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1 Robustness

1.1 Uncertainty in the decision space

The main challenge is that the preference relationship ≺ defined by

x ≺ y iff φ(x) < φ(y),

where φ is some merit function mapping decisions onto real-valued vectors,
has to be generalized if x and y are sets instead of elements.

Possible workarounds include the following:

• use representatives of both sets. The question here is, of course, how
to choose the corresponding representing members.

• compare all members with each other. The cardinality of the sets in-
volved might be the main bottleneck here. Other issues arise if some
members are incomparable, etc.

• Let x̄ and σ be expected value and variance of the set x. We can com-
pare these two measures among different sets in a bi-objective fashion.
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1.2 Uncertainty in objectives and constraints

We propose the following tentative definition of robustness with respect to
the objectives:

a solution x is called robust if small changes in x incur small changes
in f(x).

Here, ”small” corresponds to a prespecified threshold of the DM.
Uncertainty (especially noise) in the constraints gives rise to the issue

of reliability. We explain reliability in the last section, where we will also
propose to solve uncertainty in the constraints by chance-constrained opti-
mization.

1.3 Further Issues

Finally we would like to mention two further issues.

• Inverse problems: in this scenario, the Pareto-front is given, and the
DM would not like to go beyond a certain distance from the front.
What is the maximum perturbation allowed in the uncertainty?

• Uncertainty in the cone the DM is using leads to the necessity to find
the corresponding ”robust” part of the Pareto-front.

2 Flexibility

How to define flexibility:

min
x

Eα(f(T (α, x)))

x: decision α: info from environment (random) T : transformation func-
tion (taking care of flexibility) f : quality function

Robustness: T = id. (no flexibility)
Also interesting: T ∈ T .
Typical examples:

1. Network optimization with technological changes. A network (to be
designed) needs to be robust wrt to technological changes, i.e. proto-
col changes, routing changes etc. These changes are encoded in the
transformation function T .
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2. TSP. New customer arrives at some place, solution already found for
the TSP needs to be adapted in a flexible way.

3. Path-finding for autonomous robots. Moving obstacles leads to the
necessity to update the optimal route found.

Research challenges:

1. iterate T (build up a time-dependent path of solutions). What is the
optimization criterion? How to measure optimality? What about the
constraints over time?

2. Trade-off between flexibility and solution quality?

3 Approaches to Handle Uncertainty

3.1 Uncertainty in the problem formulation

The basic concept of uncertainty arises by a set-valued mapping from the
decision space into the value space: points are mapped into sets, whose
shape and form is not necessarily a priori known by the user of the model
or the decision maker. Likewise, the mapping that maps points from the
decision space into the constraint space (where feasibility resp. infeasibility
is measured) is also set-valued.

Uncertainty in the cost (i.e. in measuring the fitness) can usually be
estimated by sampling the cost several times at a particular point. One
can then either take the mean or factor the samples into the multiobjective
problem by using the concept of stochastic dominance. Note that sampling
can be time-consuming.

Vincke distinguished between four different types of robustness. In a
similar vein, we distinguish between three different types of criteria that
have to be taken into account when handling uncertainty. These criteria
can, for example, be added to the given list of criteria of a multiobjective
optimization problem. Each criterion operates on the decision space, i.e.
each criterion maps a decision on a numerical value. The criteria are

• risk: roughly defined as the conditional expectation of becoming infea-
sible under random perturbations of the given decision. More precisely,
probabilities of perturbations are multiplied with a measure of infeasi-
bility.
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• reliability: while similar to risk, the measure of infeasibility used here
is simply a value of 1 for infeasibility and a value of 0 for feasibility. As
such, reliability measures the volume of space that can be reached by
perturbations that lead to infeasibility.

• robustness: while risk and reliability measure a quality corresponding
to feasibility, robustness measures a quality corresponding to the given
objectives of a multiobjective optimization problem. Roughly, 100%
robustness is not always necessary. Robustness with respect to the
preferences of the decision maker can also be taken into account here.

Note that we omit a formal definition of risk, reliability, and robustness
—and this on purpose. While we highly value examples enlightening the
reader in what precisely is meant by a particular term we believe it to be
to early to constrain oneself to a particular definition at the present state of
affairs. Instead, we would like to reiterate again that there are various ways
to measure the quality of a particular approach to handle uncertainty.

There is a clear trade-off between optimality of a given point and its
robustness: quite often, it seems that one can gain a certain amount of
robustness by giving up Pareto-optimality and moving to a dominated point
instead. We believe that decision makers should be aware of this.

3.2 Uncertainty in reformulating the model

The two main problems with uncertainty when reformulating the model is
underestimation resp. overestimation. There is a clear tradeoff here between
accuracy of a model and the complexity of it. Again, the user of the model
and the decision maker need to be aware of it.

3.3 Typical algorithmic approaches

A general algorithmic framework can be as follows. The problem

min f(x, θ)

s.t. g(x, θ) ≤ 0

with random parameter θ can be replaced by a problem with objective

min R(f(x, θ), x, U(x))
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where R measures risk, reliability, and robustness and U is a function han-
dling uncertainty.

Generally, approaches for handling uncertainty seem to be much better
developed in single-objective optimization than in multi-objective optimiza-
tion. Typical approaches include:

• Chance-constrained optimization: convert uncertainty in the constraints
into constraints of the form ”the point x will be feasible with probability
1 − ǫ” (where ǫ > 0 is chosen by the user / decision maker).

• Substitute means into variables/parameters: replace the problem ”min-
imize f(x, θ)” where uncertainties are contained in θ, by ”minimize
f(x, θ̄)”, where θ̄ is the mean of the random variable θ.

• Single-objective robust programming (”worst case approach”): replace
the problem ”minimize f(x, θ)” where uncertainties are contained in
the parameters θ, by ”minimize maxθ f(x, θ)”, where the inner maxi-
mization goes over a suitably defined set of θ’s.

• Single-objective stochastic programming (with and without recourse)
(”average case approach”)

• Interval arithmetic (for the decision variables)

3.4 Typical examples

• job shop scheduling (new jobs arriving in time, see Branke et al)

• robust TSP (See Knowles et al)

• robust car design (uncertainties in parameters, see Deb et al)

• trajectory optimization (Flight time & fuel expenditure to be mini-
mized. Accepting epsilon-dominant solutions lead to more robust tra-
jectories. See Schuetze et al)

• portfolio optimization (many authors)
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