
ASODPOP: Making Open DPOP Asynchronous

Student: Brammert Ottens
Supervisor: Boi Faltings

<first name>.<last name>@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Lab

CH-1015 Lausanne

Abstract. In this paper we show how ODPOP can be adapted to an asynchronous
environment where agents might have to decide their values before the algorithm
has ended, giving us Asynchronous ODPOP (ASODPOP). We have compared
the algorithm with both ADOPT and distributed local search (DSA). Compared
to ADOPT we show that our approach sends fewer messages, converges to a
reasonable solution faster, and uses an equal amount of NCCCs. We also show
that this convergence is much faster than local search, whilst the solution that
local search converges to is far from optimal.

1 Introduction

In constraint satisfaction and optimization problems, variables are often controlled by
different agents. We call such problems distributed constraint satisfaction problems
(DisCSP) ([2]). For various reasons, such as the difficulty of problem formalization
in a common framework, the lack of a recognized central authority, or the desire for
privacy, it is desirable to solve such problems using distributed algorithms based on
message exchanges among the agents.

Open DPOP (ODPOP) [8] is an adaptation of the well known DPOP algorithm [7]
to the Open Constraint Programming paradigm (OCP)[3]. In ODPOP agents are first
ordered using a DFS tree, and then solutions are aggregated in a bottom up, best first
manner until the optimal solution has been found. As argued for below, ODPOP has
certain disadvantages when used in a situation where agents need to act independently,
i.e. asynchronously, and under possible time constraints. One could think of multi-agent
coordination problems with a large number of agents, where response time is essential,
or large sensor networks where the communication delay becomes significant. In such
situations the agents do not always have time to wait for all the other agents and might
have to make decisions on partial information.

In this paper we introduce Asynchronous ODPOP (ASODPOP), an extension of
ODPOP to situations where agents work under time constraints and have to make deci-
sions based on partial information

2 Concepts & Notation

Distributed Constraint Optimization(DCOP) [2] models the problem where a set of vari-
ables is distributed over a set of agents, with valued constraints between different vari-

Dagstuhl Seminar Proceedings 08461 
Planning in Multiagent Systems 
http://drops.dagstuhl.de/opus/volltexte/2009/1871

1



ables. Every agent is only aware of the constraints its variables participate in. The goal
is to find a variable assignment that optimizes a global objective function, where this
objective function consists of all the valued constraints between the different variables.

Definition 1 (A DCOP problem) A discrete distributed constraint optimization problem is a tu-
ple 〈X,D,C〉 where

– X = {x1, . . . , xn} is a finite set of variables.
– D = {d1, . . . , dn} is a set of finite domains.
– C = {c1, . . . , cm} is a set of valued constraints where ci : di1 × . . . dik → R.

To make the paper more readable, we assume that every agent owns exactly one
variable and every constraint is a binary constraint. As a consequence, xi can be used to
both denote the variable and the agent that owns it.

Fig. 1: A constraint graph and a rooted DFS tree
based on it.

In order to efficiently find an optimal so-
lution, agents must be prioritised in some
way. An often used method is to cre-
ate a DFS tree. A DFS tree is a rooted
and directed spanning tree of the con-
straint graph such that two neighbours in
the original graph are both in the same
branch (see Fig. 1).

A back edge is an edge present in the
constraint graph but not in the DFS tree.
An agent connected via a back edge with
an ancestor is called a pseudo child and
the ancestor is called a pseudo parent.
Furthermore, every agent xi has a sep-
arator sepi, consisting of its parent, its

pseudo parents and its ancestors that are pseudo parents of its descendants. In other
words, the separator contains all the agents that have an influence on the agents in the
sub tree rooted at xi. Finally, let sepi

+ = sepi ∪ {xi}.
If Di

k contains the knowledge1 agent xi has of the domain of xk, then an assignment
s for agent xi assigns to each xk ∈ sepi

+ an element from Di
k, i.e. an assignment for

agent xi assigns a value to itself and all the variables in its separator. Assi is the set of
all the assignments agent xi knows about.

Definition 2 (Compatible) Two assignments s and s′ are said to be compatible, denoted by s ≡
s′, if they agree on the values of the variables they share.

3 ASODPOP

In the DCOP literature, there are two types of algorithms. The search based algorithms,
of which ADOPT [6] is a good example, use the DFS tree to perform a top-down search

1 Because we follow the OCP paradigm, nodes can have incomplete information of the domains.

2



procedure, while the dynamical programming based approaches, like DPOP, aggregate
solution from a bottom up manner and do not search.

