
MutantXL: Solving Multivariate Polynomial
Equations for Cryptanalysis

Johannes Buchmann1, Jintai Ding2, Mohamed Saied Emam Mohamed1, and
Wael Said Abd Elmageed Mohamed1

1 TU Darmstadt, FB Informatik
Hochschulstrasse 10, 64289 Darmstadt, Germany

{buchmann,mohamed,wael}@cdc.informatik.tu-darmstadt.de
2 Department of Mathematical Sciences, University of Cincinnati

Cincinnati OH 45220, USA
jintai.ding@uc.edu

Abstract. MutantXL is an algorithm for solving systems of polynomial
equations that was proposed at SCC 2008 and improved in PQC 2008.
This article gives an overview over the MutantXL algorithm. It also
presents experimental results comparing the behavior of the MutantXL
algorithm to the F4 algorithm on HFE and randomly generated multi-
variate systems. In both cases MutantXL is faster and uses less memory
than the Magma’s implementation of F4.

1 Introduction

Solving systems of multivariate quadratic equations is an important problem in
cryptology. The problem of solving such systems over finite fields is called the
Multivariate Quadratic (MQ) problem. In the last two decades, several cryp-
tosystems based on the MQ problem have been proposed as in [1–4]. The gen-
eral MQ problem is NP-complete! However for some cryptographic schemes the
problem of solving the corresponding MQ system has been demonstrated to be
easier, allowing these schemes to be broken. Therefore it is very important to
study the MQ problem.

XL was introduced in [5] as an efficient algorithm for solving polynomial
equations in case only a single solution exists. The MutantXL algorithm was
proposed as a variant of XL. It is based on the mutant strategy [6, 7]. The MXL2

algorithm [8] is an improvement to MutantXL. It uses the partial enlargement
technique [8] and a minimum number of mutants.

In this article we give an experimental comparison between our implemen-
tation of the MutantXL algorithm and Magma’s implementation of the F4 al-
gorithm [9] on some HFE cryptosystems of univariate degree 288 and some
randomly generated instances of the MQ problem. We show that for the HFE
systems MutantXL can solve systems that have number of variables up to 48
while F4 can not solve system with more than 39 variables under the same
memory restriction. Moreover, we show that MutantXL solves all systems faster

Dagstuhl Seminar Proceedings 09031
Symmetric Cryptography
http://drops.dagstuhl.de/opus/volltexte/2009/1945

2 J. Buchmann, J. Ding, M.S.E. Mohamed, and W.S.A. Mohamed

and uses less memory than F4. Another indicator for the fact that a variant of
MutantXL outperforms F4 can be found in [10].

This paper is organized as follows. In Section 2 we review the XL and mutant
strategies. In Section 3 we describe the MutantXL algorithm. In Section 4 we
give our experimental results on random and HFE systems and finally Section 5
contains the conclusion and the future work.

2 XL algorithm and Mutant Strategy

In this section we present a brief overview of the XL algorithm [5] and the mutant
strategy [7, 6].

Throughout the paper we let F be a finite field and we let q be its cardinality.
We consider the ring

R = F [x1, . . . , xn]/(xq
1 − x1, ..., x

q
n − xn)

of functions over R in the n variables x1, . . . , xn. Here xq
i − xi = 0, 1 ≤ i ≤ n

are the so-called field equations. In R, each element is uniquely expressed as
a polynomial where the degree in each xi is less than q. The degree of this
polynomial is called the degree of the corresponding function. For the sake of
convenience, we will identify functions in R with their representing polynomials.

Let P be a finite set of polynomials in F [x], x = (x1. . . . , xn). Given a degree
bound D, the XL strategy is simply based on extending the set of polynomials P
by multiplying each polynomial in P by all the possible monomials such that the
resulting polynomials have degree less than or equal to D. Then, by using linear
algebra, XL computes P̃ , a row echelon form of the extended set P . XL uses
univariate polynomials in P̃ to solve P (x) = 0 at least partially. If the system
can not be solved, D is increased.

In [7, 6], it was pointed out that during the linear algebra step, certain poly-
nomials of degrees lower than expected appear. These polynomials are called
mutants. The Mutant strategy is to add mutants to P which allows solving
system with a small D. The precise definition of mutants is as follows.

