
Temporal Support of Regular Expressions in
Sequential Pattern Mining

Leticia I. Gómez1, Bart Kuijpers2, and Alejandro Vaisman2

1 Instituto Tecnólogico de Buenos Aires
lgomez@itba.edu.ar

2 University of Hasselt and
Transnational University of Limburg

alejandro.vaisman,bart.kuijpers@uhasselt.be

Abstract. Classic algorithms for sequential pattern discovery, return
all frequent sequences present in a database. Since, in general, only a
few ones are interesting from a user’s point of view, languages based
on regular expressions (RE) have been proposed to restrict frequent se-
quences to the ones that satisfy user-specified constraints. Although the
support of a sequence is computed as the number of data-sequences sat-
isfying a pattern with respect to the total number of data-sequences in
the database, once regular expressions come into play, new approaches to
the concept of support are needed. For example, users may be interested
in computing the support of the RE as a whole, in addition to the one of
a particular pattern. Also, when the items are frequently updated, the
traditional way of counting support in sequential pattern mining may
lead to incorrect (or, at least incomplete), conclusions. For example, if
we are looking for the support of the sequence A.B, where A and B are
two items such that A was created after B, all sequences in the database
that were completed before A was created, can never produce a match.
Therefore, accounting for them would underestimate the support of the
sequence A.B. The problem gets more involved if we are interested in
categorical sequential patterns. In light of the above, in this paper we
propose to revise the classic notion of support in sequential pattern min-
ing, introducing the concept of temporal support of regular expressions,
intuitively defined as the number of sequences satisfying a target pattern,
out of the total number of sequences that could have possibly matched
such pattern, where the pattern is defined as a RE over complex items
(i.e., not only item identifiers, but also attributes and functions).

1 Introduction

Traditional sequential patterns algorithms are founded on the assumption that
items in databases are static, and that they existed throughout the whole lifes-
pan of the world modeled by the database. There are many real-world situations
where sequential pattern mining (SPM) is usually applied, and where these as-
sumptions are not valid any more. In these situations, items are created or
deleted dynamically. Further, if we are interested in categorical SPM, we need

Dagstuhl Seminar Proceedings 08471
Geographic Privacy-Aware Knowledge Discovery and Delivery
http://drops.dagstuhl.de/opus/volltexte/2009/2008

1

to deal with complex items, i.e., items described by attributes (or even functions
over attributes). These attributes are also usually subject to change. Consider
for example SPM in trajectory databases. For many applications, we may be
interested in trajectory patterns involving restaurants, hotels, gas stations. The
features that characterize these places may change over time, and even many
of them could have not existed when some of the trajectories under analysis
occurred. This may also occur in the context of the World Wide Web, where
Web pages are frequently added or deleted. Ntoulas et al. [10] collected snap-
shots over 155 web sites, during one year, once a week. They concluded that
new pages are created at the rate of 8% per week, and only 20% of the pages
available at one instant will be accessible after one year. Thus, there ia a high
frequency of creation and deletion of Web pages. Moreover, they found that the
link structure of the Web is more dynamic that the page content.

We introduce the problem through a Web usage mining example. Data Min-
ing techniques have been applied for discovering interaction patterns of WWW
users. Typically, this mining is performed over the URLs visited during a session,
recorded in a Web server log. In this way, the interests and behavioral patterns
of Web users can be studied. Figure 1 depicts a portion of a (simplified) Web log.
In classic SPM, the support of a sequence S is defined as the fraction of sessions
that support S. Thus, all sessions are considered as having the same probability
to support a given sequence. For example, the support of the sequence CBC,
counted in the classical way, would be 66%, since CBC is present in two of the
three sessions. Analogously, the support of the sequence CB would also be 66%.
We may ask would have happened if not all these Web pages existed all the time.
The question is: would it be realistic to count support in the usual way? More
precisely, would it be reasonable to ignore the evolution of the items (URLs)
across time? We discuss these issues in this paper.

When a Web page is visited during a session, it is often the case where a
user clicks a nonexisting link or a link that has been removed. Figure 2 shows
how URLs A, B, and C in Figure 1, have evolved, and the time intervals when
each URL has been available. We can see that URL A was available during the
interval [1, 8], URL B in intervals [4, 5] and [11, now], and URL C, during [3,
6] and [9, now]. (We use the term now to refer to the current time instant).
We now analyze the support of the sequence CBC. During session s2, we can
see that URL C did not exist at t=8, when the user clicked URL A. Thus,
session s2 did not have the possibility of producing a sequence that finishes
with the URL C. Sessions s1 and s3, instead, support the sequence CBC. Then,
ignoring the evolution of these URLs, the support of sequence CBC would be
66%, but, if we do not count session s2, we would obtain a support of 100% for
this sequence. Analogously, if we compute the support of the sequence of CB
taking into account the availability of the items during each session, we can see
that s1 and s3 support this sequence, but s2 does not. However, C was available
during session s2, when the user clicked URLs A (t=3) and B (t=4) (actually, it
existed in the interval [3, 6]). Thus, the user could have produced the sequence

2

session ID interaction

s1

time URL
t=1 A
t=3 C
t=5 B
t=6 C

s2

time URL
t=3 A
t=4 B
t=8 A

s3

time URL
t=5 A
t=10 C
t=20 B
t=23 C

Fig. 1. Web user interaction

Fig. 2. Evolution of three URLs A, B, and C

CB, although she decided to follow a different path. Session s2 must then be
counted for computing the support of the sequence CB, which would be 66%.

