
08441 Abstracts Collection

Emerging Uses and Paradigms for Dynamic

Binary Translation

� Dagstuhl Seminar �

Bruce R. Childers1, Jack Davidson2, Koen De Bosschere3 and Mary Lou So�a4

1 University of Pittsburgh, USA

childers@cs.pitt.edu
2 University of Virginia, USA

jwd@virginia.edu
3 Gent University, B

Koen.DeBosschere@elis.ugent.be
4 University of Virginia, USA

soffa@virginia.edu

Abstract. From 26.10. to 31.10.2008, the Dagstuhl Seminar 08441 �Emerg-

ing Uses and Paradigms for Dynamic Binary Translation � was held in

Schloss Dagstuhl � Leibniz Center for Informatics. During the seminar,

several participants presented their current research, and ongoing work

and open problems were discussed. Abstracts of the presentations given

during the seminar as well as abstracts of seminar results and ideas are

put together in this paper. The �rst section describes the seminar top-

ics and goals in general. Links to extended abstracts or full papers are

provided, if available.

Keywords. Dynamic binary translation, Virtual machines

08441 Final Report � Emerging Uses and Paradigms for
Dynamic Binary Translation

Software designers and developers face many problems in designing, building, de-
ploying, and maintaining cutting-edge software applications-reliability, security,
performance, power, legacy code, use of multi-core platforms, and maintenance
are just a few of the issues that must be considered. Many of these issues are
fundamental parts of the grand challenges in computer science such as reliability
and security.

Keywords: Dynamic binary translation, Virtual machines

Joint work of: Altman, Erik; Childers, Bruce R.; Cohn, Robert; Davidson,
Jack; De Brosschere, Koen; De Sutter, Bjorn; Ertl, Anton M.; Franz, Michael;
Gu, Yuan; Hauswirth, Matthias; Heinz, Thomas; Hsu, Wei-Chung; Knoop, Jens;
Krall, Andreas; Kumar, Naveen; Maebe, Jonas; Muth, Robert; Rival, Xavier;
Rohou, Erven; Rosner, Roni; So�a, Mary Lou; Troeger, Jens; Vick, Christopher

Dagstuhl Seminar Proceedings 08441
Emerging Uses and Paradigms for Dynamic Binary Translation
http://drops.dagstuhl.de/opus/volltexte/2009/1889

2 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou
So�a

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2009/1888

Challenges in Dynamic Binary Translation

Erik Altman (IBM TJ Watson Research Center, US)

The talk will start by looking at some of the many and varied successes of
Dynamic Binary Translation (DBT). It will then examine and quantify some of
DBT's shortcomings, and just how short it is.

Finally, the talk will look at several ways these shortcomings might be over-
come. These ways include (1) identifying domains with the best chance for DBT
success and (2) techniques for helping DBT achieve that success.

Keywords: Application-Speci�c, Semantic Knowledge, TLP, Oracle Parallelism

Pin: Binary Translation for Dummies

Robert Cohn (Intel - Hudson, US)

Binary translation and dynamic code generation are powerful techniques for en-
abling and accelerating tasks such as program analysis, performance modeling,
emulation, and virtualization. For example, vmware and qemu incorporate cus-
tom binary translators. In contrast, there are systems that provide a generic
infrastructure for binary translation such as Pin, Strata, and Valgrind and users
build tools on top.

Pin's target audience is tool developers who are experts in domains such as
program analysis, cache modeling, or workload characterization, but may not be
familiar with compilation techniques. The challenge is to provide a programming
model for dynamic code generation that allows domain experts to build their tool
and not get bogged down in the details of instruction set semantics, isolation,
and just in time compilation. The talk takes its title from a popular book series,
with "Excel for Dummies" being a prime example. Users of Excel don't need
to know how a spreadsheet program is implemented; they just want to solve a
problem.

The presentation examines issues that make it easy or hard to write binary
translation tools in Pin, such as programming models, ISA and OS independence,
and performance. We discuss the things we got right and the things we wish we
had done di�erently.

Using C for the Back End

M. Anton Ertl (TU Wien, AT)

If we want to implement a translator easily and portably, but with with good
code quality, then translating through C is a good option.

http://drops.dagstuhl.de/opus/volltexte/2009/1888

Emerging Uses and Paradigms for Dynamic Binary Translation 3

While C is a static language, we can also use this technique for a dynamic
translator with the help of a dynamic linker. The disadvantage of this approach
is the large startup time; this disadvantage can be partially overcome by caching,
batching, and seeding the cache. Some challenges for this technique in binary
translation are modeling the (arbitrary) control �ow in C and the compilation
granularity of C. One example of using dynamic translation through C, although
not in a binary translation context is the implementation of a foreign function
interface.

