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Abstract. In this note we give an overview on the current state of the SHA-3 candidates. First, we
classify all publicly known candidates and, second, we outline and summarize the performance data as
given in the candidates documentation for 64-bit and 32-bit implementations. We define performance
classes and classify the hash algorithms. Note, that this article will be updated as soon as new can-
didates arrive or new cryptanalytic results get published. Comments to the authors of this article are
welcome.
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1 Introduction

The design of secure and practical hash functions is of great interest since most practical
hash functions, like MD5 [82], SHA-0 [78] or SHA-1 [76] have been broken. Due to the SHA-

3 competition [75], many new proposals for hash function primitives have been submitted
to become the new SHA-3 algorithm.

This article is organized as follows: In Section 2 we define criteria that we will use to
classify the SHA-3 candidate algorithms. In Section 3 we give an overview of the software
performance claimed by the algorithm’s authors.

2 Classification of the SHA-3 Candidates

We have defined in the following some attributes including characteristics that are used in
our classification. Tables 1-2 show all SHA-3. The attribute characteristics “X” means that
the SHA-3 candidate has the attribute and“-” that the SHA-3 candidate does not have it.
The meaning of the other characteristics can be found in the following attribute description.

Feistel Network (FN)[88] A Feistel network is a general method of transforming any
function (usually called an F-function) into a permutation. An F-function is always non-
linear and almost always irreversible. The Feistel Network was invented by Horst Feistel.
The FN attribut can have two characteristics.

Balanced Feistel Network (B)
A compression function is called a balanced feistel network, when
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1. the internal state is divided into a left and right part of equal size n.
2. a message depended, nonlinear function F maps those parts to two output parts

of the same length.

Unbalanced feistel network U
A compression function is called an unbalanced feistel network is based on a feistel
network where the internal state is divided into more resp. less then two parts or into
two parts of unequal size.

Wide Pipe design (WP) [58]
The internal state, i.e. chaining value, of the hash function is larger than the message
digest.

Key Schedule (KEY)
The hash function has an explicit key schedule or a message expansion algorithm.

MDS Matrix (MDS) [85]
One or more Maximum Distance Separable (MDS) matrices are used as a building block
of the compression function. A MDS matrix has strong diffusion properties that can be
exploited in certain cryptographic primitives. The characteristics is the size of the MDS
Matrix in bytes. For exmaple, the characteristics “4× 4” means that a “4× 4” byte MDS

matrix is used as a bulding block.

Output Transformation (OUT)
Is a function with the“final” chaining value as input and the message digest as output.
Trivial output transformation such as the identity or truncation does not count at all.

S-box (SBOX)
The hash function uses one or more substitution boxes. In general a S-box is a non linear
function that maps m input bits to n output bits. Usually, a S-box is implemented as
lookup table. The characteristics is the S-bix size in bits.

Feedback Shift Register (FSR)
The compression functions is/uses a (N)LFSRs. The input bits of a (non-)linear feedback
shift register ((N)LFSR) are computed via a (non-)linear function from the previous state.

Collision Attack
The best known collision attack that is better than the birthday attack.

(Second) Preimage Attack
The best known (2nd) preimage attack that is better than then long second preimage
attack [46].
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Hash algorithm FN WP KEY MDS OUT SBOX FSR COL PRE

*Abacus[89] - X - 4 × 4 X 8 × 8 X 2172 [99] 2172 [70]

ARIRANG [19] U X X 4 × 4, 8 × 8 - - - - -

AURORA [44] - - X 4 × 4 X 8 × 8 - 2234.51/2229.6[24] 2291/231.5[24]

BLAKE [4] U - X - - - - - -

Blender[13] - X - - - - - 10 ∗ 2n/4[51] 10 ∗ 2n/4[51]

BMW [31] - X X - - - - [91]† -
*Boole [84] - - - - X - X 234 [26] 2

9n

16 [74]

Cheetah [30] - - X 4 × 4, 8 × 8 - 8 × 8 - - -

Chi [36] U X X - - 4 × 3 - - -

CRUNCH [33] U - X - - 8 × 1016 - - -

CubeHash8/1 [8] - - - - - - - - 2509 [5]
*DHC [101] - - X - - 8 × 8 - 29 [55] 29 [49]