The example above gives the intuition of the ideas that we discuss and for-
malize in this paper: the support of a sequence depends on the counting method,
and when items evolve over time, new definitions of support are needed. Instead
of considering all sequences in the database in the same way, we propose to ac-
count for the fact that some of these sequences could have never been produced
due to the temporal unavailability of some of the items in them.

1.1 Related Work

Sequential Pattern discovery in databases has been studied for a long time. Clas-
sic algorithms [1, 12] return all frequent sequences present in a database. How-
ever, more often than not, only a few ones are interesting from a user’s point
of view. Thus, post-processing tasks are required in order to discard uninterest-
ing sequences. To avoid this drawback, languages based on regular expressions
(RE) were proposed to restrict frequent sequences to the ones that satisfy user-
specified constraints. Garofalakis et al. [4, 5] address this problem by pruning the
candidate patterns obtained during the mining process by adding user-specified
constraints in the form of regular expressions over items. The algorithm returns
only the frequent patterns that satisfy these regular expressions. Toroslu and
Kantarcioglu [16] limit the number of sequences to be found through a param-
eter called repetition support. The idea consists in detecting cyclically repeating

3

patterns. The parameter specifies the minimum number of repetitions of the pat-
terns within each data-sequence. Thus, the algorithm finds frequent sequences
with at least minimum support and a cyclic repeating pattern.

Recently, the data mining community started to discuss new notions of sup-
port in SPM, that account for changes of the items database across time. Al-
though this problem has already been addressed for Association Rule mining,
where the concept of temporal support has already been introduced [7, 8, 14],
this has been overlooked in SPM. To the best of our knowledge, the works we
comment below are the only ones partially addressing the issue.

Masseglia et al. [9], and Parthasarathy et al.[11], study the so-called incre-
mental sequential pattern mining problem. This problem arises when items are
appended to a database. They focus on designing efficient algorithms in order to
avoid re-scanning the entire database when new items appear. They address the
addition of items to existing transactions, and the addition of new transactions.
In the absence of new transactions, the previously computed frequent patterns
will still be frequent in the new database, and the problem consists in detecting
the occurrences of new frequent patterns. In the presence of new transactions,
however, old frequent patterns may or may not be frequent in the incremental
database. Recently, Huang et al. [6] address the problem of detecting frequent
patterns valid during a defined period of interest, called POI. For example, if new
items appear, and no new transactions were generated, old frequent sequences
would still be frequent.

1.2 Contributions

In addition to the problem of item evolution and availability commented above,
we believe that other scenarios have been overlooked so far. For example, when
regular expressions (from now on, RE) are used to prune non-interesting pat-
terns, we may ask ourselves if a user would be interested not only in the support
of a sequence, but in the support of an RE as a whole. Let us analyze a sim-
ple example. The expression (A|B).C is satisfied by sequences like A.C or B.C.
Even though the semantics of this RE suggests that both of them are equally
interesting to the user, if neither of them verifies a minimum support (although
together they do), they would not be retrieved. The problem gets more involved
if we are interested in categorical sequential patterns, i.e., patterns like Sci-
ence.Sports, where Science and Sports are, for instance, categories of Web pages
in an ontology (in SPIRIT [4, 5], the alphabet of the REs is composed only of
item identifiers).

In light of the above, we propose to revise, in different ways, the classic notion
of support for sequential pattern mining. We introduce the concept of temporal
support of regular expressions, intuitively defined as the number of sequences
satisfying a target pattern, out of the total number of sequences that could
have possibly matched such pattern, where the pattern is defined as a RE over
complex items. We first introduce the data model (Section 2), then we present
and discuss a theoretical framework for this novel notion of support, and an
RE-based language (Sections 3 and 4). We conclude in Section 5.

4

OID Items

S1

[(t, ‘08/04/2008 14:05’), (ID,‘B’),
(catName,‘WebPage’),(filter,‘A,C’),(keyword,‘Game’)]
...
[(t,‘08/08/2008 17:10’), (ID,‘A’),
(catName,‘WebPage’),(filter,‘’),(keyword,‘Computer’)]

S2

[(t,‘08/03/2008 11:00’), (ID,‘C’),
(catName,‘WebPage’),(filter,‘A’),(keyword,‘Computer’)]
...
[(t,‘08/19/2008 09:00’), (ID,‘A’),
(catName,‘WebPage’),(filter,‘’),(keyword,‘Computer’)]

Fig. 3. An instance of a Table of Items (ToI)

2 Data Model

Depending on the application domain, the items to be mined can be character-
ized by different attributes. Throughout the paper we refer to an example where
each Web page is characterized by the following attributes: (a) catName, which
represents the name of the category of the item3; (b) keyword, which summa-
rizes the page contents; (c) filter, specifying a list of URLs that cannot appear
together with the URL of the item. Finally, ID is a distinguished, mandatory
attribute, in this case containing the URL that univocally identifies a Web page.
For each category there are occurrences. In our example, we work with three
URLs, for simplicity referred to as A, B, and C. We denote set of instances a
set of occurrences of a collection of categories. The items to be mined are events
defined over some category occurrence at some instant. These items are stored
in a so-called Table of Items (ToI). In Figure 3 we show a ToI for our running
example.