Let I be the ideal generated by the finite set of polynomials P . An element
f in I can be written as

f =
∑
p∈P

fpp (1)

where fp ∈ F [x]. The maximum degree of fpp, p ∈ P , is the level of this
representation. The level of f is the minimum level of all of its representations.
The polynomial f is called mutant with respect to P if deg(p) is less than its
level.

3 Description of the MutantXL Algorithm

We briefly describe the MutantXL algorithm including our improvements that
enable us to beat the F4 implementation of Magma. Those improvements consist

MutantXL algorithm 3

in further reducing the number of mutants used to solve the system and the
partial enlargement technique that solves the too few mutants problem.

We let F = F2. The algorithm can be easily generalized. Let X := {x1, . . . , xn}
be a set of variables, upon which we impose the following order: x1 > x2 > . . . >
xn. Let

R = F2[x1, . . . , xn]/(x2
1 − x1, ..., x

2
n − xn)

be the ring of polynomial functions over F2 in X with the monomials of R
ordered by the graded lexicographical order <glex. Let P = (p1, . . . , pm) ∈ Rm

be an m-tuple of polynomials in R. In the algorithm a degree bound D will
be used. It the maximum degree of the polynomials contained in P . P will be
changed in the algorithm. The algorithm performs the following steps:

– Initialize: Set P = {p1, . . . , pm}, D = Max{deg(p) : p ∈ P}, the elimination
degree ED = min{deg(p) : p ∈ P}, the set of mutants M = ∅.
compute the row echelon form P̃ of P . Set P = P̃ .
Here polynomials are identified with their coefficient vectors as explained in
[9].

– Solve: If there are univariate polynomials in P , then determine the values
of the corresponding variables and substitute in P . If this solves the system
return the solution and terminate. Otherwise, set D = Max{deg(p) : p ∈ P},
set the elimination degree ED = min{deg(p) : p ∈ P}, and go back to
Echelonize.

– ExtractMutants: Add all new elements of degree less than D in P to M .
– MultiplyMutants: If M 6= ∅, then select the necessary number of mutants

that have degree k = min{deg(p): p ∈M} and multiply them by all terms of
degree one, remove the selected mutants from M , add the new polynomials
obtained from the multiplication to P , set ED to k + 1 and go back to
Echelonize.
The necessary number of mutants are numerically computed as in [8].

– Extend : Extend P by adding all polynomials that are obtained by multiply-
ing a subset of the degree D elements in P by all monomials of degree one.
Increment D by one, set ED = D and go back to Echelonize.
The strategy for selecting the subset is taken from [8].

4 Experimental Results

We compare the efficiency of MutantXL to the efficiency of F4 by solving some
random systems generated by Courtois [11] as well as some HFE systems gen-
erated by the code of John Baena. We ran all the experiments in a Sun X4440
server, with four “Quad-Core AMD OpteronTM Processor 8356” CPUs and 128
GB of main memory. Each CPU is running at 2.3 GHz. We used only one out
of the 16 cores.

Tables 1 and 2 show the results of dense random systems and the results of
HFE systems of univariate degree 288, respectively. In both tables we denote the

4 J. Buchmann, J. Ding, M.S.E. Mohamed, and W.S.A. Mohamed

MutantXL F4

n D max. matrix Memory Time D max. matrix Memory Time

25 6 71159×76414 698 704 6 248495×108746 5128 1341

26 6 96937×102246 1207 1429 6 298592×148804 8431 3325

27 6 134518×140344 2315 2853 6 354189×197902 13312 6431

28 6 201636×197051 4836 7982 6 420773×261160 20433 13810

29 6 279288×281192 9375 18796 6 499222×340254 30044 25631

30 6 347263×351537 15062 42501 6 1283869×374081 72258 92033

31 6 427164×436598 23078 99597 6 868614×489702 108738 162118
Table 1. Performance of MutantXL versus F4 for dense random system

number of variables and equations by n and the maximum degree used in the
algorithm by D. The tables also show the maximum matrix size, the memory
used in Megabytes, and the execution time in seconds. It is evident from Tables
1 and 2 that MutantXL solves the random generated systems and HFE systems
faster and consumes less memory than F4.