DynamicSHA [103] U - X - - - - 2114[41] -

DynamicSHA2 [104] U - X - - - - - -

ECHO [7] - X - 4 × 4 - 8 × 8 - - -

ECOH [15] - - X - - - - - -

Edon-R [32] - X X - - - - - 22n/3, 22n/3 [50]

EnRUPT [79] - (X) - - - - - example, 247 [39] 2480/2480[47]

Essence [61] - - - - - - X - -

FSB [3] - X - - X - - - -

Fugue [34] - X - 16 × 16 X 8 × 8 - - -

Grøstl [29] - X - 8 × 8 X 8 × 8 - - -

Hamsi [54] - - X - - 4 × 4 - - -

JH [102] B X - 1.5 × 1.5 - 4 × 4 - - 2510.3/2510.3 [27]

Keccak [10] - X - - - 5 × 5 - - -
*Khichidi-1 [97] - - X - - - X 1/233 [90] example [68], 1/233 [90]

LANE [40] - - X 4 × 4 X 8 × 8 - - -

Lesamnta[37] U - X 2 × 2, 4 × 4 X 8 × 8 - - -

Luffa [16] - - - - X 4 × 4 - - -

Lux [72] - X - 4 × 4 , 8 × 8 X 8 × 8 - - -

MCSSHA-3 [62] - - - - - - X 23n/8 [6] 23n/4 [6]

MD6 [83] - X - - - - X - -
*MeshHash [23] - - - - X 8 × 8 - - 2323.2/2n/2 [92]

* Submitter has conceded that the algorithm is broken.
† Free-start near-collision.

Table 1. Attribute list of the first round candidates (A-M).
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Hash algorithm FN WP KEY MDS OUT SBOX FSR COL PRE

NaSHA [60] B - - - - 8 × 8 X 2128 [57] 2n/2 [73]‡

SANDstorm [94] - - X - - 8 × 8 - - -

Sarmal [96] U - - 8 × 8 - 8 × 8 - 2n/3/2n/3 [66]† 2384/2128 [71]

Sgàil [64] - X X 8 × 8, 16 × 16 - 8 × 8 - example [63] -

Shabal [14] - - X - - - X - -
*SHAMATA [2] B X X 4 × 4 - 8 × 8 - 240/229[43] 2451.7/2452.7 [38]

SHAvite-3 [11] B - X 4 × 4 - 8 × 8 X - -

SIMD [56] U X X TRSC+ - - - - -

Skein [25] B (X)⋄ X - X - - - -

Spectral Hash [86] - - - - X 8 × 8 - example [21] -
*StreamHash [95] - - - - - 8 × 32 - example [12] n

2
∗ 2n/2 [48]

SWIFFTX [1] - - - - - 8 × 8 - - -
*Tangle [81] - (X) X - - 8 × 8 - example, 219 [93] -

TIB3 [67] U - X - - 3 × 3 - - -

Twister [22] - X - 8 × 8 X 8 × 8 - 2252 [65] 2448/264 [65]

Vortex [53] - - - 4 × 4 X 8 × 8 - 2122.5/2122.5 [52] 23n/4/2n/4 [52]
*WAMM [98] - X - - X 8 × 8 - example [100] -
*Waterfall [35] - X - - X 8 × 8 X 270 [28] -

⋄ Specified for either narrow or wide pipe design.
+ Truncated Reed-Solomone codes.
* Submitter has conceded that the algorithm is broken.
† Collision with salt.
‡ Free-start preimage.

Table 2. Attribute list of the first round candidates (N-Z).

Hash algorithm FN WP KEY MDS OUT SBOX FSR COL PRE

Maraca [45] - X X - - - - 2237/2230.5 [18] example [42]

NKS2D [80] - - - - - - - examples [17, 20] -

Ponic [87] - X - - X 8 × 8 X - 2265/2256 [69]

Table 3. Attribute list of the SHA-3 candidates that are not accepted for the first round.

3 Software Speed of the SHA-3 Candidates

In this section we give an overview of the claimed software performance of the public known
SHA-3 candidates. We compare each candidate for their 32 and 64 bit performance. There-
fore, we define five speed classes, which are listed in Table 4.
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Speed Classification

x < 1
2

SHA-2 AA
1
2

SHA-2 ≤ x < 3
4

SHA-2 A
3
4

SHA-2 ≤ x < SHA-2 B

SHA-2 ≤ x < 5
4

SHA-2 C
5
4

SHA-2 ≤ x ≤ 2 SHA-2 D

x > 2 SHA-2 E

Table 4. Speed classification table.