2.1 Introducing Temporality

In many real-world applications, assuming that the values of attributes for a
category occurrence do not change (or even that a category occurrence spans over
the complete lifespan of the dataset) could not be realistic. Thus, we introduce
the time dimension into our data model. We do this in the usual way, namely,
timestamping category occurrences. We assume that the category schema is
constant across time, i.e., the attributes of a category are the same throughout
the lifespan of the category.

Definition 1. [Category Schema] We have a set of attribute names A, and a set
of identifier names I. Each attribute a ∈ A is associated with a set of values in
dom(a), and each identifier ID ∈ I is associated with a set of values in dom(ID).

3 Although in our running example we have only one category as an instance of cat-
Name, there are other applications where this is not the case. For example, in a
trajectory database application analyzing tourist itineraries, items could be catego-
rized as hotels, restaurants, or tourist attractions, to name a few ones. Each one of
them could be characterized by different attributes. For instance, the kind of food
offered by a restaurant could be an attribute of the category restaurant.

5

A category schema S is a tuple (ID ,A), where ID ∈ I is a distinguished
attribute denoted identifier, and A is a set of attributes in A. Without loss of
generality, and for simplicity, in what follows we consider the set A ordered.
Thus, S has the form [ID , attr1, ..., attrn]. ut

Example 1. In our running example we have only one category, representing Web
pages with schema [ID , catName, filter , keyword]. ut

We consider the time as a new sort (domain) in our model. Toman [15],
showed the equivalence between abstract and concrete temporal databases. The
former are point-based structures, independent from the actual implementation
of the database. The latter contains efficient interval-based encodings of the for-
mer. The author also showed that there is an efficient translation from abstract
to concrete temporal databases. Formally, if T is a set, and < a discrete lin-
ear order without endpoints on T, the structure TP = (T, <) is the Point-based
Temporal Domain. The elements in the carrier of T model the individual time
instants, and the linear order < models the succession of time. We consider the
set T to be N (standing for the natural numbers). We can map individual time
instants t ∈ N to calendar instants, assuming a reference point and a granu-
larity. For example, if the reference point is January 1, 1970 00:00 GMT, and
granularity “minute”, t=1440 represents 1440 minutes from that date, i.e., Jan-
uary 2, 1970 00:00 GMT. In what follows we use calendar time, and granularity
“minute”. In temporal databases, the concepts of valid and transaction times
refer, respectively, to the instants when data is valid in the real world, and when
data is recorded in the database [13]. We assume valid time support in this paper
for the categories, and transaction time support for the items (see Definitions 2
and 6 below).

Definition 2. [Category Occurrence] Given a category schema S , a category
occurrence for S is the tuple [〈ID, id〉,P , t], where ID is the ID attribute of
Definition 1 above, id ∈ dom(ID), P is the structure [〈attr1, v1〉..., 〈attrn, vn〉],
t is a point in the temporal domain TP , and: (a) attri = A(i) in S (remember that
A is considered ordered); (b) vi ∈ dom(attri),∀i, i = 1..n; (c) All the occurrences
of the same category have the same set of attributes, at any given time; (d) At
any instant t, the pair 〈ID , t〉 is unique for a category occurrence, meaning that
no two occurrences of the same category can have the same value for ID at
the same time; (e) t is the time instant when the information in the category
occurrence is valid.

Definition 3. [Category Instance] A set of occurrences of the same category
is denoted a category instance. We extend the fourth condition in Definition 2
to hold for the whole set: no two occurrences of categories in the set can have
the same value for ID at the same instant t (in other words, the pair (ID, t) is
unique for the whole instance). ut

Remark 1. In what follows, for clarity, we assume that attr1 stands for ID . Thus,
a category occurrence is the set of pairs [〈 attr1,v1〉,..., ... , 〈 attrn,vn〉, t]. ut

6

Category Instance

Web Page

[(ID,‘A’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Books’), ‘11/29/2007 15:45’]
[(ID,‘A’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Books’), ‘11/29/2007 15:46’]
...
[(ID,‘A’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Books’), ‘11/29/2007 17:10’]
[(ID,‘A’), (catName,‘WebPage’), (filter,‘P’), (keyword,‘Computers’), ‘11/29/2007 18:00’]
[(ID,‘A’), (catName,‘WebPage’), (filter,‘P’), (keyword,‘Computers’), ‘11/29/2007 18:01’]
...
[(ID,‘A’), (catName,‘WebPage’), (filter,‘P’), (keyword,‘Computers’), ‘11/29/2007 19:30’]
...
[(ID,‘M’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Games’), ‘11/29/2007 18:50’]
[(ID,‘M’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Games’), ‘11/29/2007 18:51’]
...
[(ID,‘M’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Games’), ‘11/29/2007 20:00’]
...

Fig. 4. Category occurrences, granularity “minute” (Point-based).

Since point-based and interval-based representations are equivalent, in this
paper we work with the latter. One of the reasons for this is that in an actual
implementation, we work with intervals. In our encoding, an event is represented
by an interval whose endpoints are the same. We need to define this encoding in
a precise way. The following definition states the condition that a set of tuples
must satisfy in order to belong to the same group.

