
Cache Timing Analysis of eStream Finalists

(Extended Abstract)

Erik Zenner
Technical University of Denmark

e.zenner@mat.dtu.dk

March 9, 2009

Abstract

Cache Timing Attacks have attracted a lot of cryptographic attention
due to their relevance for the AES. However, their applicability to other
cryptographic primitives is less well researched. In this talk, we give an
overview over our analysis of the stream ciphers that were selected for
phase 3 of the eStream project.

1 Introduction

1.1 Motivation

Cache Timing Attacks are a class of side-channel attacks. They assume that
the adversary can use timing measurements to learn something about the cache
accesses of a legitimate party, which turns out to be the case in some practical
applications. In 2005, Bernstein [2] and Osvik, Shamir, and Tromer [18, 19]
showed in independent work that the Advanced Encryption Standard (AES)
is particularly vulnerable to this type of side-channel attack, generating a lot
of attention for the field. Subsequent work dealt with verifying the findings
[17, 16, 15, 23, 8], improving the attack [20, 3, 14, 6], and devising and analyzing
countermeasures [7, 5, 24].

However, the cryptanalytic attention was mainly focussed on AES, while
other ciphers were treated only handwavingly. For example, the eStream report
on side-channel attacks [11] simply categorizes all stream ciphers that use tables
in their implementations as vulnerable, independent of whether or not a cache
timing attack was actually feasible. Since then, some analysis of the eStream
phase 3 candidates has been conducted by the authors [27, 13], and in the
following, we give a brief overview over the results.

1
Dagstuhl Seminar Proceedings 09031
Symmetric Cryptography
http://drops.dagstuhl.de/opus/volltexte/2009/1943

1.2 Attack Model

As all side-channel attacks, cache timing attacks are not inherently attacks
against the algorithm, but against its implementation. Thus, there are basically
two ways of analyzing the cache timing resistance of a cipher. One can either
consider a concrete implementation of the cipher, or do a general analysis in
the framework of a model which gives the adversary certain rights, which can
be modeled as oracle accesses. In the latter case, a “break” within the model
does not necessarily imply a break of all practical implementations, but it can
indicate that extra care has to be taken when implementing the cipher.

The model that we use for our analysis follows the second approach and was
proposed in [27]. It models a synchronous cache attacker, i.e. an adversary who
can only access (and thus perform measurements on) the cache after certain
elementary operations by the legitimate users have finished. In particular, a
synchronous cache adversary can do cache measurements before and after a
full update of the stream cipher’s inner state, but not while the update is in
progress. Thus, he has access to two oracles: The Keystream(i) oracle returns
keystream block zi (this is the standard oracle in stream cipher cryptanalysis),
and the SCA Keystream(i) gives him an (unordered) list of cache accesses
made by Keystream(i).

Note that the SCA Keystream(i) oracle gives the adversary more infor-
mation than will typically be available in a real-world side-channel setting, since
it assumes that his measurements are undisturbed by noise. The task of the
cryptanalyst will be made more difficult by the noise, but without knowing
the precise practical setting, the exact extend of the extra work to be done
by the attacker can not be estimated. On the other hand, given these strong
assumptions, we only accept an attack as valid if it is feasible in a very prac-
tical sense, i.e. requiring only a “realistic” number of keystream blocks, cache
measurements, and computational steps.

2 Analysing eStream Finalists

eStream was a subproject of the European ECRYPT project (2004-2008) that
was dedicated to advancing the understanding of stream ciphers and to propos-
ing a portfolio of recommended algorithms. It started by a call for contributions
in Fall 2004 and 34 submissions in Spring 2005. The number of candidates was
reduced to 27 (phase 2, Spring 2006) and 16 (phase 3, Spring 2007) before finally
creating a portfolio of 8 ciphers in Spring 20081.

In the following, we concentrate on the finalists (i.e. phase 3 ciphers) in
the “software” category, since only software implementations will be potential
targets for cache timing attacks. An overview over those candidates is given in
Table 1. Ciphers marked with the ’†’ symbol are potentially vulnerable to cache
timing attacks due to their use of tables.