Tables 5-8 compare the SHA-3 candidates and their speed classes. As a reference algorithm
we add SHA-256/ 512 [77]. Since each SHA-2 version is in class C for the 32 bit performance
and in class B for the 64 bit performance, we think that this can be seen as a benchmark
for all algorithms submitted. Nevertheless, there is a tradeoff between speed and security.
One can easily design a hash function with a high level of security which is very slow and
therefore may be useless in practice. For practical interest algorithms that are in speed class
D or E will have a disadvantage for practical purpose, but they could possibly face a strong
design. On the other side if an algorithm is very fast, i.e. in speed class AA, this could be a
hint that the security margin is not chosen so high. Recent breaks of very fast hash functions,
i.e. EnRUPT [79] or Boole [84], have verified this conjecture.
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Hash algorithm Performance 32 Bit Performance 64 Bit
cpb class cpb class

SHA-256 [77] 29.3 C 20.1 C
SHA-512 [77] 55.2 C 13.1 C
*Abacus-256 [89] 37.7 D 37.7 D
*Abacus-512 [89] 68 C 68 E
ARIRANG-256 [19] 20 A 55.3 E
ARIRANG-512 [19] 14.9 AA 11.2 B
AURORA-256 [44] 24.3 B 15.4 B
AURORA-512 [44] 46.9 B 27.4 E
BLAKE-32[4] 28.3 B 16.7 B
BLAKE-64[4] 61.7 C 12.3 B
Blender[13]† 105.8 E 105.8 E
Blender[13]† 122.4 E 164.2 E
BMW-256 [31] 8.6 AA 7.85 AA
BMW-512 [31] 13.37 AA 4.06 AA
*Boole [84] 8.9 AA 6.1 AA
Cheetah-256 [30] 15.3 A 10.5 A
Cheetah-512 [30] 83.8 D 15.6 C
Chi-256 [36] 49 C 26 D
Chi-512 [36] 78 D 16 C
CRUNCH-256 [33] 29.9 C 16.9 B
CRUNCH-512 [33] 86.4 D 46.9 E
CubeHash8/1 [9] 200 E 148 E
*DHC [101] 230 E 160 E
DynamicSHA-256 [103] 27.9 B 27.9 D
DynamicSHA-512 [103] 47.2 B 47.2 E
DynamicSHA2-256 [104] 21.9 B 21.9 C
DynamicSHA2-512 [104] 67.3 C 67.1 E
ECHO-256 [7] 38 D 32 D
ECHO-256 [7] 83 D 66 E
ECOH [15] - - - -
Edon-R-256 [32] 9.1 AA 5.9 AA
Edon-R-512 [32] 13.7 AA 2.9 AA
EnRUPT-256 [79] 8.3 AA 8.3 A
EnRUPT-512 [79] 5.1 AA 5.1 AA
Essence-256 [61] 149.8 E 19.5 B
Essence-512 [61] 176.5 E 23.5 D
FSB-256 [3] 324 E - -
FSB-512 [3] 507 E - -
Fugue-256 [34] 36.2‡ C 61‡ E
Fugue-512 [34] 74.6‡ D 132.7‡ E

* Submitter has conceded that the algorithm is broken.
† Test platform is Pentium III.
‡ Test platform is Intel Family 6 Model 15 XEON 5150 for 32-bit and

Intel Family 15 Model 4 Xeon for 64-bit performance tests. The cpb
values are approximated from documented MB/sec.

Table 5. Claimed software speed list of first round candidates of the SHA-3 contest (A-F). Benchmarks are in cycles
per byte (cpb) on NIST target platform (Intel Core 2 Duo).
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Hash algorithm Performance 32 Bit Performance 64 Bit
cpb class cpb class