ODPOP is a DPOP like algorithm and works in a bottom up manner. In stead of
agents setting themselves to a value and notifying their children, in ODPOP agents ask
their children what value they should set themselves to. Children respond in a best first
manner with such assignments. An agent continues to ask for assignments until it has
enough information to be able to suggest an optimal assignment to its parent, i.e. until
the agent is valuation sufficient. Bounds on the utilities are used to recognise valuation
sufficiency. When the root agent is valuation sufficient, it notifies its children on its
decision. The problem with ODPOP in situations where agents are bounded by time is
two fold. First, an agent’s bounds for a particular assignment are not instantiated until
it has received information on this assignment from all its children. Thus the speed
with which this agent can make suggestions to its parent is limited by the slowest child.
Second, the root agent chooses an assignment only when he is absolutely sure about the
optimality of this assignment. Hence, its descendants are not able to assign a value to
themselves until the root node has.

We propose to address these problems by allowing nodes to respond to their parents
using incomplete information, by allowing agents to make estimations for the values
it has not received any information about yet and by allowing the root node to make
a ”temporary” decision before it is certain of the optimality of its assignment. These
adjustments result in the ASODPOP algorithm introduced below.

The algorithm consists of three different phases. In the first phase a DFS tree is
generated, see [8] for more information on the distributed DFS algorithm. The second
and third phase, respectively the ASK/GOOD phase and the VALUE propagation phase
run concurrently, where the former aggregates solutions in a bottom up manner and the
latter distributes decisions top down. These two phases are discussed in greater detail.

3.1 ASK/GOOD phase

As in ODPOP, nodes ask their children what values are best via ASK messages. The
children respond to this with a good. Such a good contains an assignment s to all the
variables in the agents separator (so not for the agent itself), the combined utility v the
agents in the sub tree rooted at the child can obtain when the assignment is chosen and
a binary variable b. b is used to distinguish between true goods (b = true) and false
goods (b = f alse), where a true good is based on complete information, while a false
good is based on incomplete information.

In order to find the optimal value, these goods should be sent in a best first manner.
In ODPOP this can be done by ensuring that the leaf nodes do this. However, in ASOD-
POP certain goods have a utility based on partial information and estimates, which
cannot be used to determine a best first order. To still ensure optimality, the best first
requirement is limited to true goods. A good is a true good if its utility is calculated
from received true goods and if at the moment it is sent it is the best good not yet sent.
The purpose of the false goods is merely to propagate partial information and estimates
upwards.

3



Algorithm 1: ASODPOP Agent

Receive(ASK)
if ∃smax then

if bi(smax) and ∀s′ ∈ Assi \ sent goods Ei(smax) ≥ UBi(s′) then
Send(Pi, GOOD(s−max, Emax, true));
sent goods←sent goods ∪{s|s ∈ Assi , s ≡ s−max}

else
Send(Pi, GOOD(s−max, Emax, f alse));
sent ASK to children;

Receive(child, GOOD(s,V, b))
If s contains new information concerning the separator or a variable domain, update
S epi and Assi.
for all s′ ∈ Assi such that s′ ≡ s do

Ei
child(s′)← V;

bi
child(s′)← b;

if b then
Adjust estimates Ei

child for all s′ ∈ S epi with s′ . s such that Ei
child(s′) < V

When the agents assignment changes due to updated information, sent a VALUE
message to its children;

When an agent xi receives a good 〈s, v, b〉, it first updates its separator. After that it
sets Ei

j(s′) = v and bi
j(s′) for every assignment s′ ∈ Assi that is compatible2 with s. If

xi has not yet received any information on an assignment s′ ∈ Assi from child j, it sets
bi

j(s′) = f alse and it either sets Ei
j(s′) to 0, or makes an estimate for its value. These

estimates can be made according to a-priori information concerning the problem, using
a pre-processing step that sets bounds on the utilities or, if no additional information is
available, the estimates can be random.

The total utility for a specific assignment s is then obtained by summing up the
utilities obtained from xi’s children; Ei(s) =

∑
j Ei

j(s) and bi(s) =
∧

j bi
j(s).

When a node receives an ASK message (see Algorithm 1), it first determines smax ∈

Assi, which is the assignment that currently has the highest utility and has not yet been
sent as a true good and then sends 〈s−max, E

i(smax), b〉, where s−max is restricted to sepi

and s−max ≡ smax, i.e. s−max is obtained by dropping agent xi’s assignment from smax. If
smax is based on true goods (bi(smax) = true) and its value is at least as high as the upper
bound for all the assignments that have not been sent yet, it is sent as a true good. If not,
it is sent as a false good. The upper bound for an assignment is calculated as

UBi
j(t) =


Ei

j(t) if bi
j(t) = true

Elast
j if Elast

j exists
∞ otherwise

UBi(t) =
∑

j

UBi
j(t)

2 An agents separator can differ from its children’s separators

4



where Elast
j is the utility of the last true good it has received from child j.