Definition 4. [Interval Encoding] Let G be a time granularity, and g a time
unit for G (e.g., one minute). Given a set of k ≥ 0 category occurrences,
[〈attr1, v1〉, . . . , 〈attrn, vn〉, t1], [〈attr1, v1〉, . . . , 〈attrn, vn〉, t2], . . . , [〈attr1, v1〉 . . .
〈attrn, vn〉, tk], if ∀ i, i = 1..k − 1, it holds that ti+1 = ti + g, we encode all these
occurrences in a single tuple [〈attr1, v1〉, . . . , 〈attrn, vn〉, [t1, tk]]. ut

Example 2. Figure 4 shows a set of (point-based) temporal category occurrences
for the Web page category in our running example. Figure 5 shows the corre-
sponding interval-encoded representation (see below for details).

Encoding a set of tuples requires these tuples to be consecutive over the
granularity selected. Thus, if the granularity is “minute”, the tuples [(ID, ‘A’),
(keyword, ‘computer’), (filter, ‘’), ‘12/12/2000 12:31’)], and [(ID, ‘A’), (keyword,
‘computer’), (filter, ‘’), ‘12/12/2000 12:33’)], cannot be included together in the
same group, since there is a two-minute gap between them. They must be en-
coded into two intervals. ut

Definition 5. [Encoded Category Occurrence] Given a category instance C with
time granularity G, and a partition P of C such that the number of sets pi ∈ P is
minimal. Each set pi is obtained encoding the occurrences in C as in Definition 4,
i.e., each pi contains a set of tuples that can be encoded into a single tuple. Thus,
associated to pi there is a tuple tpi

= (〈ID, id〉, 〈attr1, v1〉, . . . 〈attrn, vn〉, tv, te),
where (a) ID, attr1, ..., attrn are the attributes of the occurrences in pi; (b) id,
v1, vn are the values for the attributes in (a); (c) ts is the smallest t of the
occurrences in pi; (d) te is the largest t of the occurrences in pi. We denote tpi

7

ecoA1 [(ID,‘A’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Books’), [‘11/29/2007 15:45’, ‘11/29/2007 17:10’]]
ecoA2 [(ID,‘A’), (catName,‘WebPage’), (filter,‘P’), (keyword,‘Computers’), [‘11/29/2007 18:00’, ‘11/29/2007 19:30’]]
ecoC1 [(ID,‘C’), (catName,‘WebPage’), (filter,‘A’), (keyword,‘Books’), [‘11/29/2007 16:00’, ‘11/29/2007 16:45’]]
ecoC2 [(ID,‘C’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Games’), [‘11/29/2007 18:00’, ‘11/29/2007 18:50’]]
ecoC3 [(ID,‘C’), (catName,‘WebPage’), (filter,‘M’), (keyword,‘Games’), [‘11/29/2007 19:30’, ‘Now’]]
ecoM1 [(ID,‘M’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Games’), [‘11/29/2007 18:50’, ‘11/29/2007 20:00’]]
ecoP1 [(ID,‘P’), (catName,‘WebPage’), (filter,‘’), (keyword,‘Computers’), [‘11/29/2007 16:45’, ‘11/29/2007 18:50’]]
ecoP2 [(ID,‘P’), (catName,‘WebPage’), (filter,‘A’), (keyword,‘Computers’), [‘11/29/2007 18:51’, ‘Now’]]

Fig. 5. Encoded Category Occurrences for the running example (granularity “minute”).

an encoded category occurrence (ECO) of the set of occurrences in pi. Given an
ECO ei we denote Interval(ei) its associated interval [ts, te]. ut

Example 3. Figure 5 shows a set of eight ECOs encoding the category instance
of Figure 4. The Web page with ID=‘P’ (not included in Figure 4) had no filter
when it was created until November 29th, 2007 at 18:50, when the attribute filter
was updated. Also, the Web page with ID=‘A’ has changed: attribute keyword
was updated from ‘Books’ to ‘Computers’, and also filter was updated. Note
that there is an interval when this page was not available. After these changes,
the page was set off-line at 7:30PM on November 29th, 2007. ut

Adding a time instant to an ECO, produces an item.

Definition 6 (Item). Let eo = (〈ID, v〉, 〈attr1, v1〉, . . . 〈attrn, vn〉, ts, te) be an
ECO for some category instance. An item I associated to eo is the set: (〈t, vt〉, 〈ID,
v〉, 〈attr1, v1〉, . . . 〈attrn, vn〉, ts, te〉), such that vt ∈ [ts, te] holds. We denote t the
transaction time of the item. ut

3 A Theory for Support Count

In Section 2 we defined the formal data model we use in the remainder of the
paper to build a theory that can help to provide insight into the notion of
support. To begin with, over the elements introduced in Definition 1 through
6, we build a simple language, based on sequences of constraints, that we use
later to elaborate the concept of support of regular expressions. In short, this
language expresses paths of constraints. We define the temporal support of these
paths, denoted sequential expressions (SE). SEs are at the cornerstone of our
theory. In the next section, we define a regular language that produces SEs, and
introduce the notion of temporal support of regular expressions.