SHA-256 [77] 29.3 C 20.1 C
SHA-512 [77] 55.2 C 13.1 C
Grøstl-256 22.9 B 22.4 D
Grøstl-512 37.5 A 30.1 E
Hamsi [54] - - - -
JH-256 [102] 21.3 B 16.8 B
JH-512 [102] 21.3 AA 16.8 D
*Khichidi-1-256 [97]† 74 E 74 E
*Khichidi-1-512 [97]† 148 E 148 E
Keccak-256 [10] 35.4 C 10.1 A
Keccak-512 [10] 68.9 C 20.3 D
LANE-256 [40] 40.4 D 25.6 D
LANE-512 [40] 152.2 E 145.3 E
Lesamnta-256 [37] 59.2 E 52.7 E
Lesamnta-512 [37] 54.5 B 51.2 E
Luffa-256 [16] 13.9 AA 13.4 A
Luffa-512 [16] 25.5 AA 23.2 D
Lux-256 [72] 16.7 A 28.2 D
Lux-512 [72] 14.9 AA 12.5 B
MCSSHA-3 [62] - - - -
MD6-256 [83] 68 E 28 D
MD6-512 [83] 106 D 44 E
*MeshHash-256 [23] 14.7 A 4.4 AA
*MeshHash-512 [23] 39.1 A 10.3 B
NaSHA-256 [59] 39 D 28.4 D
NaSHA-512 [59] 38.9 A 29.3 E

* Submitter has conceded that the algorithm is broken.
† Test platform: Intel Xeon 1.86 GHz.

Table 6. Claimed software speed list of first round candidates of the SHA-3 contest (G-P). Benchmarks are in cycles
per byte (cpb) on NIST target platform (Intel Core 2 Duo).
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Hash algorithm Performance 32 Bit Performance 64 Bit
cpb class cpb class

SHA-256 [77] 29.3 C 20.1 C
SHA-512 [77] 55.2 C 13.1 C

SANDstorm-256 [94] 62.5 E 36.5 D
SANDstorm-512 [94] 296.8 E 95.3 E
Sarmal-256 [96] 19.2 A 10 A
Sarmal-512 [96] 23.3 AA 12.6 B
Sgàil [64] - - 61 E
Shabal-256 [14] 18.4‡ A 13.5‡ A
Shabal-512 [14] 18.4‡ AA 13.5‡ C
SHAvite-3256 [11] 35.3# C 26.7# C
SHAvite-3512 [11] 55 B 38.2 E
*SHAMATA-224/256 [2] 15 A 8 AA
*SHAMATA-384/512 [2] 22 AA 11 B
SIMD-256 [56] 12 AA 11 A
SIMD-512 [56] 118 E 85 E
Skein-256 [25] 21.6 A 7.6 AA
Skein-512 [25] 20.1 AA 6.1 AA
Spectral Hash [86] 454.6 † E 454.6 † E
*StreamHash [95] - - - -
SWIFFTX-256 [1] 57 D - -
SWIFFTX-512 [1] 57 C - -
*Tangle-256 [81] 9 AA 9.4 AA
*Tangle-512 [81] 12.3 AA 12.7 B
TIB3-256 [67] 12.9 AA 7.6 A
TIB3-512 [67] 17.5 AA 6.3 AA
Twister-256 35.8 C 15.8 B
Twister-512 39.6 A 17.5 D
Vortex-256 [53] 46.2 D 69.4 E
Vortex-512 [53] 56 C 90 E
*WAMM [98] 268 † E 268 † E
*Waterfall-256 [35] 16.3 A - -
*Waterfall-512 [35] 16.3 AA - -

* Submitter has conceded that the algorithm is broken.
# Test platform: AMD Sempron 3200+.
† Not specified whether on 32-bit or 64-bit tested, cpb values are ap-

proximated from documented MB/sec.
‡ Test platform: AMD Athlon 3200+ 2GHz. The cpb values are ap-

proximated from documented MB/sec.
Table 7. Claimed software speed list of first round candidates of the SHA-3 contest (Q-Z). Benchmarks are in cycles
per byte (cpb) on NIST target platform (Intel Core 2 Duo).

Hash algorithm Performance 32 Bit Performance 64 Bit
cpb class cpb class

Maraca [45] 5.5 AA 5.3⋄ AA
NKS2D-256 [80] 178+ E 117+ E
NKS2D-512 [80] 350+ E 243+ E
Ponic [87] 7250∩ E 3250∩ E

⋄ Test platform: Intel Dual E5320 Quad Core.
+ Test platform: AMD Phenom 9500 Quad Core.
∩ Test platform: AMD Athlon.

Table 8. Claimed software speed list of SHA-3 candidates that are not accepted for the first round. Benchmarks are
in cycles per byte (cpb) on NIST target platform (Intel Core 2 Duo).
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