
Institut für Wirtschaftsinformatik der Universität Bern
Abteilung Informationsmanagement

Cases of
Software Services Design in Practice

Arbeitsbericht Nr. 216
2009-05

Susanne Patig

Die Arbeitsberichte des Institutes für Wirtschaftsinformatik stellen Teilergeb-
nisse aus laufenden Forschungsarbeiten dar; sie besitzen Charakter von
Werkstattberichten und Preprints, und dienen der wissenschaftlichen Diskus-
sion. Kritik zum Inhalt ist daher erwünscht und jederzeit willkommen. Alle
Rechte liegen bei den Autoren.

Dagstuhl Seminar Proceedings 09021
Software Service Engineering
http://drops.dagstuhl.de/opus/volltexte/2009/2047

 2

Cases of Software Service Design in Practice

Susanne Patig1

1 University of Bern, IWI, Engehaldenstrasse 8, CH-3012 Bern, Switzerland
susanne.patig@iwi.unibe.ch

Abstract. During the last years, several approaches for the design of software
services in service-oriented architectures (SOA) have been proposed. Often
these approaches are too rough or too academic to provide guidance for real
world SOA projects. Moreover, since the existing SOA design approaches are
often not sufficiently validated, their successfulness in practice can be doubted.
The research presented here aims at learning from successful SOA projects.
Two cases of such projects are described. In the cases similarities show up that
are distinct from existing SOA design approaches (mainly the purely academic
ones) and, thus, point to necessary enhancements of these approaches.

1 Motivation

Since the initiation of service-oriented architecture (SOA) in the 1990s, several
guidelines for SOA design have been published (see Section 2). For companies in-
tending to implement SOA, the mere diversity of design directions is confusing.
Moreover, it is often not really clear whether some published design approach results
from an academic effort, and, thus, does not necessarily work outside the scientific
clean room, or whether the approach represents ‘best practices’ of some number of
SOA projects (e.g., [1], [15]). Even in the latter case it can be questioned whether
domain-independent best practices of application software service design exist at all.
Additionally, most SOA design approaches are not validated (e.g., [1], [9]), only
validated by small examples (e.g., [13], [2]) or by ‘industrial experience’ (e.g., [1],
[4]), whose details naturally must remain opaque. In any case, validation is often not
reliable because it was done by the authors themselves and sometimes even in the
same setting from which the approach emerged. So, sound methodical support for the
design of software services in ‘real world’ application scenarios is hard to find.

Finally, probably none of the proposed SOA design approaches is complete and
universally correct. Improving these approaches requires knowledge about facets of
real SOA projects that are currently not covered or insufficiently solved.

In response to these doubts and questions, a case study was conducted to investi-
gate how companies design the service-oriented architecture underlying their applica-
tion systems; first results are presented here. Roughly, the case study tries to find out,
(1) which services have been design and implemented for a particular application
system or systems landscape (descriptive research objective), and (2) why have the
services been designed in a particular way (exploratory research objective)? Explora-
tory means that practically relevant software service design criteria and processes
should be discovered to possibly adapt the existing SOA design approaches.

 3

From the research objectives listed above, Section 3 derives the research design,
i.e., the plan for the investigation that links the data to be collected to the research
objectives [12]. The collected data currently consists of two cases that are presented
and compared in Section 4. The overall conclusion and the next steps in our research
can be found in Section 5.

2 Current Software Service Design Approaches

Basically, approaches to design software services for SOA fall into two groups (see
Fig. 1): principles-driven approaches and hierarchical ones. Hybrid approaches (e.g.,
[2], [7], and [6]) combine these groups.

Principle-driven software service design approaches are directly linked to the
heart of SOA: There is a common understanding that service-orientation is not pri-
marily tied to specific technologies, but to a set of principles that must be obeyed in
designing such architectures [3], [8]. The main principles are abstraction (services
hide information on technology and logic from the outside world), standardized con-
tract (services provide technical interfaces by which they can be accessed and which
keep to some contract definition standard), loose coupling (a service contract is inde-
pendent of the implementation of the service, and services are independent of each
other), cohesion (the functionality provided by a service is strongly related), reusabil-
ity (the logic encapsulated by a service is sufficiently generic for numerous usage
scenarios and consumers), autonomy (service exercise as much control as possible
over their runtime execution environment), statelessness (between consecutive ser-
vice calls, no information must be kept within the service) and discoverability (ser-
vice contracts contain meta data by which the services can be found and assessed).
Principle-driven approaches (e.g., [3]) provide guidelines (sometimes bundled in
patterns [4]) how to realize the SOA design principles – without defining and order-
ing the necessary steps. Additionally, hierarchical service design approaches in parts
involve SOA design principles (see below).

