
Designing Software Services for Business Agility

Harald Wesenberg
Leading Advisor Enterprise Architecture

StatoilHydro Corporate Staff IM/IT
E-mail:hews@statoilhydro.com

Introduction

One of the primary concerns when designing software services is identifying the right services to develop. A
service at the right granularity with the right functionality can become a crucial asset in the enterprise software
domain, while getting the granularity and functionality wrong may lead into a quagmire of interdependent
services that are difficult to maintain and further develop whenever new business needs arise.

Within the oil trading domain in Statoil we have worked with services for more than 10 years. The first
services where identified and developed in the mid-nineties, and have been reused throughout the domain in
numerous places since then.

In this paper I take a look at the service design process we follow and explain how this approach has given us
the services we have today.

The concept of a service

The concept of a service varies from company to company, and there is no common definition of a service
applicable throughout neither the software industry nor any of the industries the software industry supports.
In StatoilHydro, there is no common definition of a service either, and we often talk of services at several
abstraction levels and granularities. In the context of this paper, I will use the term service to describe a
cohesive grouping of functionality and information that can function independently. A good service is a
service that has high cohesiveness and low coupling which can be part of our service based application
portfolio where we want to easily recompose services to support business changes in an ever faster cycle.

Find the right services

A key success factor for any service based application is that it consists of the right services. We have used
our business processes as basis for finding services, as they often represent valuable knowledge about the
functionality the applications must provide. We apply the principles of domain-driven design [1] with focus
on strategic domain design in a two-step process. The first step is to identify the bounded contexts of the
domain and look at what services are needed for supporting the context relationships.

Store
browsing

Checkout Shipping Invoicing Accounting

Figure 1 An example of an order‐to‐cash process from a generic shopping domain

Dagstuhl Seminar Proceedings 09021
Software Service Engineering
http://drops.dagstuhl.de/opus/volltexte/2009/2044

1

Figure 1 is an example of an order-to-cash process from a generic shopping domain, supporting both online
and physical shopping. Based on such processes, it is natural to look at each sub-process as its own domain,
and look at the different services needed to support the relationship with the neighboring domains.

Checkout
Services

Shipping
Services

Provide Order Information

Customer

Supplier

Figure 2 Example of an inter‐context service

Figure 2 shows an example of such an inter-context service. The Provide Order Information service supplies
the Shipping Services context with order information from the Checkout Services context.

Next it is time to start looking for services within the context. StatoilHydro uses processes and workflows as
the main form of communicating operational requirements and best practices throughout the company and
thus all contexts have the most important functionality of the context documented in the form of business
processes. An example of such a process is shown in Figure 3:

Figure 3 The workflow for the Shipping Services context

Based on the activities in this workflow, a list of potential services can be identified. We aim to reuse as many
services as possible, and thus we group potential services into more generic services. Such a grouping is
shown in Table 1:

Table 1 A list of inter‐context services based on workflow activities

Service Name Supports Activity
Receive Order Receive Shipping Details

2

Service Name Supports Activity
Request Quote Request Shipping Quote
Receive Quote Request Receive Quote Request
Receive Quote Receive Shipping Quote
Update Order Decide Shipper, Update

Shipping Details
Receive Shipping Updates Update Shipment Status

Even though we want to have atomic services, we do not want to implement each service as a separate
application. Thus we try to group the potential list of services into applications based on how they work on a
common set of information concepts. This gives us a balance between the need for atomic services and the
need for minimized development overhead in developing and maintaining functionality multiple places. Based
on the list of services in Table 1 below, we group the services into two main applications around the
information concepts Order and Shipment. The mapping of services to applications are shown below in Table 2

Table 2 The services grouped into applications

Application Services
Order Management Receive Order, Update

Order
Shipment Management Request Quote, Receive

Quote, Receive Shipping
Updates

It has been customary to use e.g. one order management application to support order management
throughout the entire end-to-end process. To achieve the necessary business agility it is necessary to question
this practice as it greatly increases the degree of coupling between processes. It is important to keep in mind
that we want to be able to develop the different processes independently of each other, and this can be
difficult when all the processes are supported by the same application.

The next step

The next step after identifying these service proposals is to add them to a product backlog for development.
Usually no more up-front analysis is necessary before the product owner starts prioritizing services and
handing them out to the development teams.

Conclusion

In this paper I have shown how we approach service design to get find the right services to support our
business processes. This approach is based on the “just enough, just in time” deferring analysis and decisions
to as late in the development process as possible where the most amount of knowledge of service
requirements is available.

References

[1] Eric Evans, Domain Driven Design: Tackling Complexity in the Heart of Software. Addison Wesley, 2003.

3