1The portfolio was reduced to 7 ciphers in Fall 2008 because one of the chosen designs was
broken.

2

Cipher Tables Relevant
CryptMT none -
Dragon Two 8× 32-bit S-Boxes †
HC-128 Two 512× 32-bit tables †
HC-256 Two 1024× 32-bit tables †
LEX-128 One 8× 8-bit S-Box (ref. code)

Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box †
Rabbit none -
Salsa-20 none -
Sosemanuk One 8× 32-bit table,

eight 4× 4-bit S-Boxes (ref. code) †

Table 1: Table of eStream software finalists

On the other hand, note that CryptMT, Rabbit, and Salsa-20 do not use
tables at all and are thus not even theoretically vulnerable to cache timing
attacks. In the following, we discuss the remaining ciphers.

2.1 Dragon

No full analysis of Dragon [9] exists yet. Preliminary analysis seems to indicate
that attacking the cipher with a cache timing attack will not be easy due to the
heavy use of table lookups. The problem is that the cipher uses two 8× 32-bit
S-boxes, each of which fills 16 cache blocks (on a Pentium 4). For each call to
Keystream(i), each S-box is called 12 times. Thus, for each S-box, up to 12
out of 16 cache blocks are accessed (on average: 8.6). For the cryptanalyst,
this is a problem since (a) almost all possible cache blocks are used and thus
only little information is retrieved, and (b) it is unclear in which order those
cache blocks were accessed. If a full 12 different blocks were accessed for both
S-boxes, there would be 257.7 possible ways of ordering them. Thus, unless the
ordering problem can be solved somehow, the cipher seems to be safe against
practical cache-timing attacks. However, further analysis is necessary to confirm
this conjecture.

2.2 HC-256

HC-256 [25] has a rather large inner state (two 1024 × 32-bit tables), all of
which a cache timing attack has to reconstruct in order to be able to recover
the key. Nonetheless, an attack was presented at SAC 2008 [27], requiring
computation time corresponding to 255 key setups, 3 MByte of memory, 8 kByte
of known keystream, and precise cache measurements for 6148 rounds. Thus,
the cipher is vulnerable to a cache timing attack in theory. Note, however,
that the attack effort still corresponds to a brute-force attack against the Data

3

Encryption Standard (DES), and in the real world, noisy measurements will
probably make it completely infeasible.

2.3 HC-128

HC-128 [26] is the “little brother” of HC-256 and has a slightly smaller inner
state (two 512×32-bit tables) and surprisingly big changes of the internal work-
ings. Most state update equations are modified, and this has a profound impact
on the above cache timing attack. It turns out that the attack can not be trans-
ferred to HC-128 in a straightforward way. Thus, further analysis of HC-128 is
necessary to determine its resistance against cache timing attacks.

2.4 LEX-128

The stream cipher LEX [4] is based to a large extend on AES, and its optimised
code uses eight 8× 32-bit S-boxes. It turns out that most known cache timing
attacks against AES can be applied either against the key/IV setup or against
the keystream generation. On the other hand, known protection measures (like
using smaller S-boxes or bitsliced implementations) are also applicable and help
mitigating the problem. Concluding, a fully optimised implementation of LEX-
128 is breakable in practice, and protection measures have to be used where
cache timing attacks are of concern.

2.5 NLS v2

NLS [22] uses one 8 × 32-bit S-box which can be the target of a cache timing
attack. In [13], it is shown how this information can be used to retrieve the
uppermost byte of each inner state word. This partial attack uses 245 guess-
and-determine steps, negligible memory, 23 known (upper) keystream bytes and
26 calls to SCA Keystream(i).

