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ABSTRACT. Complex systems are modeled as collections of multiobjective programs each
representing a subproblem (a subsystem or component) of the overall system. The sub-
problems interact with each other in various ways adding to the complexity of the overall
problem. Since the calculation of efficient sets of these complex systems presents a challeng-
ing problem, it is desirable to decompose the overall system into component multiobjective
programs that are more easily solvable and then construct the efficient set of the overall
system. Selected cases of complex system are presented and relationships between their
efficient sets and the efficient sets of their subproblems are given.
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1. INTRODUCTION

Many entities of interest to humans are complex systems. For example, in business, an
enterprise may involve several operative sectors within a national economy having different
interests that usually are in conflict with each other not only within each sector but also
in conflict with the goals of the other sectors. Similarly, a corporation may have several
departments having different goals being in conflict with each other and with the goals of
the other departments. In engineering, the design of a vehicle or airplane leads to a complex
system involving design with respect to several disciplines such as aerodynamics, electrical
systems, control systems, etc. However, a preferred design decision for one discipline may not
be preferred for another. Additionally, a preferred design decision within a discipline may
have to be made with respect to multiple and conflicting design criteria for that discipline.

A complex system is understood to be a natural or engineered system that is difficult to
understand and analyze because of one or more of the following properties: (1) The system
may involve interactions among many phenomena; (2) The system may have multiple and
dissimilar subproblems (components or subsystems) that may be connected in a variety
of ways; (3) The system may be characterized by noncomparable and conflicting criteria
or objectives such as cost, performance, reliability, safety, productivity, affordability, and
others. In the presence of multiple and interacting components and criteria, a unique decision
optimal for the system does not exist but rather many or even infinitely many decisions are
preferrable.

Studies on complex systems with multiple criteria propose (1) decomposition of the original

problem modeled as a single multiobjective program (MOP) into a collection of smaller-sized
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subproblems, for which the development of a solution procedure becomes a more manageable
task, and (2) coordination of the solutions of the subproblems to obtain the solution of the
original problem. A large number of such approaches exists for specific applications in
management science, engineering, and multidisciplinary optimization (see [14, 18, 19] among
many others). Other papers deal with decomposition and coordination due to a large number
of criteria in the original problem [13, 12, 1, 11, 2]. Finally some authors study objective
decompositions from a predominantly mathematical perspective [20, 16, 3, 17]. However,
there is a lack of mathematical studies to model complex systems not only as a single large-
scale MOP but as a system of MOPs interacting with each other. The research work briefly
reported in this paper intends to undertake this very modeling approach.

Complex systems are modeled as collections of multiobjective programs each representing
a subproblem (a subsystem or component) of the overall system. The subproblems interact
with each other in various ways adding to the complexity of the overall problem. Since
the calculation of efficient sets of these complex systems presents a challenging problem, it
is desirable to decompose the overall system into component MOPs that are more easily
solvable and then construct the efficient set of the overall system.

The systems studied include a variety of configurations with composite objective functions
as well as local, global, and/or linking variables. Relationships between the efficient set of the
overall system and the efficient sets of subproblems are derived. These relationships indicate
when efficient solutions of subproblems are also efficient for the system and reveal how an
efficient solution of the system can be built from efficient solutions of the subproblems. In
effect, decomposition and coordination approaches may be developed to find the efficient set
of a complex system without ever dealing with this system in its entirety.

In Section 2, the overall problem formulation is introduced with the accompanying no-
tation. In Section 3, selected cases of complex system are presented and the relationships
between their efficient sets and the efficient sets of their subproblems are given. The paper
is concluded in Section 4.

2. ALL AT ONCE (AAO) PROBLEM

MOPs are optimization problems with multiple and conflicting criteria. Generally we
search for a solution that provides an acceptable optimization of all the objective functions,
with solutions being acceptable when the only improvement in any of the objective functions
causes a deterioration in at least one of the other objective functions.

We model complex systems as mathematical programs that can be written as a single
optimization problem with a vector-valued objective function and an appropriate, nonempty
feasible set. Let f : R* — R’ denote the vector-valued objective function to be minimized.
Let x € R" denote the decision variables and let the feasible set for the decision variables
be represented by X C R". In general, these optimization problems can be written as
multiobjective programs (MOPs) in the form

min f () subject to x € X CR". (2.1)

A functional representation of the general MOP (2.1) is depicted in Figure 2.1. The box
represents the function operator. Inputs for this operator are elements from the function’s

domain, including decision variables and/or output from another function, while outputs for
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this function are the elements of the function’s range generated by the given input(s). We
could also think of this as the input-output representation.

x f(x)

FIGURE 2.1. Functional representation of the system

An efficient solution is a solution for which there does not exist another feasible solution
that yields improvement in at least one of the objective functions without degrading any

other objective function. The efficiency operator for MOP (2.1) is denoted & (X ) IR’;) and
ifreé& (X, /s IR;), we say that z is efficient in X for f.