Hierarchical software service design approaches prescribe a series of steps from
some level of abstraction to a set of software services, either at the design stage (e.g.,
[7], [10], [13]) or including further stages of the service life cycle such as deploy-
ment, billing, execution and monitoring (e.g., [8], [1]). It can be distinguished be-
tween top-down approaches that proceed from abstract information at the business
level to the detailed technical levels of service design and implementation and bot-
tom-up approaches that increase the level of abstraction during design.

Common starting points for top-down software service design approaches are
business goals (e.g., [5]), functional business areas (e.g., [14]) or business processes
(e.g., [9], [7], [10], and [6]). Goals describe what should be achieved by a software
service, functional areas are sets of related tasks referring to, e.g., departments or
products, and business processes additionally consider the roles that perform these
tasks as well as the order of tasks (to derive service orchestrations [1], [8]). Some of
the top-down approaches rely on several types of business information or even link,
e.g., goals to functional areas and then to business processes [1].

Current bottom-up software service design approaches (e.g., [13]) try to achieve
service-orientation by wrapping existing application systems. They use reverse engi-

 4

neering techniques such as clustering to identify cohesive components, which form
service candidates.

The direction top-down vs. bottom-up mainly refers to the identification of service
candidates. Often these initial candidates are refined before they are specified. The
following refinement steps can be found in both top-down and bottom-up approaches:

• Grouping: Fine-grained services that have some kind of logical affinity (in terms
of, e.g., functions or communication [8]) are grouped into more coarse-grained
services. Grouping is unavoidable for bottom-up approaches. In top-down ap-
proaches, it guarantees high cohesion, loose coupling and the autonomy of services
(e.g., [1], [10], [2]).

• Verification: Software services are checked for their conformance to the SOA
design principles and adapted if necessary (e.g., [7], [2]).

In contrast to these common steps, only top-down approaches require asset analysis:
It maps the identified and refined services either to existing application systems that
can provide these services or to service implementation projects [2], [1], [7], [8].

The final step of service specification is always necessary. It defines the service in-
terface (operations and their signatures, given by message types for inbound and
outbound messages) and the conversations between services [1], [2], [14], [8]. Ser-
vice specification aims, once more, for loose coupling, high cohesion, reusability and
standardization. Fig. 1 summarizes the existing approaches to software service de-
sign. For the hierarchical approaches, the superset of proposed steps is shown.

Principle-Driven Approaches Hierarchical Approaches

Service Identification
Top-Down Bottom-Up
Goals Functional Areas Processes Existing Applications
Service Refinement

Service Grouping
Service Verification

⎯ (no steps)
Design to:
Abstraction, standardized con-
tract, loose coupling, cohesion,
reusability, autonomy, state-
lessness, discoverability

Asset Analysis
Service Specification

Fig. 1: Design Steps in Current Software Service Design Approaches

3 Research Design

Since the challenges of software service design result from the complexity of the
underlying application context, the research design must consider real-life scenarios
where companies have developed services-oriented solutions (application systems or
system landscapes). When the boundaries between the phenomenon to be observed
and its context are not evident, case studies are an appropriate research strategy [11].
A case study is a qualitative empirical investigation of contemporary phenomena
within their real-life context without the possibility to control the situation [12].

 5

To increase the external validity (generalizability) of this research, a multiple-case
study is conducted where conclusions are drawn from a group of cases, which repre-
sent a variety of situations [12]. Once a phenomenon has been shown to occur in two
to three cases, it can be generalized to develop some general explanation [11]. Then,
further cases can be selected that either lead to contrasting results for predictable
reasons or that state more precisely the conditions under which the observed phe-
nomenon occurs [11]. This paper presents the first part of the research, namely two
cases that form the basis for a generalization of software service design in practice.

The research objectives directly lead to the data to be collected: A case in the sense
of this investigation is any real-life (as opposed to academic) project where SOA is
realized for some application software by implementing software services. This case
definition excludes pure SOA middleware projects from the investigation as well as
projects where services are not yet implemented or only composed out of existing
ones. To count as ‘service-oriented’, a system’s architecture must consist of physi-
cally independent software packages that (1) provide well-defined functions by stan-
dardized interfaces in a discoverable way and (2) that primarily communicate via
message exchange [3]. Though not presupposed by the definition of service-
orientation [3], web services are currently the predominant implementation technol-
ogy. For that reason the comparability of the cases is guaranteed by requiring that at
least some of the service interfaces are specified by the Web Services Description
Language (WSDL).

