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Abstract. This note is concerned with the generalization of the con-
tinuous shearlet transform to higher dimensions. Similar to the two-
dimensional case, our approach is based on translations, anisotropic di-
lations and specific shear matrices. We show that the associated integral
transform again originates from a square-integrable representation of a
specific group, the full n-variate shearlet group. Moreover, we verify that
by applying the coorbit theory, canonical scales of smoothness spaces
and associated Banach frames can be derived. We also indicate how our
transform can be used to characterize singularities in signals.
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1 Introduction

Modern technology allows for easy creation, transmission and storage of huge
amounts of data. Confronted with a flood of data, such as internet traffic, or au-
dio and video applications, nowadays the key problem is to extract the relevant
information from these sets. To this end, usually the first step is to decompose
the signal with respect to suitable building blocks which are well–suited for the
specific application and allow a fast and efficient extraction. In this context,
one particular problem which is currently in the center of interest is the analy-
sis of directional information. Due to the bias to the coordinate axes, classical
approaches such as, e.g., wavelet or Gabor transforms are clearly not the best
choices, and hence new building blocks have to be developed. In recent stud-
ies, several approaches have been suggested such as ridgelets [2], curvelets [3],
contourlets [7], shearlets [14] and many others. For a general approach see also
[13]. Among all these approaches, the shearlet transform stands out because it
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is related to group theory, i.e., this transform can be derived from a square-
integrable representation π : S → U(L2(IR2)) of a certain group S, the so-called
shearlet group, see [5]. Therefore, in the context of the shearlet transform, all
the powerful tools of group representation theory can be exploited.

So far, the shearlet transform is well developed for problems in IR2. However,
for analyzing higher-dimensional data sets, there is clearly an urgent need for
further generalizations. This is exactly the concern of this paper.

To our best knowledge, it seems that there exist only few results in this
direction: some important progress has been achieved for the curvelet case in [1]
and for surfacelets in [15]. However, for the shearlet approach the question has
been completely open.

2 Multivariate Continuous Shearlet Transform

In this section, we introduce the shearlet transform on L2(IRn). This requires
the generalization of the two-dimensional parabolic dilation matrix and of the
shear matrix, respectively. Let In denote the (n, n)-identity matrix and 0n, resp.
1n the vectors with n entries 0, resp. 1. For a ∈ IR∗ := IR \ {0} and s ∈ IRn−1,
we set

Aa :=

(
a 0T

n−1

0n−1 sgn(a)|a| 1n In−1

)
and Ss :=

(
1 sT

0n−1 In−1

)
.

Lemma 1. The set IR∗ × IRn−1 × IRn endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−1/n s′, t+ SsAat
′)

is a locally compact group S which we call full shearlet group. The left and right
Haar measures on S are given by

dµl(a, s, t) =
1

|a|n+1
da ds dt and dµr(a, s, t) =

1
|a|

da ds dt.

In the following, we use only the left Haar measure and use the abbreviation
dµ = dµl. For f ∈ L2(IRn) we define

π(a, s, t)f(x) = fa,s,t(x) := |a| 1
2n−1f(A−1

a S−1
s (x− t)). (1)

It is easy to check that π : S → U(L2(IRn)) is a mapping from S into the group
U(L2(IRn)) of unitary operators on L2(IRn). Recall that a unitary representation
of a locally compact group G with the left Haar measure µ on a Hilbert space
H is a homomorphism π from G into the group of unitary operators U(H) on H
which is continuous with respect to the strong operator topology.

Lemma 2. The mapping π defined by (1) is a unitary representation of S.
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A nontrivial function ψ ∈ L2(IRn) is called admissible, if∫
S
|〈ψ, π(a, s, t)ψ〉|2dµ(a, s, t) <∞.

If π is irreducible and there exits at least one admissible function ψ ∈ L2(IRn),
then π is called square integrable. The following result shows that the unitary
representation π defined in (1) is square integrable.

Theorem 1. A function ψ ∈ L2(IRn) is admissible if and only if it fulfills the
admissibility condition

Cψ :=
∫
IRn

|ψ̂(ω)|2

|ω1|n
dω <∞. (2)

Then, for any f ∈ L2(IRn), the following equality holds true:∫
S
|〈f, ψa,s,t〉|2 dµ(a, s, t) = Cψ ‖f‖2L2(IRn). (3)

In particular, the unitary representation π is irreducible and hence square inte-
grable.