However, it is not obvious how knowledge of the upper bytes (even for many
subsequent inner states) can be used to retrieve the remaining inner state. In
fact, if the uppermost byte is known, the cipher can be re-written without an
S-box in a purely arithmetical fashion, using only addition, xor, and rotation
(AXR) operators. It is known that solving such mixed equation systems can
be very difficult (as an example, the security of Salsa-20 rests entirely on this
observation), and in the case of NLS v2, they are sufficiently complicated. Con-
cluding, a theoretical cache timing weakness was identified but does not seem
to lead to a practical vulnerability.

2.6 Sosemanuk

In principle, Sosemanuk [1] can be implemented without the use of tables. How-
ever, software implementations optimised for speed require two 8×32-bit tables
to speed up computations in GF(232). In [13], it was shown that these tables
can be used for a very efficient cache timing attack against Sosemanuk.

4

As it turns out, any cache timing information about the inner state can
be incorporated into a linear equation system. The ordering problem that was
mentioned in connection with Dragon can be solved efficiently using slightly
more measurements. Then the LFSR state (320 bit) can be retrieved by solving
a system of linear equations, and the remaining 64 bit of nonlinear state can be
found by 232 simple guess-and-determine steps.

It turns out that the attack is also applicable against other designs using
LFSRs over GF(232), such as Snow [10], Sober [12], and Turing [21]. The attack
is so efficient that it has to be considered a practical cache timing break, and
additional protection measures are necessary to protect the cipher where cache
timing attacks are considered a threat.

3 Observations

It is interesting that most stream ciphers turn out to be surprisingly resistant
against cache timing attacks. Note that the above model gives the attacker sig-
nificant extra information about the inner state. Nonetheless, it seems that the
ciphers can not be broken efficiently (it might be possible that a distinguishing
attack with significant workload becomes possible, but this is not the goal here).
This seems to indicate that modern stream ciphers have quite a large security
margin. So the question is whether the ciphers in fact are overdesigned for nor-
mal purposes and whether significant speed-ups would become possible if the
designers dropped some of the more extreme security requirements (e.g. large
number of available keystream bits without re-keying).

Another observation is that in the above scenarios, the toolbox for crypt-
analysis is pretty empty. Most known analysis methods require huge amounts of
data and computational resources once the designer is aware of them and takes
them into account (correlation attacks, non-trivial algebraic attacks, BDD at-
tacks, distinguishers based on small biases etc.). The only efficient tools we
had available for the above attacks were guess-and-determine and the solving
of linear equations. In particular, our inability to efficiently deal with AXR
systems consisting only of addition, xor, and rotations frustrated many poten-
tial attacks. Thus, research in this direction seems to have high potential of
improving the cryptanalyst’s toolbox.

Acknowledgements

The author wishes to express his thanks to Gregor Leander who co-authored
some of the results discussed above, and to Philip Hawkes who provided valuable
input on the initial attack ideas against Sosemanuk.

5

References

[1] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and
H. Sibert. SOSEMANUK, a fast software-oriented stream cipher. eStream
submission,
http://www.ecrypt.eu.org/stream/sosemanuk.html, 2005.

[2] D. Bernstein. Cache timing attacks on AES.
http://cr.yp.to/papers.html#cachetiming, 2005.

[3] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo.
AES power attack based on induced cache miss and countermeasure. In
International Symposium on Information Technology: Coding and Com-
puting (ITCC 2005), volume 1, pages 586–591. IEEE Computer Society,
2005.

[4] A. Biryukov. The design of a stream cipher LEX. In E. Biham and
A. Youssef, editors, Proc. SAC 2006, volume 4356 of LNCS, pages 67–75.
Springer, 2007.

[5] J. Blömer and V. Krummel. Analysis of countermeasures against access
driven cache attacks on AES. In C. Adams, A. Miri, and M. Wiener,
editors, Proc. SAC 2007, volume 4876 of LNCS, pages 96–109. Springer,
2007.

[6] J. Bonneau and I. Mironov. Cache-collision timing attacks against AES.
In L. Goubin and M. Matsui, editors, Proc. CHES 2006, volume 4249 of
LNCS, pages 201–215. Springer, 2006.