The phenomena to be observed within each case are the software services and the
process of their design. A software service is defined by its interface, which groups
operations. Each operation has a signature consisting of the types of the inbound and
outbound messages as well as optional information on conversations. A service de-
sign process usually comprises phases in some chronology and criteria for service
design.

The context of the phenomena to be investigated includes all information that po-
tentially influences SOA design, namely:

• General context: the company, its branch, organization, IT department (size and
experience) and existing systems landscape

• Project context: SOA motivation, project size and duration

• Requirements context: needed functionality, quality characteristics as well as tech-
nical or organizational constraints

• Development context: degrees of freedom (descendent from green-field develop-
ment over reengineering and migration to wrapping), service provisioning (only
within some controllable service inventory vs. to unknown consumers)

In the investigation presented here, the information on phenomena and context was
gathered by interviews (both face-to-face and by phone) with several persons repre-
senting distinct roles (e.g., software architect, software developer, project manager),
by document analysis (design guidelines, service specifications, models) as well as by
systems analysis (sample services). The final case report was checked for correctness
by the contact persons of the companies. Very condensed versions of the case reports
are contained in the following Section 4.

 6

4 Case Study
4.1 Case 1: Mail Order Company

Context: The case stems from a leading trading and services corporation; its 123
companies employ around 50,000 persons in nearly 20 countries. The IT department
has circa 230 employees for development. The application systems landscape consists
of 200 application systems and includes a central mainframe application that is re-
sponsible for, e.g., customer data management, invoicing and order picking. Since the
mainframe application was written in assembly language (current in-house software
development uses Java and J2EE), it should be replaced by a new application system.

In 2002/2003 it was decided to base reengineering of the mainframe application on
SOA for two reasons: First, SOA is able to cope with the unavoidable heterogeneity
(in terms of functionality, technology, life cycle and controllability) of the corpora-
tion’s systems landscape, which is a consequence of continuous acquisitions of com-
panies. Secondly, SOA increases the flexibility to react to new requirements such as
seasonal business (Christmas etc.), promotions and changing legal regulations.

The new service-oriented application system should cover the functionality to
manage customer orders (i.e., order management in the narrow sense of the word,
stock management, customer data management, invoicing and order picking), which
is currently covered by several application systems including the mainframe. The
consumers of the intended services are several types of clients (e.g., call center cli-
ents, web shop clients B2C and B2B) that are mostly under the control of the corpora-
tion. Especially the management of customer data is subject to strict security restric-
tions, and the web shop client for consumers (B2C) is performance-sensitive.

The service design process, summarized in Fig. 2 using the Business Process
Modeling Notation (BPMN), is hybrid: Top-down, business processes and their sub-
processes are identified. A business process is defined as a set of logically related
activities that are chronologically ordered, started by events and lead to results. For
IT-supported business (sub-) processes, use cases are derived. A use case (e.g., ‘cre-
ate order’) is an interaction sequence between a role and a software system to solve
some business task. Use cases are modeled as UML activity diagrams. Indivisible
(atomic) interaction sequences within a use case that have a business goal are called
application functions (e.g., ‘find shipment with items’). Application functions are
candidate application services.

Simultaneously, object-oriented analysis is performed bottom-up: First, domain
classes are identified, i.e., application-independent objects of the real world with
attributes and functionality (e.g., ‘article’ or ‘order’). Then, from the domain classes,
analysis classes are derived that specialize the domain class within the context of a
particular application system. For example, ‘stocked article’ and ‘orderable article’
are analysis classes of the domain class ‘article’. Each method of an analysis class
(e.g., ‘create’, ‘release’, ‘cancel’) corresponds to an application function, and an ap-
plication function can be realized by one or more methods of an analysis class.

Application services (e.g., GetShipmentWithItems or DeliveryCondition-
Operations – changing the type of the delivery to ‘urgent’ or specifying the deliv-
ery address) are the interfaces of software components that provide methods to realize
application functions. They result from candidate application services by applying
design rules. These rules comprise the SOA design principles ‘abstraction’ and ‘state-

 7

lessness’ as well as the requirement that an application service should correspond to
the smallest application function. The last requirement leads, for example, to a sepa-
ration between the application services CreateCustomer, which, among others,
includes name and address, and ChangeCustomerAddress.