MutantXL F4

n D max. matrix Memory Time D max. matrix Memory Time

30 5 124767×130211 1997 3260 5 149532×136004 7105 3806

35 5 172524×296872 6349 10198 5 199839×332645 39710 11282

36 5 191939×344968 8090 14555 5 219438×382252 50846 15220

37 5 210416×399151 10137 20375 5 246121×44360 65205 22291

38 5 233219×459985 12472 29123 5 274970×512296 82103 32530

39 5 254218×528068 16365 36833 5 305745×588617 102258 36965

40 5 280911×604033 22732 63460'17.6 hours no solution obtained

45 5 432554×1126819 58982 299355'3.46 days no solution obtained

47 5 508064×1417468 86548 371088'4.3 days no solution obtained

48 5 538602×1583807 102919 689235'7.9 days no solution obtained

Table 2. Performance of MutantXL versus F4 for HFE(288,n) systems

Table 2 shows that all the HFE systems of univariate degree 288 up to 48 vari-
ables are solved by using MutantXL, whereas F4 could only solve HFE systems
up to 39 variables with the same memory resources.

In Table 3 we compare the performance of the MutantXL algorithm with the
F4 algorithm for solving the random system n = 31. For MutantXL, we give
the elimination degree (D), the matrix size, the rank of the matrix (Rank), the
number of mutants found (NM), the number of used mutants (UM), and the
lowest degree of mutants found (MD). For F4, we give the degree D in each
step, the matrix size, and the step memory in MB.

Table 3 shows that by using the mutant strategy, MutantXL can easily
solve the 31 variables random system with a small matrix size compared to
F4. MutantXL starts to generate mutants at step 5. In this step 13950 mutants

MutantXL algorithm 5

MutantXL F4

Step D Matrix Size Rank NM UM MD D Matrix Size Memory

1 2 31×497 31 0 0 - 2 31×497 14.9

2 3 990×4992 990 0 0 - 3 999×4992 14.9

3 4 15375×36457 14911 0 0 - 4 14838×35123 254.9

4 5 140114×206368 138880 0 0 - 5 122365×172445 5841

5 6 415654×436598 382912 13950 1702 5 6 692242×557944 59836

6 6 427164×436598 427164 12260 330 4 6 868614×489702 108738

7 5 205662×206368 205662 3294 26 3 2 777×497 108738

8 4 35657×36457 35657 434, 2 0, 2 2, 1 3 5412×4195 108738

9 2 517×497 496 29 0 1 4 27173×22950 108738

10 5 105805×77982 108738

11 6 100519×77029 108738
Table 3. MutantXL: Results for the system Random-31

of degree 5 are generated, out of which only 1702 are multiplied. Due the degree
of the generated mutants, the elimination degree remains the same in the next
step, i.e. , D = 6. Starting from step 7, D starts to decrease. In step 8, the
system generates 434 quadratic mutants and 2 linear mutants. By using only
the two linear mutants, MutantXL generates additional 29 linear mutants in the
next step, which in turn leads to solving the system.

Another important comparison is to study the performance of MutantXL
and F4 in solving HFE systems of different univariate degrees (d). Table 4 shows
the results of solving HFE systems with 25 variables and with different d. It is
clear that MutantXL is faster and uses less memory since it constructs smaller
matrices than F4. It is important to point out that for F4, we did not set the
HFE parameter to true since we examine the general case of HFE systems whose
univariate degrees can go above 128.