3 Multivariate Shearlet Coorbit Theory

In this section we want to establish a coorbit theory based on the square inte-
grable representation (1) of the shearlet group. We mainly follow the lines of [4].
For further information on coorbit space theory, the reader is referred to, e.g.
[8].

3.1 Shearlet Coorbit Spaces

We consider weight functions w(a, s, t) = w(a, s) that are locally integrable
with respect to a and s, i.e., w ∈ Lloc1 (IRn) and fulfill w ((a, s, t) ◦ (a′, s′, t′)) ≤
w(a, s, t)w(a′, s′, t′) and w(a, s, t) ≥ 1 for all (a, s, t), (a′, s′, t′) ∈ S. For 1 ≤ p <
∞, let

Lp,w(S) := {F measurable : ‖F‖Lp,w(S) :=
(∫
S
|F (g)|p w(a, s, t)pdµ(a, s, t)

)1/p

<∞},

and let L∞,w be defined with the usual modifications. In order to construct the
coorbit spaces related to the shearlet group we have to ensure that there exists
a function ψ ∈ L2(IRn) such that

SHψ(ψ) = 〈ψ, π(a, s, t)ψ〉 ∈ L1,w(S). (4)

Fortunately, it turns out that (4) can be satisfied in our setting.
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Theorem 2. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0] ∪
[a0, a1]) × Qb,where Qb := [−b1, b1] × · · · × [−bn−1, bn−1]. Then we have that
SHψ(ψ) ∈ L1,w(S), i.e.,

‖〈ψ, π(·)ψ〉‖L1,w(S) =
∫
S
|SHψ(ψ)(a, s, t)|w(a, s, t) dµ(a, s, t) <∞.

For ψ satisfying (4) we can consider the space

H1,w := {f ∈ L2(IRn) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (5)

with norm ‖f‖H1,w
:= ‖SHψf‖L1,w(S) and its anti-dual H∼1,w, the space of all

continuous conjugate-linear functionals on H1,w. The spaces H1,w and H∼1,w are
π-invariant Banach spaces with continuous embeddings H1,w ↪→ H ↪→ H∼1,w,
and their definition is independent of the shearlet ψ. Then the inner product on
L2(IRn)×L2(IRn) extends to a sesquilinear form on H∼1,w ×H1,w, therefore for
ψ ∈ H1,w and f ∈ H∼1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼1,w×H1,w

are well-defined. Now, for 1 ≤ p ≤ ∞, we define the shearlet coorbit spaces

SCp,w := {f ∈ H∼1,w : SHψ(f) ∈ Lp,w(S)} (6)

with norms ‖f‖SCp,w := ‖SHψf‖Lp,w(S). It holds that SC1,w = H1,w and SC1,1 =
L2(IRn).

3.2 Shearlet Banach Frames

The Feichtinger-Gröchenig theory provides us with a machinery to construct
atomic decompositions and Banach frames for our shearlet coorbit spaces SCp,w.
In a first step, we have to determine, for a compact neighborhood U of e ∈
S with non-void interior, so-called U–dense sets. A (countable) family X =
((a, s, t)λ)λ∈Λ in S is said to be U -dense if ∪λ∈Λ(a, s, t)λU = S, and separated
if for some compact neighborhood Q of e we have (ai, si, ti)Q ∩ (aj , sj , tj)Q =
∅, i 6= j, and relatively separated if X is a finite union of separated sets.

Lemma 3. Let U be a neighborhood of the identity in S, and let α > 1 and
β, γ > 0 be defined such that

[α
1
n−1, α

1
n )× [−β2 ,

β
2 )n−1 × [−γ2 ,

γ
2 )n ⊆ U. (7)

Then the sequence

{(εαj , βαj(1− 1
n )k, S

βαj(1− 1
n

)k
Aαjγm) : j ∈ IZ, k ∈ IZn−1,m ∈ IZn, ε ∈ {−1, 1}}

(8)
is U -dense and relatively separated.
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Next we define the U–oscillation as

oscU (a, s, t) := sup
u∈U
|SHψ(ψ)(u ◦ (a, s, t))− SHψ(ψ)(a, s, t)|. (9)

Then, the following decomposition theorem, which was proved in a general set-
ting in [8,9,10,11,12], says that discretizing the representation by means of an
U -dense set produces an atomic decomposition for SCp,w.