8

Definition 7. [Terms] There exist no others terms than the following ones: (a)
Constant: a literal enclosed by simple quotes; (b) Non temporal Attribute: an at-
tribute in the category schema (e.g. filter, url). (c) Temporal Attribute: t, the tem-
poral attribute of and item (see Definition 6); (d) Function of n arguments: Let fn

be a function symbol, the expression fn(attribute, ‘ct1’, ‘ct2’, ..., ‘ctn−1’), n ≥ 1, is
a function where the first parameter is an attribute (temporal or non-temporal),
and all the other ones are constants. ut
Definition 8. [Atoms] Let C, A and F be a set of constants, temporal and non
temporal attributes and functions, respectively. The expression term1 = term2 is
an atom, where term1 ∈ A ∪ F, term2 ∈ C, and ‘ = ’ is the equality symbol. ut
Definition 9. [Formula] We define recursively a formula by the following rules:
(a) An atom is a formula; (b) If F1 and F2 are formulas then F1 ∧ F2 is a
formula. (c) Nothing else is a formula. ut
Definition 10. [Constraint and Formula of a Constraint] A constraint is a for-
mula enclosed in squared brackets. Given a constraint C = [F], we denote F(C)
the formula of C. ut
Definition 11. [Sequential Expression] A Sequential Expression (SE) of length
n is an ordered list of n sub-expressions SE1.SE2....SEn, where each SEi is a
constraint, ∀i, i = 1..n ut
Example 4. The sequential expression of length two [ID = ‘A’ ∧ filter =
‘B, C’].[ID = ‘X’] is composed of two constraints.

We need to define some operations between intervals. Given two intervals
Ii = [tsi, tei] and Ij = [tsj , tej] we say that Ii follows Ij if tsi ≥ tej . Saying that
an interval Ii follows another interval Ij , is equivalent to say that Ii is either
after Ij or Ii is met-by Ij in terms of Allen’s Interval Algebra [2].

Example 5. In Figure 5 we can see that Interval(ecoC3) follows Interval(ecoA2)
and Interval(ecoC2). We can also see that Interval(ecoC3) does not follow
Interval(ecoM1).

Definition 12. [Satisfability of a Constraint] Given a constraint C and an ECO
E, we say that E satisfies C if one of the following conditions hold: (a) If F(C)
is an atom of the form attr = ‘ct’ where attr is an attribute in any of the
category occurrences in E, ‘ct ′ is a constant in dom(attr), and the instantiation
of attr with its value in E, equals ‘ct ′. (b) If F(C) is an atom of the form
fn(attr , ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = ‘ct’, where attr is an attribute in any of the
category occurrences in E, ‘ct ′ is a constant in dom(attr), and the instantiation
of attr in fn with its value in E, makes the equality true. (c) If F(C) is an
atom of the form t = ‘ct’ where t is a temporal attribute, ‘ct’ is a temporal
constant in the temporal domain, with granularity G, and ‘ct’ ∈ Interval(E).
(d) If F(C) is an atom of the form fn(t, ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = ‘ct’, where t
is a temporal attribute, ‘ct’ is a temporal constant in the temporal domain with
some granularity G, and ∃tu ∈ Interval(E) the equality is true. (e) If F(C) is a
formula F1 ∧ F2, and F1 and F2 are satisfied by E.

9

OID Items

Session1

[(t,‘11/29/2007 16:30’), (ID,‘C’)] Ã ecoC1
[(t,‘11/29/2007 17:00’), (ID,‘P’)] Ã ecoP1
[(t,‘11/29/2007 19:45’), (ID,‘C’),] Ã ecoC3

Session2

[(t,‘11/29/2007 18:20’), (ID,‘C’)] Ã ecoC2
[(t,‘11/29/2007 18:50’), (ID,‘P’)] Ã ecoP1
[(t,‘11/29/2007 18:51’), (ID,‘M’)] Ã ecoM1

Session3

[(t,‘11/29/2007 19:31’), (ID,‘C’)] Ã ecoC3
[(t,‘11/29/2007 19:32’), (ID,‘M’)] Ã ecoM1
[(t,‘11/29/2007 20:00’), (ID,‘C’)] Ã ecoC3

Fig. 6. An instance of the Normalized ToI

Definition 13. [Satisfability of SE] Let EO = (EO1, EO2, ...EOn) be a list of
ECOs such that ∀ i, j,
i < j ⇒ Interval(Ei) does not follow Interval(Ej). We denote EO a t-ordered
list of ECOs. A sequential expression SE=SE1.SE2....SEn is satisfied by EO if
EOi satisfies SEi, ∀ i, i = 1..n. We denote SLk

(SE) the set composed of the n
lists of ECOs that satisfy an SE of length k. ut

Example 6. Let us analyze which ordered lists of ECOs in Figure 5 satisfy the
SE [rollup(t, ‘hour ’, ‘Time’) = ‘18’].[keyword = ‘Books’]. Here, rollup is the usual
rollup function [3], that indicates how a member of an OLAP hierarchy is ag-
gregated. The meaning is that the equality is true when t is instantiated with
a value that, in the Time dimension, rolls up to the value ‘18’ in the dimension
level hour. For example, [rollup(‘11/29/2007 18:52’, ‘hour ’, ‘Time’) = ‘18’].