The Surprising Versatility of the Trace Compilation
Paradigm: How We Set Out To Build A Better
Just-In-Time Compiler And Suddenly Found Ourselves At
The Center Of The Second Browser War

Michael Franz (Univ. California - Irvine, US)

We have been investigating the use of Dynamo-style trace based optimization
beyond traditional binary translation. Surprisingly, the paradigm is far more
versatile than its original inventors imagined.

Our key breakthrough for making trace compilation so versatile is a novel in-
termediate representation, the Trace Tree, which is constructed lazily on-demand
while a program is simultaneously executed, incrementally compiled, and opti-
mized.

Our compilation technique is surprisingly competitive at much lower imple-
mentation complexity. Our academic prototype Java compiler has been able to
attain a performance similar to commercial production compilers while using
only about 1/7th of the memory footprint, 1/30th of the compile time, and
1/100th of the actual compiler size. Early experiments showed an even greater
bene�t for dynamically-typed languages such as JavaScript.

Our academic experiments are now being validated in one of the largest "real
world" trials imaginable. Mozilla recently selected our Trace Tree compiler as
the new JavaScript engine for Firefox 3.1 (due out in November 2008), with an
expected 300 Million installations to come. Even in the �rst alpha prototype, the
Trace Tree compiler's JavaScript performance is a surprising 700% higher than
that of FireFox's previous compiler, and a staggering 15 times (1500%) faster
than that of Internet Explorer. On the other hand, Google recently launched
their Chrome browser, which uses a superbly well engineered but "traditional"
control-�ow based JavaScript compiler. As both browsers mature, the perfor-
mance competition between them is likely to settle the question whether or not
one should base future compilers on Trace Trees.

Keywords: Trace-based compilation, trace trees

4 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou
So�a

Software Security Challenges: Direct Attack and
Self-Protection

Yuan Gu (Cloakware/Irdeto - Ottawa, CA)

First, a brief introduction to Cloakware; and then, discuss software attacks and
security and Cloakware security technology and solutions; and �nally, present
a number of software security hard problems that may be addressed by using
Dynamic Binary Translation, as well DBT may raise new software security chal-
lenges.

My Dynamic Binary Instrumentation Wish List

Matthias Hauswirth (Universität Lugano, CH)

Dynamic binary rewriting has many di�erent applications, including the trans-
lation between di�erent instruction sets, the online optimization of executing
programs, and the instrumentation of code at runtime.

In this talk we focus on dynamic binary instrumentation.
We show one speci�c use, the measurement of the perceptible performance

of interactive applications, and, based on our experience of using di�erent in-
strumentation systems, we present four wishes for future binary instrumentation
tools:

1. the provision of a vertical view of behavior across system layers,
2. the minimization of the overhead through persistence, sampling, and paral-

lelization,
3. the reduction of measurement perturbation, in particular with respect to

time, and
4. the ability for the declarative speci�cation of instrumentation.

Keywords: Dynamic binary instrumentation

(Maybe?) Existing Dynamic Binary Translation,
Instrumentation, and Optimization Systems

Matthias Hauswirth (Universität Lugano, CH)

This is an idea which may or may not make sense. It is not necessarily a talk
(although I could "present" the idea at some point if it is deemed useful).

Emerging Uses and Paradigms for Dynamic Binary Translation 5

Given that this seminar is looking at emerging trends, it might make sense
to review what is already out there. We could use the seminar Wiki to col-
laboratively put together a survey of existing dynamic binary rewriting (aka
software dynamic translation) systems. A coarse classi�cation could be whether
"rewriting" means "translation" (e.g. between ISAs), "instrumentation" (e.g. for
pro�ling), or "optimization" (e.g. to reduce execution time). If I can �nd time
in the next couple of days, I will seed that Wiki structure (see
http://www.dagstuhl.de/wiki/index.php/Dynamic_Binary_Rewriting_Survey)
by shamelessly reusing a section of Nicolas Nethercote's (Valgrind) dissertation,
which compares 11 di�erent dynamic binary instrumentation systems.

Towards automatically generating device emulation code

Thomas Heinz (Robert Bosch GmbH - Stuttgart, DE)

Software maintenance is an important issue for automotive suppliers as the life
cycle of electronic control units can span up to 30 years. Binary translation is
a promising approach to enable automatic porting of ECU software to a new
hardware platform replacing an obsolete, original architecture. As legacy ECU
software contains a signi�cant amount of low level, device related code which is
often intermingled with application code, it is necessary to provide full-system
binary translation to be useful, i.e. binary translation incorporating device em-
ulation.

The talk is based on the scenario of replacing an obsolete microcontroller
(source) by a new one (target) while attempting to emulate the source periph-
eral devices directly on corresponding target devices with similar functionality.
The talk sketches some ideas for an approach to automatically generate device
emulation code based on a semantic description of device operations.