Subsequently, the designed services are evaluated by the SOA design principle
‘reusability’ and the criteria ‘similarity’ and ‘stability’. Similarity means that existing
services must be extended if they provide at least 50 % of the functionality of some
new application service. Stability calls for the separation of unstable application func-
tions (e.g., country-specific ones, known from domain experience) from stable ones.

So far, around 250 web services have been designed and implemented within a
custom-made J2EE framework; execution partly relies on an adapted Oracle BEA
WebLogic Application Server1. The interfaces of many web services comprise 1 or 3
operations; the largest interface consists of 9 operations. According to their type,
80 % of the web services are application services, 20 % are technical ones supporting
software development (e.g., testing web services) or technical process execution (e.g.,
starting batches). Many application services are centered at analysis classes, e.g.,
CreateOrder or CreditOperations (all methods related to order items locked
after credit analysis). Additionally, separate application services have been defined
for application functions that cannot uniquely be assigned to a particular analysis
class. For example, the application service OrderDetailOperations groups all the
heterogeneous functions that are possible for constituents of an order, e.g., cancella-
tions or substitution of order items, priority adjustments or stock allocations.

B
us

in
es

s
Pr

oc
es

s
M

od
el

in
g

O
bj

ec
t-o

rie
nt

ed
 A

na
ly

si
s

Identify
Business

Processes

Identify
Sub-

processes

Subprocess
IT supported?

no

Define
Use Case

Identify
Domain
Classes

Identify
Analysis
Classes

Identify
Service

Candidates

Design
Services

Evaluate
Services

OK?

no

yes

Design
Rules

Evaluation
Criteria

Application
Function

yes

Fig. 2: Software Service Design Process in Case 1

4.2 Case 2: Oil- and Gas-Producing Company

Context: The company, headquartered in Norway, is one of the world’s largest crude
oil and gas suppliers with about 29,500 employees in 40 countries and more than 30

1 Even if not explicitly stated, all trademarks mentioned in this article are registered trademarks

of the respective companies.

 8

years domain experience. Its IT department has circa 800 employees. The data-
intensive application systems for the oil and gas core business (e.g., planning of lift-
ing and cargo, trading, managing contractual documents) have been developed in-
house in PL/SQL. Current software development relies on JAVA/J2EE for service
providing and on .NET for clients. In addition to the custom-made application sys-
tems, the company also uses standard software (SAP R/3) for domain-independent
business tasks such as accounting, invoicing and human resources. Moreover, the
systems landscape integrates external information providers (e.g., Reuters and pricing
agencies), information systems of business partners (e.g., ocean carriers) and the
quite independent partner application systems at the offshore field sites.

The SOA project was initiated in conjunction with reengineering: The oil and gas
core application systems, 20 years old, were to be replaced, since the old PL/SQL
code became increasingly difficult to maintain. Service-orientation was chosen as
architecture because of its openness and scalability, which makes it appropriate to
cope with the developments on the oil and gas market (e.g., increased activities in
new markets including China and India, more and smaller trades by private inves-
tors). Hence, some of the later service consumers cannot be anticipated.

Functionally the intended service-oriented solution should cover the core of the oil
and supplies ‘wet’ supply chain (transport by ship). Later the functional coverage was
extended to the gas core. Technological constraints resulted only from the systems
landscape. Software qualities (e.g., security, performance) were not an issue.

The first web services were implemented around 2001 in the gas domain. Before
(since around 1997), service-orientation had been realized in redesigning the PL/SQL
functions and their interfaces. The following explanations refer to software service
design principles and steps common to both situations.

Service design process (see Fig. 3): ‘Application services’ have been identified
both top-down and bottom up. Top-down development started from high-level busi-
ness processes that are collections of activities to achieve a business goal (e.g., ‘plan
transport’, ‘forecast replenishment’). These business processes were already available
due to governance requirements. In contrast to workflows, the activities in business
processes are ordered in strict sequence, and events only exist at the start or end of
the business process. Both business processes and workflows are modeled by BPMN.

Business processes within a function area (e.g., ‘shipping’, ‘trading’) are grouped
and analyzed to find similar activities, e.g., ‘update cargo’, ‘calculate price’ and ‘cal-
culate volume’. Abstractions of similar activities form candidate application services.