Theorem 3. Assume that the irreducible, unitary representation π is w-integrable
and let an appropriately normalized ψ ∈ L2(IRn) which fulfills

M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S) (10)

be given. Choose a neighborhood U of e so small that

‖ oscU ‖L1,w(S) < 1. (11)

Then for any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space
SCp,w has the following atomic decomposition: If f ∈ SCp,w, then

f =
∑
λ∈Λ

cλ(f)π((a, s, t)λ)ψ (12)

where the sequence of coefficients depends linearly on f and satisfies

‖(cλ(f))λ∈Λ‖`p,w
≤ C‖f‖SCp,w

(13)

with a constant C depending only on ψ and with `p,w being defined by

`p,w := {c = (cλ)λ∈Λ : ‖c‖`p,w
:= ‖cw‖`p <∞},

where w = (w((a, s, t)λ))λ∈Λ. Conversely, if (cλ(f))λ∈Λ ∈ `p,w, then
f =

∑
λ∈Λ cλπ((a, s, t)λ)ψ is in SCp,w and

‖f‖SCp,w ≤ C ′‖(cλ(f))λ∈Λ‖`p,w . (14)

Given such an atomic decomposition, the problem arises under which con-
ditions a function f is completely determined by its moments 〈f, π((a, s, t)λ)ψ〉
and how f can be reconstructed from these moments. This is answered by the
following theorem which establishes the existence of Banach frames.

Theorem 4. Impose the same assumptions as in Theorem 3. Choose a neigh-
borhood U of e such that

‖ oscU ‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). (15)

Then, for every U -dense and relatively separated family X = ((a, s, t)λ)λ∈Λ in
G the set {π((a, s, t)λ)ψ : λ ∈ Λ} is a Banach frame for SHp,w. This means that
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i) f ∈ SCp,w if and only if (〈f, π((a, s, t)λ)ψ〉H∼1,w×H1,w
)λ∈Λ ∈ `p,w;

ii) there exist two constants 0 < D ≤ D′ <∞ such that

D ‖f‖SCp,w ≤ ‖(〈f, π((a, s, t)λ)ψ〉H∼1,w×H1,w )λ∈Λ‖`p,w ≤ D′ ‖f‖SCp,w ; (16)

iii) there exists a bounded, linear reconstruction operator R from `p,w to SCp,w
such that
R
(

(〈f, ψ((a, s, t)λ)ψ〉H∼1,w×H1,w
)λ∈Λ

)
= f.

It can be checked that the conditions (10), (11) and (15) can be satisfied, see
[6] for details.

4 Analysis of Singularities

In this section, we deal with the decay of the shearlet transform at hyperplane
singularities. An (n −m)-dimensional hyperplane in IRn, 1 ≤ m ≤ n − 1, not
containing the x1-axis can be written w.l.o.g. asx1

...
xm


︸ ︷︷ ︸
xA

+ P

xm+1

...
xn


︸ ︷︷ ︸

xE

=

0
...
0

 , P :=

p
T
1
...
pT
m

 ∈ IRm,n−m.

Then we obtain for
νm := δ(xA + PxE)

with the Delta distribution δ that

ν̂m(ω) =
∫
IRn

δ(xA + PxE)e−2πi(〈xA,ωA〉+〈xE ,ωE〉) dx

=
∫
IRn−m

e−2πi(−〈PxE ,ωA〉+〈xE ,ωE〉) dxE

= δ(ωE − PTωA). (17)

The following theorem describes the decay of the shearlet transform at hyper-
plane singularities. We use the notation SHψf(a, s, t) ∼ |a|r as a → 0, if there
exist constants 0 < c ≤ C <∞ such that

c|a|r ≤ SHψf(a, s, t) ≤ C|a|r as a→ 0.

Theorem 5. Let ψ ∈ L2(IRn) be a shearlet satisfying ψ̂ ∈ C∞(IRn). Assume
further that ψ̂(ω) = ψ̂1(ω1)ψ̂2(ω̃/ω1), where supp ψ̂1 ∈ [−a1,−a0] ∪ [a0, a1] for
some a1 > a0 ≥ α > 0 and supp ψ̂2 ∈ Qb. If

(sm, . . . , sn−1) = (−1, s1, . . . , sm−1)P and (t1, . . . , tm) = −(tm+1, . . . , tn)P T,
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then
SHψνm(a, s, t) ∼ |a|

1−2m
2n as a→ 0. (18)

Otherwise, the shearlet transform SHψνm decays rapidly as a→ 0.

Similar results can be derived for point singularities, see again [6] for details.
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