Keywords: Binary translation, device emulation, code generation

ADORE: An Adaptive Object Code Re-Optimization
System

Wei-Chung Hsu (University of Minnesota, US)

ADORE (Adaptive Object Re-Optimization) is a dynamic binary optimizer.
It can be automatically loaded into memory at a program's start-up. During
the program's execution, ADORE monitors the performance and dynamically
optimizes the code based on collected runtime pro�les.

ADORE has several major components, including self-monitor, pro�ler, phase
detector, trace builder, and optimizer. The self-monitor collects performance in-
formation from sampling the hardware PMUs and sends processed data to the
pro�ler for further analysis. The pro�ler identi�es the performance bottleneck,

6 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou
So�a

such as cache misses or mis-speculations, as they happen in a running applica-
tion. The trace builder locates the most frequently executed program regions and
reshapes the code to execute more e�ciently. ADORE has been implemented on
two platforms: the IA-64 (Itanium-1 and Itanium-2) and SPARC (UltraSparc
IV+). The ADORE/Itanium is good at dynamically inserting cache prefetches
for delinquent loads, and ADORE/Sparc can further generate a helper thread
on-the-�y to prefetch for the main thread.

Dynamic binary translation and optimization are often constrained because
insu�cient semantic information available for the executable. We are currently
seeking support from compiler annotations to increase the power of dynamic
binary optimization.

Towards Real-Time Dynamic Binary Translation: Some
Notes on Recent Activities in the WCET and RT Field

Jens Knoop (TU Wien, AT)

In this talk I will report on recent activities in the �eld of Real-Time and Worst-
Case Execution Time Analysis, most notably on the continuing e�orts towards
mastering the Worst-Case Execution Time Tool Challenge and the closely related
Annotation Language Challenge which have recently been launched at the ISoLA
2006 symposium and the WCET 2007 workshop, respectively. Starting from my
own work pursued in the ALL-TIMES and the CoSTA project on advanced
compiler support for timing analyses of embedded real-time systems, and an
overview of the SATIrE system used as a common and unifying infrastructure
within these projects, I will show how these projects and the activities around
them are embedded into the broader �eld of research on analysing real-time
systems, and which connecting links this might provide for upcoming approaches
towards Real-Time Dynamic Binary Translation.

This work has been partially supported by the 7th EU R&D Framework
Programme under contract No 215068, "Integrating European Timing Analysis
Technology (ALL-TIMES)", and by the Austrian Science Fund (FWF) under
contract No P18925-N13, "Compiler Support for Timing Analysis (CoSTA)".

Dynamic Binary Translation for Generation of Cycle
Accurate Architecture Simulators

Andreas Krall (TU Wien, AT)

In this talk we discuss our experiences in using the LLVM just-in-time com-
piler as code generator in a cycle accurate architecture simulator for pipelined
architectures. The architecture simulator is generated from an architecture spec-
i�cation in a mostly structural architecture description language. The simulator
contains an interpreter and dynamically translates �rst heavy executed basic

Emerging Uses and Paradigms for Dynamic Binary Translation 7

blocks and later traces to machine code. Spreading of pipelined instructions over
basic block boundaries is solved by basic block duplication. We present detailed
results for a MIPS and a VLIW simulator. Simulation speeds of up to 500 MHz
on a 2200MHz Athlon 64 processor are reached.

Joint work of: Fellnhofer, Andreas; Krall, Andreas; Riegler, David

Vertical Instrumentation

Jonas Maebe (Gent University, BE)

High level instrumentation allows access to rich semantic information. Low level
instrumentation on the other hand provides insight into many things that are
not always visible at higher levels. Vertical instrumentation connects the di�erent
levels and enables combining the best of both worlds.

Keywords: Vertical instrumentation, dynamic binary instrumentation, aspect-
oriented programming

security and binary rewriting

Robert Muth (Google - New York, US)

In this talk we discuss a handful of applications of dynamic binary rewriting in
the area of security. Both black hat and white hat applications are discussed.

Keywords: Dynamic binary rewriting, security, sandboxing, side channels

Certifying Compilation Correctness

Xavier Rival (ENS - Paris, FR)

Bugs in compilers may turn out extremely di�cult to isolate, and can have a
great impact on users. We will review a range of techniques that aim at certifying
compilation correctness.

First, we will discuss the semantics of compilation (with or without opti-
mizations), so as to choose what property should be proved to be preserved by
compilation.

Then, we will consider several techniques that can be used to prove proper-
ties about compilation, including the translation of program invariants or types
during the compilation process, the automated proof of equivalence between the
source and the compiled code, and the formal proof of correctness of a compiler.
For each of these techniques, we will discuss the advantages and drawbacks.