Perceiving similarities between activities is relieved by simultaneous bottom-up
service design starting from information concepts. An information concept, e.g., ‘line
item’ (a position of a deal), ‘cargo’ or ‘pricing formula’ (describes how the price for
an oil deal should be set), is strongly interdependent information with similar life
cycle. Information concepts reside on the logical level of system design, but may
correspond to business objects, which are input or output of activities. Common op-
erations on information concepts (often CRUD - create, retrieve, update, delete) form
one type of bottom-up candidate application service; another type are functions pro-
vided by existing application systems and gathered by reverse engineering. Informa-
tion concepts are modeled by UML class diagrams.

Application services such as UpdateCargo or CalculationEngineService
(for price and volume calculations) express the contribution of a software system to a

 9

business process on a logical level. They represent functions with so high interde-
pendencies (in terms of data usage, user interaction or business rules) that they are
normally implemented together.

After their identification, the candidate application services are refined (grouped or
split) by using additional information and the following heuristics:

• Application services are often required to handle start or end events of business
processes (e.g., ‘lifting program published’).

• An application service must refer to the same information concept in the same
context. For example, distinct loading operations and facilities are needed to han-
dle the information object ‘cargo’ in the context ‘ship’ or ‘dock’, respectively.
Hence, separate services must be defined.

• An application service must stick to the same business rules (for example, calcula-
tions and derivations).

Refinement leads to (grouped) functions (and their consumption of information) that
form the base of service specification. In the beginning of the SOA project, there
were no service specification guidelines - except for the principle that a service inter-
face should be small and contain only stable operations. However, identification and
refinement brought about three types of software services: (1) entity services (e.g.,
TradeService; mainly CRUD on information concepts corresponding to business
objects), (2) task services (execution of process activities; related to no or several
information concepts; e.g., CalculationEngineService) and (3) technology ser-
vices that are not related to business (and, thus, no application services), but needed
for the systems to operate (e.g., SmXDataService that provides a system with data
from a data base). Currently, specification guidelines for these service types are pre-
pared in the form of patterns.

At the time of writing more than 70 web services exist; each one has 3-5 opera-
tions. The web services run on IBM WebSphere Application Server 6.0 and commu-
nicate either through this platform or via Microsoft BizTalk. Non-web services ex-
change messages via data base read/write or the Oracle Messaging Gateway.

B
us

in
es

s
P

ro
ce

ss

M
od

el
in

g

In
fo

rm
at

io
n

M
od

el
in

g
Fu

nc
tio

n
M

od
el

in
g

IT

R
ea

liz
at

io
n

Fig. 3: Software Service Design Process in Case 2

 10

4.3 Comparison of the Cases

Both cases have a common context: (C1) They relate to SOA-based reengineering of
existing application systems in non-IT companies, which have comprehensive do-
main experience. (C2) Both projects started nearly at the same time. (C3) Web ser-
vices have been designed, implemented and deployed. (C4) Not all of the potential
consumers of these web services can be anticipated or controlled.

Concerning software services design, the following commonalities can be stated:
(D1) The service design processes were hybrid, i.e., both top-down and bottom-up.
(D2) Top-town design started from ‘business processes’, bottom-up design from
information objects. (D2a) Closer examination of the ‘business processes’ shows that
the most distinctive process characteristic, the control flow between activities, was
not considered. Instead, both companies used processes for a functional decomposi-
tion of their domains. Hence, top-down service design actually started from func-
tional areas (see Section 2). (D2b) The information objects underlying bottom-up
service design express main concepts of the domain (domain ontology) and were
gathered from the domain knowledge of experienced employees. (D2c) The predomi-
nant way of thinking was bottom-up, i.e., increasing abstraction by grouping func-
tions that refer to information objects or business tasks. (D3) Distinct types of ser-
vices have been designed whose functionality is related to either business (objects or
cross object tasks) or technology. (D4) The SOA design principles ‘reusability’, ‘co-
hesion’, ‘loose coupling’ and ‘abstraction’ were involved in either design process;
additionally, stability (of the operations that form an interface) was used as a criterion
for service design.

5 Conclusions and Future Work

This case study has shown that, in contrast to most of the proposed approaches, soft-
ware service design in practice is always hybrid, i.e., it proceeds both top-down (de-
creasing abstraction) and bottom-up (increasing abstraction). None of the hierarchical
approaches explicitly considered bottom-up service design starting from information
objects2, which is, however, common practice; some of the recently presented service
design patterns (e.g., ‘utility abstraction’, ‘entity abstraction’, ‘process abstraction’
[4]) follow this tack. As opposed to the academic top-down approaches, strict top-
down derivation of software services from business processes was not observed;
instead, processes were used for a functional decomposition of the domain (alike
[14]) - the control flow within processes was ignored. Thus, functions and not proc-
esses drive service design. Functionality and software quality are the only ‘goals’
considered during service design.