[7] E. Brickell, G. Graunke, M. Neve, and S. Seifert. Software mitigations to
hedge AES against cache-based software side-channel vulnerabilities.
http://eprint.iacr.org/2006/052.pdf, 2006.

[8] A. Canteaut, C. Lauradoux, and A. Seznec. Understanding cache attacks.
Technical Report 5881, INRIA, 2006.

[9] K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E. Dawson,
H. Lee, and S. Moon. Dragon: A fast word based stream cipher. In
C. Park and S. Chee, editors, Proc. ICISC 2004, volume 3506 of LNCS,
pages 33–50. Springer, 2005.

[10] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW.
In H. Heys and K. Nyberg, editors, Proc. SAC 2002, volume 2595 of LNCS,
pages 47–61. Springer, 2002.

[11] B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget, H. Hand-
schuh, T. Kasper, K. Lemke-Rust, S. Mangard, A. Moradi, and E. Oswald.
Susceptibility of eSTREAM candidates towards side channel analysis. In

6

C. de Cannière and O. Dunkelmann, editors, SASC ’08 Workshop Record,
pages 123–150, 2008.

[12] P. Hawkes and G. Rose. Primitive specification and supporting documen-
tation for Sober-t32. NESSIE project submission, October 2000.

[13] G. Leander and E. Zenner. Cache timing analysis of the Sosemanuk and
NLS stream ciphers. Manuscript available from the authors, 2009.

[14] M. Neve and J. Seifert. Advances on access-driven cache attacks on AES. In
E. Biham and A. Youssef, editors, Proc. SAC 2006, volume 4356 of LNCS,
pages 147–162. Springer, 2006.

[15] M. Neve, J. Seifert, and Z. Wang. Cache time-behavior analysis on AES.
http://www.cryptologie.be/document/Publications/AsiaCSS full 06.pdf,
2006.

[16] M. Neve, J. Seifert, and Z. Wang. A refined look at bernstein’s AES side-
channel analysis. In Proc. AsiaCSS 2006, page 369. ACM, 2006.

[17] M. O’Hanlon and A. Tonge. Investigation of cache-timing attacks on AES.
http://www.computing.dcu.ie/research/papers/2005/0105.pdf, 2005.

[18] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
The case of AES.
http://eprint.iacr.org/2005/271.pdf, 2005.

[19] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
The case of AES. In D. Pointcheval, editor, Proc. CT-RSA 2006, volume
3860 of LNCS, pages 1–20. Springer, 2006.

[20] C. Percival. Cache missing for fun and profit. Paper accompanying a talk
at BSDCan 2005; available at
http://www.daemonology.net/papers/htt.pdf, 2005.

[21] G. Rose and P. Hawkes. Turing: A fast stream cipher. In T. Johansson,
editor, Proc. Fast Software Encryption 2003, volume 2887 of LNCS, pages
290–306. Springer, 2003.

[22] G. Rose, P. Hawkes, M. Paddon, and M. Wiggers de Vries. Primitive
specification for NLSv2. eStream submission,
http://www.ecrypt.eu.org/stream/nlsp2.html, 2006.

[23] R. Salembier. Analysis of cache timing attacks against AES. Scholarly Pa-
per, ECE Department, George Mason University, Virginia; available from:
http://ece.gmu.edu/courses/ECE746/project/F06 Project resources/
Salembier Cache Timing Attack.pdf, May 2006.

[24] Z. Wang and R. Lee. New cache designs for thwarting software cache-based
side channel attacks. In Proc. ISCA 2007, pages 494–505. ACM, June 2007.

7

[25] H. Wu. A new stream cipher HC-256. In B. Roy and W. Meier, editors,
Proc. FSE 2004, volume 3017 of LNCS, pages 226–244. Springer, 2004.

[26] H. Wu. The stream cipher HC-128.
http://www.ecrypt.eu.org/stream/hcp3.html, 2006.

[27] E. Zenner. A cache timing analysis of HC-256. In Proc. SAC ’08, LNCS.
Springer, 2008. to appear.

8