The first constraint is satisfied by ecoA2, ecoC2, ecoM1, ecoP1 and ecoP2.
For all of them, there is a time instant within Interval(ecoi) that verifies the
rollup predicate. The second constraint is satisfied by ecoA1 and ecoC1. However,
given the temporal order, the only list of ECOs that satisfy the SE is: L1 =
{ecoP1, ecoA1}. In L1, [‘11/29/2007 16:45’, ‘12/29/2007 18:50’] (the interval of
ecoP1) does not follow [‘11/29/2007 15:45’, ‘12/29/2007 17:10’] (the interval of
ecoA1). ut

Definition 14. [ToI and Normalized ToI] Let I be a finite set of items. A Table
Of Items (ToI) for I is a table with schema T = (OID, Items), where Items
is the name of an attribute whose instances are items, and an instance of T
is a finite set of tuples of the form 〈Oj , ik〉 where ik ∈ I is an item associated
to the object Oj . Moreover, given 〈Oj , ik〉 and 〈Oj , im〉, two tuples correspond-
ing to the same object, and tk and tm the transaction times of the items, then
tk 6= tm holds. A normalized ToI is a database containing a table with schema
(OID, t, ID) (the Normalized ToI), and one table per category, each one with
schema (ID, attr1, ..., attrn, ts, te). ut

Figure 6 shows an instance of a normalized ToI where items are related to the
category instances of Figure 5. There are three sessions (sequences), Session1,
Session2 and Session3, each one with an associated list of items. The three
sessions clicked on URL C, but only Session1 would satisfy the constraint [ID =
‘C’ ∧ catName = ‘Books’] (see Figure 5).

10

Definition 15. [Temporal Matching of a S.E] Let SE be a sequential expres-
sion of length k, and a normalized ToI (from now on, nToI), with schema
(OID, t, ID). An object identified by OIDm temporally matches SE, if there exist
k tuples in nToI, 〈OIDm, t1, ID1〉, 〈OIDm, t2, ID2〉, . . . , 〈OIDm, tk, IDk〉, where
for at least one Lp ∈ SLk

(SE), Lp = (eco1, eco2, . . . , ecok), ti ∈ Interval(ecoi),
∀ i = 1..k. ut
Example 7. Definition 15 states that if there is a temporally ordered sequence
of k items such that all of their transaction times fall within the intervals of the
k ECOs that satisfy the expression, then, we have a temporal match.

With the category occurrences of Figure 5 and the instance of nToI depicted
in Figure 6, we analyze the sequential expression SE = [ID = ‘P’].[filter =
‘M’]. The ECOs that satisfy the first constraint are ecoP1 and ecoP2. The sec-
ond constraint is satisfied by ecoC3. Thus, the lists that satisfy SE are L1 =
{ecoP1, ecoC3} and L2 = {ecoP2, ecoC3}. The object Session1 temporally matches
SE, since there exist two different tuples in Session1 whose transaction times be-
long to Interval(ecoP1) and Interval(ecoC3), respectively. With a similar analy-
sis, Session2 does not match the SE. The ECO ecoC3 did not exist when the user
in this session clicked the last two URLs. Finally, Session3 temporally matches
SE, because the transaction time of [(t, ‘11/29/2007 19:32’), (ID,‘M’)] belongs to
the interval of ecoP2, and the transaction time of [(t, ‘11/29/2007 20:00’), (ID,‘C’)]
belongs to the interval of ecoC3. Intuitively, this means that the user of Session3

could have chosen the URL with ID=‘P’, which existed at the time she chose
the URL with ID=‘M’. ut

From Definition 15, it follows that if a list of ECOs does not satisfy a sequen-
tial expression SE, no object in the nToI can use this list to temporally match
SE. Thus, given that the lists in SLk

(SE) are computed over the category oc-
currences, which usually fit in main memory, unnecessary database scans can be
avoided.

Definition 16. [Temporal Satisfability of a Constraint] Given a constraint C
and a normalized ToI, with schema (OID, t, ID), we say that a tuple in nToI
µ = 〈OIDm, tm, IDm〉 temporally satisfies C if at least one of the following
conditions hold: (a) if F(C) is an atom of the form t = ‘ct’ where t is a term
for temporal attributes of items, ‘ct’ is a temporal constant in the temporal do-
main with some granularity and ‘ct’ = tm; (b) if F(C) is an atom of the form
fn(t, ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = ‘ct’, where t is a temporal attribute, ‘ct’ is a tem-
poral constant, and fn(tm, ‘ct1’, ‘ct2’, ..., ‘ctn−1’) = ‘ct’ ; (c) if F(C) does not
contain a temporal attribute; (d) if F(C) is a formula F1 ∧ F2 and F1 and F2
are satisfied by µ. ut
Definition 17. [Total Matching of a Sequential Expression] Given a sequential
expression SE=SE1.SE2...SEk of length k, and a normalized ToI with schema
(OID, t, ID), we say that an object identified by OIDm totally matches SE, if
there exists k different tuples µ1, . . . , µk in nToI, of the form µ1 = 〈OIDm, t1, ID1〉,
µ2 = 〈OIDm, t2, ID2〉,...,µk = 〈OIDm, tk, IDk〉, and there is at least one list

11

Lp = (eco1, eco2, ...ecok), Lp ∈ SLk
(SE), where the following conditions hold:

(a) ti ∈ Interval(ecoi), ∀ i, i = 1..k; (b) IDi is the identifier of the en-
coded category occurrence (ecoi), ∀ i, i = 1..k; (c) SEi is temporally satisfied by
µi, ∀ i, = 1..k. We denote each Lp a list of interest for SE. ut

Property 1. Given a sequential expression SE=SE1.SE2...SEk of length k, and
a normalized ToI T with schema (OID, t, ID). If an object OIDj in T does not
temporally match SE, then OIDj cannot totally match SE. ut

Property 2. Given a sequential expression SE=SE1.SE2...SEk of length k, and a
normalized ToI T with schema (OID, t, ID), such that there is an object OIDj

in T that totally matches SE, then OIDj temporally matches SE. ut

Example 8. Object Session1 in Example 7, totally matches SE, using the second
and third tuples, together with list L1. On the other hand, Session2 does not
totally match SE, since it does not temporally match the expression. Finally,
Session3 temporally matches SE, but it does not totally match it, because L2

does not satisfy the second condition in Definition 17. ut

Definition 18 (Temporal Support of SE). The temporal support of a se-
quential expression SE, denoted Ts(SE), is the quotient between the number of
different objects that totally match SE and the number of different objects that
temporally match SE, if the latter is different to zero. Otherwise Ts(SE) = 0.

ut

Definition 18 formalizes the intuition behind the concept of temporal support,
namely, counting only the sequences that could have potentially generated a
matching sequence, given the temporal availability of the category occurrences to
which an item in a sequence belong (these sequences are the ones that temporally
match a SE). Classic support count, instead, considers the whole number of
sequences in the database.

Example 9. In the example above Ts([ID = ‘P’].[filter = ‘M’]) = 0.5. The object
Session2 is not considered in the support count because when the user clicked the
Web page, it had not the possibility of selecting pages that satisfy the constraint.

ut

4 Temporal Support of Regular Expressions

Having defined the temporal support of a sequential expression, we now move
on to the general problem, i.e., defining the same concept for an RE. The data
model defined in Section 2, and the theory developed in Section 3, allows us
to define a language based on RE over constraints, that supports categorical
attributes. We start with a simple example. We wish to restrict the result of
an SPM algorithm to the sequences that match the following expressions: (a)
SE1=[keyword=‘Games’]; (b) SE2 = [keyword=‘Games’].[filter=‘’]; (c) SE3 =

12

[keyword=‘Games’].[filter=‘’].[filter=‘’]. For each SEi, i > 3, a condition [fil-
ter=‘’] is added. We are also interested in computing the temporal support of
these sequential expressions. Instead of computing each support in a separate
fashion, we may want to summarize these sequences in a single RE, namely:
[keyword = ‘Games’].([filter = ‘’])∗.

Definition 19. [R.E. over constraints] A regular expression over the constraints
of Definition 10, is an expression generated by the grammar

E ←− C | E|E | E? | E∗ | E+ | E.E | E | ε
where C is a constraint, ε is the symbol representing the empty expression,

‘ |’ means disjunction, ‘ .’ means concatenation, ‘ ?’ “zero or one occurrence”,
‘ + ’ “one or more occurrences”, and ‘ ∗ ’ “zero or more occurrences”. The
precedence is the usual one. ut
Property 3. Let L be the set of sequential expressions SEi produced by a RE R,
generated by the grammar of Definition 19. There is also a normalized ToI with
schema (OID, t, ID). If an object Oi in the nToI temporally or totally matches
any SE in L, Oi matches R, temporally or totally, respectively. ut

Property 3 follows from observing that [keyword=‘Games’].[filter=‘’]* could
be written: [keyword=‘Games’] | ([keyword=‘Games’].[filter=‘’]) | ([keyword=
‘Games’].[filter=‘’].[filter=‘’]) | ([keyword=‘Games’].[filter=‘’].[filter=‘’].[filter=‘’])
|

Reasoning along the same lines, since a regular expression over an alphabet
(in our case, constraints) denotes the language that is recognized by a Deter-
ministic Finite Automata (DFA), there exists a (possible infinite) set of strings
over the alphabet that this DFA accepts. Each of these strings (actually, strings
composed of constraints) matches our definition of SE. Then, we extend our
previous definition of temporal and total matching of SE, to RE, as follows.

Definition 20 (Temporal Matching of a RE). Given a regular expression
R generated by the grammar of Definition 19, and the DFA AR that accepts R.
There is also a normalized ToI with schema (OID, t, ID). We say that OIDm

temporally matches R, if there exists some n ∈ N such that there exists at
least one string of length n accepted by AR, and OIDm temporally matches this
string. ut
Definition 21 (Total Matching of a RE). Given a regular expression R
generated by the grammar of Definition 19, and the DFA AR that accepts R.
There is also a normalized ToI with schema (OID, t, ID). We say that OIDm

totally matches RE, if there exists some n ∈ N such that there is at least one
string of length n accepted by AR and OIDm totally matches this string. ut
Definition 22 (Temporal Support of a RE). The temporal support of a
regular expression R, denoted Tr(R), is the quotient between the number of dif-
ferent objects that totally match R and the number of different objects that tem-
porally match R, if the latter is different to zero. Otherwise Tr(R) = 0. ut