Finally, service design in practice ultimately leads to service layers, i.e., services
that can be grouped according to the type of functionality they provide (business
object services, business task services, technical services). Service layering as a spe-
cial form of grouping is neglected in purely academic approaches, but mentioned in
hierarchical service design approaches that originate from practice (e.g., [7], [6]) and
in principle-driven service design approaches [3]. Altogether, focusing on functions

2 Only very simple entity services are suggested in [6], [7].

 11

and information objects as well as layering services point to required extensions of
existing SOA design approaches.

Since both cases considered here stem from distinct branches, and the SOA pro-
jects were conducted independently of each other, the results are generalizable. To
increase the validity of the results, additional cases will be analyzed that have a
slightly different context (e.g., green-field development, development by IT compa-
nies). Differences in context can lead to contradicting results, which are needed to
specialize the conditions for particular service design processes and steps.

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47 (2008) 377 -396

2. Erradi, A., Anand, S., Kulkarni, N.: SOAF: An Architectural Framework for Service Defi-
nition and Realization. In: Proc. IEEE Int. Conf. on Service Oriented Computing (SCC
2006). IEEE, Los Alamitos (2006)

3. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River et al. (2008)
4. Erl, T.: SOA Design Patterns. Prentice Hall, Upper Saddle River et al. (2008)
5. Kaabi, R.S., Souveyet, C., Rolland, C.: Eliciting service composition in a goal driven man-

ner. In: Aiello, M. et al. (eds.): Proc. of the Second Int. Conf. on Service Oriented Comput-
ing (ICSOC 2004). ACM Press, New York (2004) 308-305

6. Klose, K., Knackstedt, R., Beverungen, D.: Identification of Services - A Stakeholder-
based Apporach to SOA development and its application in the area of production plan-
ning. In: Österle, H. et al. (eds.): Proc. of the 15th European Conf. on Information Systems
(ECIS 2007). St. Gallen (2007) 1802-1814

7. Kohlmann, F.: Service identification and design - A Hybrid approach in decomposed fi-
nancial value chains. In: Reichert, M., Strecker, S., Turowski, K. (eds): Proc. of the 2nd
Int. Workshop on Enterprise Modeling and Information Systems Architecture (EMISA
’07). Koellen-Verlag, Bonn (2007) 205-218

8. Papazoglou, M.P., van den Heuvel, W.-J.: Service-oriented design and development meth-
odology. Int. Journal of Web Engineering and Technology 2 (2006) 412-442

9. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business Proc-
esses. In: Buchmann, A. et al. (eds.): Third Int. Workshop on Technologies for E-Services:
(TES 2002). LNCS, Vol. 2444, Springer, Berlin et al. (2002) 175-233

10. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological support for service-oriented
design with ISDL. In: Aiello, M. et al. (eds.): Proc. of the Second Int. Conf. on Service
Oriented Computing (ICSOC 2004). ACM Press, New York (2004) 1-10

11. Yin, R.K.: The Case Study as a Serious Research Strategy. Knowledge: Creation, Diffu-
sion, Utilization. 3 (1981) 97 - 114

12. Yin, R.K.: Case Study Research: design and Methods. 4rd ed., SAGE Publications, Thou-
sand Oaks (2004)

13. Zhang, Z., Liu, R., Yang, H.: Service Identification and Packaging in Service Oriented Re-
engineering. In: Chu, W.C., Juristo Juzgado, N., Wong, W.E. (eds.): Proc. of the 17th Int.
Conf. on Software Engineering and Knowledge Engineering (SEKE '2005). Skokie (2005)
620-625

14. Levi, K., Arsanjani, A.: A Goal-driven Approach to Enterprise Component Identification
and Specification. Communications of the ACM 45 (2002) 45-52

15. Zimmermann, O., Craes, M., Milinski, S., Oellermann, F.: Second Generation Web Ser-
vices-Oriented Architecture in Production in the Finance Industry. In: Companion to the
19th annual ACM SIGPLAN Conf. on Object-oriented programming systems, languages,
and applications (OOPSLA 2004). ACM Press, New York (2004) 283-289

