TIME-FREQUENCY ANALYSIS AND PDE'S

ANITA TABACCO

ABSTRACT. We study the action on modulation spaces of Fourier multipliers with symbols $e^{i\mu(\xi)}$, for real-valued functions μ having unbounded second derivatives. We show that if μ satisfies the usual symbol estimates of order $\alpha \geq 2$, or if μ is a positively homogeneous function of degree α , the corresponding Fourier multiplier is bounded as an operator between the weighted modulation spaces $\mathcal{M}^{p,q}_{\delta}$ and $\mathcal{M}^{p,q}$, for every $1 \leq p, q \leq \infty$ and $\delta \geq d(\alpha - 2)|\frac{1}{p} - \frac{1}{2}|$. Here δ represents the loss of derivatives. The above threshold is shown to be sharp for all homogeneous functions μ whose Hessian matrix is non-degenerate at some point.

1. Introduction and statement of the results

The results presented here are part of a joint work with Fabio Nicola and Silvia Rivetti [9].

A Fourier multiplier is formally an operator of the type

$$\sigma(D)f(x) = \int_{\mathbb{D}^d} e^{2\pi i x \xi} \sigma(\xi) \hat{f}(\xi) d\xi,$$

where $\hat{f}(\xi) = \mathcal{F}f(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i x \xi} f(x) dx$ is the Fourier transform. The function σ is called symbol of the multiplier. Whereas the action of these operators on $L^2(\mathbb{R}^d)$ is clear (by Parseval's formula), their study in L^p , $p \neq 2$, for several classes of symbols is a fundamental topic in Harmonic Analysis, with important applications to partial differential equations.

In particular, unimodular Fourier multipliers are defined by symbols of the type $\sigma(\xi) = e^{i\mu(\xi)}$, for real-valued functions μ . They arise when solving the Cauchy problem for dispersive equations. For example, for the solution u(t,x) of the Cauchy problem

(1)
$$\begin{cases} i\partial_t u + |\Delta|^{\frac{\alpha}{2}} u = 0\\ u(0, x) = u_0(x), \end{cases}$$

 $(t,x) \in \mathbb{R} \times \mathbb{R}^d$, we have the formula $u(t,x) = \left(e^{it|2\pi D|^{\alpha}}u_0\right)(x)$. The cases $\alpha = 1,2,3$ are of particular interest because they correspond to the (half-)wave equation, the Schrödinger equation and (essentially) the Airy equation, respectively.

2000 Mathematics Subject Classification. 35S30, 47G30, 42C15.

Key words and phrases. Fourier multipliers, modulation spaces, short-time Fourier transform.

Unimodular Fourier multiplier generally do not preserve any Lebesgue space L^p , except for p=2. It is then natural to study boundedness properties on other function spaces arising in Fourier analysis. This was recently done in [1] for the modulation spaces $\mathcal{M}^{p,q}$, $1 \leq p, q \leq \infty$. These spaces were introduced by H. Feichtinger in 1980 (see [7]) and since then have found many applications in Time-frequency analysis, see e.g. Gröchenig's book [8] where the precise definition can be found. Here it suffices to observe that, for heuristic purposes, distributions in $\mathcal{M}^{p,q}$ may be regarded as functions which locally have the same regularity as a function in $\mathcal{F}L^q$ (the space of distributions whose Fourier transform is in L^q), but at infinity decay like a function in L^p .

Now, it was shown in [1], among other things, that symbols of the type $\sigma(\xi) = e^{i|\xi|^{\alpha}}$, with $0 \le \alpha \le 2$, give rise to bounded operators on all $\mathcal{M}^{p,q}$, $1 \le p,q \le \infty$. This can be rephrased by saying that the obstruction to the boundedness on L^p is just local in nature. Indeed if we keep the L^p decay but we measure the local regularity by any Fourier-Lebesgue space $\mathcal{F}L^q$ (which is of course preserved by unimodular Fourier multipliers) instead of L^p , boundedness is recaptured. Moreover, the conclusion extends to symbols $\sigma(\xi) = e^{i\mu(\xi)}$ where μ is a positively homogeneous function of degree $\alpha \in [0,2]$, smooth away from the origin, or even a smooth functions on \mathbb{R}^d whose derivatives of order ≥ 2 are bounded.

More generally, similar results also hold, when p=q, for a class of Fourier integral operators whose phases have bounded derivatives of order ≥ 2 , see [3, 6]. However for $p \neq q$ a loss of regularity or decay may then occur; see [5] for an analysis of this phenomenon.