Definition 2.1. £ (X, f, IR’;) ={z € X : there does not exist & € X such that
f(@) < f(2)}

The efficiency operator requires three inputs. The first is X, the feasible set of the MOP,
the second is f, the objective function of the MOP, and the third is RZ, the domination cone

with respect to the p objective functions (as developed by Yu [21]).

In general, we allow the system to be composed of N subproblems, sometimes referred to
as subsystem or component problems. Let the global variable, also called the shared variable,
be a subset of the decision variables, x, denoted xq € R™, that is a necessary input for at
least two of the subproblems. Let the local variable be a subset of the decision variables,
denoted by z; € R", that is an input for only subproblem . We denote the decision variables
x = [xo,21,...,xy] where x; € R for i = 0,1,..., N and let the objective function f be
written as f (z) = [f1(2),..., fx (x)] where f; : R — RPi for i =1,..., N. At times it
may be of interest to consider the scalar components of the objective function which will be
denoted f;; : R — Rfor j=1,...,p;and fori=1,..., N.

In the next section we present theoretical results for determining the efficient set of com-
plex systems for several formulations. We assume that the efficient sets for subproblems
of a system are available and build a relationship between the available efficient sets and
the efficient set of the entire system. The structure of the system and the manner of the
decomposition applied to form the subproblems governs the strength and the form of the
relationship between the efficient sets of the subproblems and the efficient set of the sys-
tem. For each type of system we formulate the specific AAO problem for that system, the
feasible set, and the objective function. We then build the pertinent efficient sets from Defi-
nition 2.1 and present necessary auxiliary concepts. Finally, we state propositions describing

relationships between the efficient sets of the subproblems and the efficient set of the system.
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3. DECOMPOSITION OF SELECTED COMPLEX SYSTEMS

In the subsequent subsections we present four types of complex systems. In particular, we
address systems with two types of independent variables, two subproblems in serial connec-
tion with independent and dependent variables, and cases of global and local independent
variables.

3.1. One Subproblem with Two Independent Variables. We first consider systems
with one subproblem and distinct decision variables, which we denote as z; and x,, x =
[x1,x5]. These independent variables allow us to write the feasible set, X, as the cross
product of X; and X5, where z; € X; C R™ and x5 € Xy C R". This is equivalent to
independence between x; and x5, where feasible solutions for one variable are not affected
by the feasible solution chosen for the other variable. This case has also been investigated
by Li and Haimes [15].

Let f:R" — R and X = X; X Xy = {2 = (21,22) : 71 € X and 25 € Xy} C R", where
X; CR" for : = 1,2 and n = ny + ny. This system yields the following AAO problem

min f () = f (21, z2) subject to x € X = X; x X5, (3.2)

Figure 3.2 provides the physical representation of the system.

Xy
f(x)
Xy

FIGURE 3.2. Physical representation of one subproblem and two independent variables

Without loss of generality, we fix the value of x; and then optimize over xy. Fix 7; € X,
and let

X (z1) ={(x1,22) : 2y = %1 and x5 € Xo} = {71} x Xs. (3.3)

The decomposition scheme yields the following subproblem and leads us to the following
proposition.

min f (z)subject to x € X (71) (3.4)
Proposition 3.1. £ (X, f,]R%) =& ( U ¢ <X (:El),f,]R%) ., Isz).

T1€X1

Note that this decomposition yields a relationship that lends itself to problems with one

independent variable being discrete or assuming a finite number of feasible values.
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3.2. Two Subproblems in Serial Connection with One Independent Variable. We
move to systems that have two subproblems and a single set of decision variables. However,
the objective function is a function not only of the intermediate function, but also of the
decision variable.

Let r : R* — R? and f : R""?7 — R? and X C R". This system yields the following AAO
problem

min f (z,7 (x)) subject to z € X. (3.5)

Figure 3.3 provides the physical representation of the system.

f(x,7(x))
—_—

F1GURE 3.3. Physical representation of two subproblems and a single variable
where f is a function of r and x

The decomposition scheme yields the following subproblem and leads us to the following
propositions.

minr (z) subject to x € X (3.6)

Proposition 3.2. Let f be strongly increasing, f~' and r=' exist, and f~' and r=' be
strongly increasing, then &€ (X xr(X),f, IR%) = {(x, r(x)):zeé& (X, T, R‘é) }

This result shows when the vector-valued objective function f can be ignored when cal-
culating the efficient set of the AAO problem.

3.3. N Subproblems with a Global Variable. We continue with a system that is com-
posed of N independent subproblems where each subproblem is a function of a single global
variable. Let f : R* — B’ and f; : R* - R fori =1,..., N where p=p; + ...+ py. Let
X CR" with the AAO problem formulation

min f (x) = (f1 (x),..., fy (z)) subject to z € X. (3.7)
Figure 3.4 presents the physical representation of the system.