MutantXL F4

d D max. matrix Memory Time D max. matrix Memory Time

d < 17 3 2620×2626 1.5 0.16 3 3669×2500 15 0.35

16 < d < 64 4 7100×13252 12 1.56 4 8745×8101 68 2.25

63 < d < 96 4 9200×13252 15 2.34 4 10837×13913 137 6.9

95 < d < 128 4 10615×13252 17.6 3.28 4 12497×13648 153.5 15.1

d = 128 4 15050×15276 28.7 5.9 4 14344×15245 227 22.7

128 < d < 257 5 31400×41610 217 70.6 5 52333×52665 750 148

256 < d < 513 5 40458×41610 231 110 5 53388×52835 1135 273

d > 512 6 72456×76414 735 811 6 257316×108618 5716 1420

Table 4. Performance of MutantXL versus F4 for HFE(d,25) systems

For F4, we used Magma version V2.13-10 implementation of Faugère’s F4

algorithm which is considered the best available tool for solving multivariate

6 J. Buchmann, J. Ding, M.S.E. Mohamed, and W.S.A. Mohamed

systems. For MutantXL, we used our C++ implementation. For the Echelonize
step, we used an adapted version of M4RI [12], the dense matrix linear algebra
over F2 library. Our adaptation was in changing the strategy of selecting the
pivot during Gaussian elimination to keep the old elements in the system intact.

5 Conclusion and Future Work

The MutantXL algorithm is a new and very efficient alternative to solve mul-
tivariate polynomial equations on the function ring over F2. The experiments
showed that both for classical cryptographic challenges and random systems,
MutantXL algorithm performs substantially better than the F4 algorithm im-
plemented in Magma, currently the best publicly available implementation of
F4.

As a next step we will use the Wiedemann algorithm for solving sparse linear
systems to generate mutants and do the linear algebra step in MutantXL.

This article further demonstrates the great potential of the mutant strategy
and much more is still needed to be done to realize its full potential.

6 Acknowledgments

We would like to thank Ralf-Philipp Weinmann for several helpful discussions
and comments. Also, we would like to thank John Baena for supporting us with
his code of generating HFE systems.

References

1. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Workshop on the Theory
and Application of of Cryptographic Techniques Advances in Cryptology- EURO-
CRYPT. Volume 330 of Lecture Notes in Computer Science., Davos, Switzerland,
Springer (1988) 419–453

2. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms. In: Proceeding of International
Conference on the Theory and Application of Cryptographic Techniques Advances
in Cryptology- Eurocrypt. Volume 1070 of Lecture Notes in Computer Science.,
Saragossa, Spain, Springer (1996) 33–48

3. Patarin, J., Goubin, L., Courtois, N.: C∗
−+ and HM : Variations Around Two

Schemes of T. Matsumoto and H. Imai. In: Proceeding of International Conference
on the Theory and Application of Cryptology and Information Security Advances
in Cryptology ASIACRYPT. Volume 1514 of Lecture Notes in Computer Science.,
Beijing, China, Springer (1998) 35 – 50

4. Moh, T.: A Public Key System With Signature And Master Key Functions. In:
Communications in Algebra. (1999) 2207 – 2222

5. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. In: Proceed-
ings of International Conference on the Theory and Application of Cryptographic

MutantXL algorithm 7

Techniques(EUROCRYPT). Volume 1807 of Lecture Notes in Computer Science.,
Bruges, Belgium, Springer (2000) 392–407

6. Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.P.:
MutantXL. In: Proceedings of the 1st international conference on Symbolic Com-
putation and Cryptography (SCC08), Beijing, China, LMIB (2008) 16 – 22

7. Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms.
(Privately distributed research note, University of Cincinnati and Technical Uni-
versity of Darmstadt, 2006)

8. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
Polynomial Equations over GF(2) using an Improved Mutant Strategy. In: Pro-
ceedings of The Second international Workshop on Post-Quantum Cryptography,
(PQCrypto08). Lecture Notes in Computer Science, Cincinnati, USA, Springer-
Verlag, Berlin (2008) 203–215

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Pure
and Applied Algebra 139 (1999) 61–88

10. Mohamed, M.S.E., Ding, J., Buchmann, J.: Algebraic Cryptanalysis of MQQ
Public Key Cryptosystem by MutantXL. Technical Report 2008/451, Cryptol-
ogy ePrint Archive (2008)

11. Courtois, N.T.: Experimental Algebraic Cryptanalysis of Block Ciphers.
http://www.cryptosystem.net/aes/toyciphers.html (2007)

12. Albrecht, M., Bard, G.: M4RI – Linear Algebra over GF(2).
http://m4ri.sagemath.org/index.html (2008)

13. chung Wang, L., hwang Chang, F.: Tractable rational map cryptosystem (2005)

