift or shift is also
likely, i.e. when neither the data nor the model can be trusted?

– Uncertainty refers to complex objects. There are operators that decompose
them into atomic ones, upon which uncertainty can be computed. However,
the specification of such operators is not straightforward and varies with the
nature of the objects and with the uncertainty indicator.
How to propagate uncertainty from atomic objects to composite ones?

– Uncertainty is sometimes inevitable and sometimes even desirable. Nonethe-
less, uncertainty cannot be tolerated to an arbitrary extend.
How to trade uncertainty against the cost of being certain?
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