Keywords: Compilation, Compilation Correctness, Optimizations

8 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou
So�a

Combining Processor Virtualization and Split Compilation
for Heterogeneous Multicore Embedded Systems

Erven Rohou (INRIA - Rennes Bretagne Atlantique, FR)

Complex embedded systems have always been heterogeneous multicore systems.
Because of the tight constraints on power, performance and cost, this situation
is not likely to change any time soon. As a result, the software environments
required to program those systems have become very complex too.

We propose to apply instruction set virtualization and just-in-time compi-
lation techniques to program heterogeneous multicore embedded systems, with
several additional requirements:

� the environment must be able to compile legacy C/C++ code to a target
independent intermediate representation;

� the just-in-time (JIT) compiler must generate high performance code;
� the technology must be able to program the whole system, not just the host
processor.

Advantages that derive from such an environment include, among others, much
simpler software engineering, reduced maintenance costs, reduced legacy code
problems... It also goes beyond mere binary compatibility by providing a better
exploitation of the hardware platform.

We also propose to combine processor virtualization with split compilation
to improve the performance of the JIT compiler. Taking advantage of the two-
step compilation process, we want to make it possible to run very aggressive
optimizations online, even on a very constraint system.

Keywords: Heterogeneous multicore, virtualization, compilation, bytecode, an-
notations

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2009/1887

Dynamic Binary Translation Beyond Just Dynamic Binary
Translatio

Roni Rosner (Intel Israel, IL)

(D)BT is everywhere, it takes many forms, it is used for many purposes in many
ways. DBT is a powerful, mature technology, but not (yet?) a silver bullet. Can
we make signi�cantly more out of DBT (i.e., breakthrough)?

Keywords: Dynamic Binary Tranlation and Optimization

http://drops.dagstuhl.de/opus/volltexte/2009/1887

Emerging Uses and Paradigms for Dynamic Binary Translation 9

Dynamic Binary Translation for System Emulation

Jens Troeger (Microsoft Research - Redmond, US)

System emulation is an approach to boot and run an operating system and its
applications inside a sandboxed execution environment: the emulator. In order
to run the guest operating system, the emulator must provide transparent imple-
mentations for the guest hardware features used by the guest operating system.
The code of the guest can be interpreted or Just-in-Time compiled; the state
of the guest processor is usually implemented by memory data structures and
possibly mapped to the host processor (eg register mapping); and the greater en-
vironment like guest memory, devices, exceptions and interrupts, timing, etc, are
implemented in di�erent fashions depending on need of the emulator and abil-
ity of the host system. Because system emulators run entire operating systems,
performance is often critical.

In this presentation I share my experience with working on di�erent system
emulators, the challenges we faced, and where the performance bottle necks are.
DBT is an approach to compile guest machine code into host machine code,
usually on demand following the trace of execution. I brie�y formalize system
emulation and DBT, and then focus on performance and accuracy of the system
emulator. Optimizations can be applied on both levels, instruction compilation
and state implementation of the guest. As it turns out, however, most perfor-
mance improvements for system emulation are gained not by optimizing code,
but by optimizing the implementation of the guest machine state.

Keywords: Dynamic Binary Translation, System Emulation

The Portmeirion Project: Architecting Systems to Support
Binary Translation

Christopher Vick (Sun Microsystems - Menlo Park, US)

The Portmeirion project seeks to extend the application of Sun's virtualization
technologies to enable the implementation of virtual instruction set architec-
tures. By co-designing a hardware architecture and a system virtual machine,
Portmeirion creates the ability to e�ciently run code written to multiple ISA's
(in particular, SPARC, Java byte code and X86) on a single system, while al-
lowing strong innovation in the development of the hardware platform because
that platform is no longer encumbered with a massive burden of backward com-
patibility. One critical portion of the Portmeirion approach is the system virtual
machine, called the Portmeirion Virtual Machine (PVM), and perhaps its most
critical component is the Portmeirion Optimizing Binary Translator. This trans-
lator is an outgrowth and major extension of dynamic compilation technologies
developed for the HotSpot Java Virtual Machine, applied to a whole new set of
problems. Its purpose is to, along with targeted specialized hardware support,

10 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou
So�a

enable the e�cient execution of code written to the virtual ISA (vISAs) such as
SPARC on hardware with a di�erent native ISA (nISA) that does not directly
implement the vISA. The other critical portion of Portmeirion approach is the
co-designed CPU architecture, which is designed to enhance the e�ciency of the
binary translator.

Keywords: Computer Architecture, Dynamic Binary Translation, Virtual Ma-
chines

	08441 Abstracts Collection Emerging Uses and Paradigms for Dynamic Binary Translation --- Dagstuhl Seminar ---
	 Bruce R. Childers, Jack Davidson, Koen De Bosschere and Mary Lou Soffa