13

We use the example above to show how sequential expressions are sum-
marized using the language of Definition 19. We use the category occurrences
and the nToI shown in Figures 5 and 6, respectively. We first apply Defini-
tion 12 in order to check satisfability of the constraints in the expressions SE1

through SE3. ECOs ecoC1, ecoC2 and ecoC3 from Figure 5 satisfy the constraint
[keyword=‘Games’]. Analogously, the constraint [filter=‘’] is satisfied by ecoA1,
ecoC2, ecoM1 and ecoP1. Next, for each SE, we check satisfability applying Def-
inition 13. For SE1=[keyword=‘Games’] we obtain SL1(SE) = {L1 = {ecoC2},
L2 = {ecoC3}, L3 = {ecoM1}}. For SE2=[keyword=‘Games’].[filter=‘’] we have
SL2(SE) = {L1 = {ecoC2, ecoC2}, L2 = {ecoC2, ecoM1}, L3 = {ecoC2, ecoP1},
L4 = {ecoC3, ecoM1}, L5 = {ecoM1, ecoM1}. Note that, for example, the list
{ecoC2, ecoA1} does not satisfy SE2 because ecoC2 follows ecoA1. For SE3= [key-
word=‘Games’].[filter=‘’].[filter=‘’], we have SL3(SE) = {L1 = {ecoC2, ecoC2,
ecoC2}, {L2 = {ecoC2, ecoC2, ecoM1}, {L3 = {ecoC2, ecoC2, ecoP1}, L4 = {ecoC2,
ecoM1, ecoM1}, L5 = {ecoC2, ecoP1, ecoC2}, L6 = {ecoC2, ecoP1, ecoM1}, L7 =
{ecoC2, ecoP1, ecoP1}, L8 = {ecoC3, ecoM1, ecoM1}, L9 = {ecoM1, ecoM1, ecoM1}.
Also here, many lists are discarded. For instance, {ecoM1, ecoM1, ecoA1} does not
satisfy SE3 because ecoM1 follows ecoA1.

Now, we can compute the temporal support of each SE, applying Definitions
15 through 18. For SE1, from the third tuple in Session1, and L2 = {ecoC3},
we conclude that Session1 totally (and hence, temporally) matches SE1. From
the first tuple in Session2 and L1 = {ecoC2}, Session2 totally matches SE1.
From the first or third tuples in Session3, and L2 = {ecoC3}, Session3 totally
matches SE1. Finally, the temporal support of SE1 is 3/3 = 1.

In a similar way, we can conclude that the support of SE2 and SE3 are, re-
spectively, 1 and 1/2. Since no session has four tuples, it is not necessary to ana-
lyze a sequential expression of length four, like for instance [keyword=‘Games’].
[filter=‘’].[filter=‘’].[filter=‘’].

5 Future Work

We expect to extend our work in two ways. On the one hand, the theoretical
framework introduced here allows to think in a more general definition of sup-
port, with different semantics (not only temporal), that may enhance current
data mining tools. On the other hand, we will develop an optimized implemen-
tation of the algorithm that can support massive amounts of data.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the Int’l
Conference on Data Engineering (ICDE), 1995.

2. James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

3. L. Cabibbo and R. Torlone. Querying multidimensional databases. In Proceedings
DBPL’97, pages 253–269, East Park, Colorado, USA, 1997.

14

4. M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining
with regular expression constraints. In Proceedings of the 25th VLDB Conference,
1999.

5. M. N. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with
regular expression constraints. In IEEE Transactions on Knowledge and Data
Engineering, 2002.

6. J. Huang, C. Tseng, J. Ou, and M. Chen. A general model for sequential pattern
mining with a progressive database. IEEE Transactions on Knowledge and Data
Engineering, 20(9):1153–1167, 2008.

7. C. Lee, C. Lin, and M. Chen. On mining general temporal association rules in a
publication database. In ICDM, pages 337–344, 2001.

8. Y. Li, P. Ning, X.S. Wang, and S. Jajodia. Discovering calendar-based temporal
association rules. Data Knowl. Eng., 44(2):193–218, 2003.

9. F. Masseglia, P. Poncelet, and M. Teisseire. Incremental mining of sequential
patterns in large databases. Data Knowl. Eng., 46(1):97–121, 2003.

10. A. Ntoulas, J. Cho, and C. Olston. What’s new on the web?: the evolution of the
web from a search engine perspective. In WWW ’04, pages 1–12, New York, NY,
USA, 2004. ACM.

11. S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and
interactive sequence mining. In CIKM ’99, pages 251–258, New York, NY, USA,
1999. ACM.

12. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proc. of the Fifth Int’l Conference on Extending Database
Technology (EDBT), 1996.

13. A. Tansel, J. Clifford, and S. Gadia (eds.). Temporal Databases: Theory, Design
and Implementation. Benjamin/Cummings, 1993.

14. Abdullah Uz Tansel and Susan P. Imberman. Discovery of association rules in
temporal databases. In ITNG, pages 371–376, 2007.

15. David Toman. Point vs. interval-based query languages for temporal databases.
In PODS, pages 58–67, 1996.

16. I. H. Toroslu and M. Kantarcioglu. Mining cyclically repeated patterns. In DaWaK
’01, pages 83–92, London, UK, 2001. Springer-Verlag.

15