FIGURE 3.4. Physical representation of a system with a single global variable
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The subproblems for this system are of the following form for i =1,... N.
min f; (z) subject to z € X (3.8)

Figure 3.5 present the physical representation viewed at the subproblem level.

f(x)

EE——
X > fx (x)
> f\(‘) »

F1GURE 3.5. Physical representation of a system with a global variable de-
composed into N subproblems

We first define weakly efficient sets and injectivity of a vector-valued function and then
relate the weakly efficient set of X and f; and the efficient set of X and f.

Definition 3.2. A point x € X is said to be weakly efficient in X for f if there does not
exist a point & € X such that f (z) < f (x).

The set of weakly efficient points in X for f is denoted &, (X  f, IR%).

Definition 3.3. A function f; : R* — R where f; = (fi1, ..., fip;) is said to be an injective
function on X if fi; is an injective function on X for all j =1,...,p;.

Definition 3.4. A function fi; : R* — R is said to be an injective function on X if fi; (x) =
fij (&) implies that x = & for all x,7 € X.

The next two propositions were investigated by Engau [4].

Proposition 3.3. Let i € {1,..., N}, then &, (X, fi,IRg> C &, (X, f IR%).

Proposition 3.4. Let f; be injective fori=1,..., N, then € (X, fi,IPL’g) Cé& <X, fs IR%).

The relationships above indicate that while an efficient solution of a subproblem remains at
least weakly efficient for the overall problem, the converse may not hold for any subproblem.
In other words, there are efficient solutions of the overall problem that are not reachable

while solving the subproblems for efficiency. These solutions, however, become reachable
6



when the subproblems are solved for e-efficiency [5, 6, 7, 8]. Using this relaxed efficiency,
equivalence between solving the overall problem and a family of smaller-sized subproblems
has been established and interactive procedures have been proposed to consider only subsets
(or even pairs) of criteria at a time, thereby making decision-making the simplest possible

9].

3.4. N Subproblems with a Global Variable and N Local Variables. We conclude our
presentation of selected complex systems with a system that is composed of N independent
subproblems where each subproblem is a function of a single global variable and a local
variable. Let f : R* — R’ and f; : R™™ — RPi fori=1,..., N wheren =ng+n;+...+ny
andp=p;+...+pn. Let X; CR% fori=0,1,...,Nand X = Xog x X; x...x Xy CR"
with the AAO problem formulation

min f () = (f1 (xo,21),..., [n (xo,zn)) subject toxz € X = Xo x X7 x... XN, (3.9)

Figure 3.6 presents the physical representation of the system.

fi (:-"?--"1)]

£ [ "
fu(xg,xy)

FI1GURE 3.6. Physical representation of a system with global and local variables

Let Ty € X be fixed and define the set X (Zg) as

X(Lf’o) = {(ZL’(),J,’l,...,:L’N)EX:X()X...XXNZl’ozi’o,xiGXi,izl,...,N(B.lo)
= {ii‘o}XXlx...XN.

The decomposition scheme yields the following subproblem for this system.

min f () subject to x € X (Zo) (3.11)

and leads us to the following proposition.
Figure 3.7 present the physical representation viewed at the subproblem level.

Proposition 3.5. & (X, 7, mg) -y ( U € (X (7o), f, mg) ) Rf;).
- To€Xo - -

This result shows that the global variable may be treated as an independent variable as
in Section 3.1. However, we take this proposition one step further by considering the inde-
pendent local variables and fomulating another subproblem. For i = 1,..., N subproblem 1
for this system is

min fz (5(_]0, Iz) subject to z; € X;. (312)
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Xy filxgy)

X3 f2(xg.2;)

Xn fulxoxy)

FI1GURE 3.7. Physical representation of a system with global and local vari-
ables decomposed into N subproblems

Corollary 3.1. £ (X, £ IR%)

=< ( U {Zo} x €& (Xl,fl (f071’1)»m}§> X...x& (XN7fN (fo,mzv),ﬂ’»?) ,f,R;;)

To€Xo = = =

This corollary indicates the possibility of finding the efficient set of the AAO problem by
means of finding the efficient sets of the subproblems.

4. CONCLUSION

In this paper, some recent developments in the calculation of efficient sets for multiobjec-
tive complex systems are highlighted. The revealed relationship between the efficient set of
the MOP problem associated with the entire system and the efficient sets of its subproblems
indicate a type of method for coordination of the efficient sets into a set which is efficient
for the original problem.

Other cases of multiobjective complex systems with all detailed proofs are presented in [10].
In particular, it is shown that multiple decomposition schemes, with varying assumptions
regarding the system, can be applied to the same initial system yielding different subproblems
and hence different relationships.

Among many future directions of research, robustness issues and interactive aspects for
multiobjective complex system optimization seem to be especially relevant in the context of
real-life applications of this modeling and optimization approach.
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