3.2 VALUE propagation phase

In the VALUE propagation phase information about the assignments agents choose is
sent down the tree. The phase starts by the root node setting itself to smax and an-
nouncing this to its children via a VALUE message. When an agent receives a VALUE
message, it looks in sent goods what value it should set itself to and reports this to its
children via a VALUE message. Each time an agent’s assignment changes due to the
reception of a new good, its children are notified via a VALUE message.

4 Experimental evaluation

Fig. 2: Convergence performance on problems with
17 variables, averaged over 10 runs

ASODPOP is designed to operate
in environments where the agents
might have to make a decision
concerning the assignment of their
variables before the algorithm has
ended. In such situations it is very
important to have fast convergence
to a (near) optimal solution. We are
therefore interested in the conver-
gence properties of ASODPOP com-
pared to other asynchronous algo-
rithms, in this case ADOPT [6] (with
the DO2 pre-processing step [1])
and Asynchronous Distributed Local
Search (DSA-C) [9]. We also looked
at the number of messages that are
sent and at the level of parallelism
of the computation by measuring the

number of non-concurrent constraint checks (NCCCs) [5].
In implementing ASODPOP we have made the simplifying assumption that all the

agents do have full knowledge of their separator and the associated variable domains.
So, the results on the amount of NCCCs must be seen as an upper bounds. The conver-
gence and the number of messages used would have been the same.

We performed tests on meeting scheduling problems in an organisation with a hier-
archical structure, using the PEAV model from [4]. Random meeting scheduling prob-
lems have been generated using 3, 10, 17 and 24 variables, 10 instances of each. Since
we are dealing with optimisation problems, the tightness is of no concern. DCOP al-
gorithms are meant to operate on low density problems, and hence the problems we
generate have a low density as well. Finally, each variable has a cardinality of 5. The
low number of 24 is due to the limitations of ADOPT. However, with ASODPOP we
have been able to solve problems of up to a 100 variables in approximately 60 sec-
onds. The estimates that are used in ASODPOP are generated randomly, i.e. no domain
knowledge is used.

5



Due to space limitations, only the convergence results are shown. It is clear from
Fig. 4 that ASODPOP converges must faster than ADOPT and reaches a better result
than DS A in the same time. In terms of NCCCs and messages sent it also outperformed
ADOPT by 2 orders of magnitude.

5 Conclusions

In this paper we introduced an asynchronous algorithm for Distributed Constraint Op-
timization, based on ODPOP. Where in ODPOP every agent waits until it has received
enough information to determine its most preferred assignment, in the approach we
have introduced the agents are allowed to make estimates concerning the assignments
they do not yet have received enough information about. Such an algorithm can be very
useful in situations where an agent might have to decide on the assignment of its vari-
ables before the algorithm has ended. In such a case fast convergence to a (near) optimal
solution is very welcome.

The experiments performed show that ASODPOP exhibits such fast convergence.
On top of that the actual optimum is found very fast, whereas both ADOPT and lo-
cal search need more time to converge to a solution and the latter even fails to find
the optimum. Future work should focus on finding more efficient implementations of
ASODPOP. Furthermore, methods should be devised to get meaningful estimates for
the assignments an agent does not have information about yet. This should improve the
convergence results even more.

References

1. S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for accelerating the DCOP algo-
rithm ADOPT. In AAMAS ’05, pages 1041–1048, New York, NY, USA, 2005. ACM.

2. B. Faltings. Distributed Constraint Programming, pages 699–729. Foundations of Artificial
Intelligence. Elsevier, 2006.

3. B. Faltings and S. Macho-Gonzalez. Open Constraint Programming. Artificial Intelligence,
161(1-2):181–208, January 2005.

4. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking DCOP
to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling. In
AAMAS ’04, pages 310–317, Washington, DC, USA, 2004. IEEE Computer Society.

5. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing Performance of Distributed
Constraints Processing Algorithms. In DCR 2002, 2002.

6. P. Modi, W. Shen, M. Tambe, and M. Yokoo. An Asynchronous Complete Method for Dis-
tributed Constraint Optimization. AAMAS’03, 2003.

7. A. Petcu and B. Faltings. DPOP: A Scalable Method for Multiagent Constraint Optimization.
In IJCAI 05, pages 266–271, Edinburgh, Scotland, Aug 2005.

8. A. Petcu and B. Faltings. O-DPOP: An algorithm for Open Distributed Constraint Optimiza-
tion. In AAAI-06, pages 703–708, Boston, USA, July 2006.

9. W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed Stochastic Search and Dis-
tributed Breakout: Properties, Comparison and Applications to Constraint Optimization Prob-
lems in Sensor Networks. Artif. Intell., 161(1-2):55–87, 2005.

6