Now, we fix the attention on multipliers with symbols $e^{i|\xi|^{\alpha}}$, with $\alpha > 2$. In this case one still expects boundedness, but with a loss of regularity, namely from $\mathcal{M}^{p,q}_{\delta}$ to $\mathcal{M}^{p,q}$, for any $\delta \geq \delta(p,q)$ sufficiently large (δ represents the loss of derivatives). Here $\mathcal{M}^{p,q}_{\delta} = \{f \in \mathcal{S}'(\mathbb{R}^d) : (1-\Delta)^{\delta/2}f \in \mathcal{M}^{p,q}\}$ is in fact a Sobolev-like space based on $\mathcal{M}^{p,q}$. Since, as we already observed, Fourier-Lebesgue spaces are trivially preserved by unimodular Fourier multipliers, the obstruction to the boundedness on $\mathcal{M}^{p,q}$ should be global in nature. As a consequence, the optimal threshold should depend on p only. In fact in [1, Theorem 16(b)] it was already proved that the multiplier $e^{i|D|^{\alpha}}$ is bounded from $\mathcal{M}^{p,q}_{\delta}$ to $\mathcal{M}^{p,q}$ for every $\delta > d\alpha \left| \frac{1}{2} - \frac{1}{p} \right|$. The proof relied on fine classical results about boundedness of wave multipliers on L^p , with loss of derivatives.

The main result we report is a refinement of [1, Theorem 16(b)], with a lower threshold, and can be stated as follows (we refer to [9] for more details and proofs). Let $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$, for $\xi \in \mathbb{R}^d$.

Theorem 1.1. Consider a function $\mu \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, real-valued, satisfying

(2)
$$|\partial^{\gamma}\mu(\xi)| \le C_{\gamma}\langle\xi\rangle^{\alpha-2}, \quad \forall |\gamma| \ge 2, \ \xi \in \mathbb{R}^d,$$

for some $\alpha \geq 2$. Then the multiplier

$$e^{i\mu(D)}f(x) := \int_{\mathbb{R}^d} e^{2\pi i x \xi} e^{i\mu(\xi)} \hat{f}(\xi) d\xi$$

is bounded as an operator from $\mathcal{M}^{p,q}_{\delta}$ to $\mathcal{M}^{p,q}$ for

(3)
$$\delta \ge d(\alpha - 2) \left| \frac{1}{p} - \frac{1}{2} \right|,$$

and every $1 \leq p, q \leq \infty$.

The same conclusion holds true if $\mu(\xi)$ is smooth for $\xi \neq 0$ only, and positively homogeneous of degree α .

In particular, for $\alpha = 2$, the threshold in (3) vanishes, and we recapture the above result about boundedness without loss of derivatives. Actually, the proof of Theorem 1.1 makes use of the known result for $\alpha = 2$, combined with a Littlewood-Paley decomposition of the frequency domain and the dilation properties of modulation spaces [10].

We also prove that the threshold in (3) is generally sharp. Most interesting, it is sharp for all homogeneous functions μ whose Hessian matrix is non-degenerate at some point. This highlights that the unboundedness on $\mathcal{M}^{p,q}$ is due to the presence of some curvature of the graph of μ . Also, this suggests an investigation of the optimal threshold in terms of the number of principal curvatures which are identically zero. More precisely, if at every point the Hessian matrix of μ has rank at most r, we expect the threshold to be $r(\alpha - 2) \left| \frac{1}{p} - \frac{1}{2} \right|$. We plan to study these issues in greater details in future.

Notice that the above negative result shows that the Cauchy problem (1) is not locally wellposed in any $\mathcal{M}^{p,q}$, if $p \neq 2$ and $\alpha > 2$. For positive results in this connection we refer to [1, 2, 4, 11] and the references therein.

REFERENCES

- [1] A. Bényi, K. Gröchenig, K.A. Okoudjou and L.G. Rogers. Unimodular Fourier multipliers for modulation spaces. *J. Funct. Anal.*, 246(2):366-384, 2007.
- [2] A. Bényi and K.A. Okoudjou. Local well-posedness of nonlinear dispersive equations on modulation spaces. Preprint April 2007, (available at ArXiv:0704.0833v1).
- [3] F. Concetti, G. Garello and J. Toft. Trace ideals for Fourier integral operators with non-smooth symbols II. *Preprint*, 2007. Available at ArXiv:0710.3834.
- [4] E. Cordero, F. Nicola. Some new Strichartz estimates for the Schrödinger equation. *J. Dif*ferential Equations, 245:1945-1974, 2008.
- [5] E. Cordero, F. Nicola. Boundedness of Fourier integral operators on modulation spaces. Preprint, 2008. Available at ArXiv:0807.2380.
- [6] E. Cordero, F. Nicola and L. Rodino. Time-frequency Analysis of Fourier Integral Operators. Preprint, 2007. Available at ArXiv:0710.3652v1.

- [7] H. G. Feichtinger. Modulation spaces on locally compact abelian groups. *Technical Report*, *University Vienna*, 1983, and also in *Wavelets and Their Applications*, M. Krishna, R. Radha, S. Thangavelu, editors, Allied Publishers, 99–140, 2003.
- [8] K. Gröchenig. Foundation of Time-Frequency Analysis. Birkhäuser, Boston MA, 2001.
- [9] F. Nicola, S. Rivetti and A. Tabacco. A Note on Unimodular Fourier Multipliers. Preprint, 2008.
- [10] M. Sugimoto, N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, *J. Funct. Anal.*, 248(1):79-106, 2007.
- [11] B. Wang, C. Huang. Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. *J. Differential Equations*, 239:213–250, 2007.

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24, 10129 TORINO, ITALY

 $E ext{-}mail\ address: anita.tabacco@polito.it}$